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ABSTRACT

In this paper the following statistical problem is considered. Let stars and interstellar clouds occur with
a uniform distribution. Let the system extend to a linear distance L in the direction of a line of sight. Let
a cloud reduce the intensity of the light of the stars immediately behind it by a factor ¢. Let the occur-
rence of clouds with a transparency factor ¢ be governed by a frequency function y(g). Given all this,

- itisrequired to find the probability distribution, g(, L), of the observed brightness, . From a considera-

tion of this problem it is shown that the following integral equation governs the distribution of brightness:
d d
g, &) +35+38= [T (%) 022,

where % is the observed brightness measured in suitable units and # is the average number of clouds in the
direction of the line of sight. It is further shown that the foregoing integral equation enables us to obtain
explicit formulae for all the moments of g as functions of # and the moments of ¥/(g). As an illustration of
the use of these general formulae for the moments, an example investigated by Markarian has been
reconsidered in an attempt to derive the mean and mean-square deviation of the optical thicknesses of
the interstellar clouds.

1. Introduction.—The fact, now generally recognized, that interstellar matter occurs
in the form of clouds and that the average number of such clouds intersected by a line of
sight is of the order of 5 per kiloparsec requires a reorientation of the problems and objec-
tives of stellar statistics. That such a reorientation is needed is brought out most clearly
by the definiteness and the precision of the conclusions reached by Ambarzumian and his
collaborators in three relatively brief investigations,! in which the cloud structure of inter-
stellar matter is explicitly introduced as an essential element of the problem. Thus, in the
investigation by Ambarzumian and Gordeladse, in which the observed association of
emission and reflection nebulae is quantitatively accounted for on the hypothesis of a
random distribution of stars and interstellar clouds by considering the volumes of space
illuminated by stars of various spectral types, estimates are obtained for the average
number of clouds per unit volume (~1.2 X 10~ per cubic parsec) and the average
number of clouds intersected by a straight line (5-7 per kiloparsec). Similarly, from a
simple analysis of the statistics of extragalactic nebulae, Ambarzumian deduced that the
photographic absorption per cloud is of the order of 0.2 mag.; this, combined with the
earlier estimate of the number of clouds in a line of sight, leads to a photographic extinc-
tion coefficient of 1.0-1.5 mag. per kiloparsec, which is in general agreement with other
determinations of this quantity. The far-reaching nature of these conclusions—they were
revolutionary at the time that they were drawn—should convince one that stellar sta-
tistics will gain enormously by making the distribution and the properties of interstellar
clouds more immediate objectives of the investigation than has been customary so far.
For example, the known fluctuations in the brightness of the Milky Way can be in-
terpreted most readily in terms of the fluctuations in the numbers of the absorbing
clouds in the line of sight; for, while other factors doubtless contribute to the observed
fluctuations, these must be secondary to the effect of the fluctuations in the numbers of

1V. A. Ambarzumian and S. G. Gordeladse, Bull. Abastumani Obs., No. 2, p. 37, 1938; V. A. Ambar-

zumian, Bull. Abastumani Obs., No. 4, p. 17, 1940; and B. E. Markarlan, Contr. Burakan Obs. Acad. Sci.
Armenian S.S.R., No. 1, 1946.
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clouds, since so few of these are generally involved. Indeed, in a short note published in
1944, Ambarzumian? formulated the following problem which he considered basic for
such an analysis:

Let stars and absorbing clouds occur with a uniform distribution in a plane of infinite
extent. Further, let a cloud reduce the intensity of the light of the stars immediately
behind it by a factor g. Let the occurrence of clouds with a “transparency” ¢ be governed
by a frequency function ¢(¢). What is, then, the probability distribution of the observed
brightness?

Ambarzumian derived an integral equation for the required probability distribution
and showed how its first and second moments can be expressed quite simply in terms of

¢ and ¢* However, when Markarian! came to applying this theory to observations, he
found that Ambarzumian’s assumption of the infinite extent of the system in the direc-
tion of the line of sight was too restrictive and that the problem must be considered for
the case in which the average number of clouds in the line of sight is finite. The need for
this generalization is apparent when we remember that the average number of clouds in
the direction of galactic latitude B is # cosec B, where % is the corresponding number in
the direction of the galactic pole; thus in our own galaxy # ~ 3 and # cosec 8 ~ 10 for
B = 20°. Moreover, this dependence of the average number of clouds on the galactic
latitude will provide a valuable check on the analysis.

Markarian did not derive the integral equation governing the distribution of bright-
ness for the more general problem; but he did obtain explicit expressions for the first and
the second moments for the case in which all the clouds are equally transparent. In this
paper we shall derive the general integral equation governing the distribution of bright-
ness and show how all its moments can be found. And we shall illustrate the use of these
general relations for the moments by an example.

2. The basic integral equation.—Let I denote the observed brightness and L the dis-
tance of the observer to the limits of the system in the direction of the line of sight. Then

L n(s)

I= f ! mds, (1)

where 7 is the emission per unit volume by the stars assumed to be uniformly distributed,
n(s) is the number of clouds in the distance interval (0, s) in the line of sight and is a
chance variable,and ¢;[7 = 1, 2, , n(s)] is the factor by which the sth cloud cuts down
the intensity of the light from the stars immediately behind it. As we have already stated
in § 1, we shall assume that the ¢’s occur with a known frequency, ¥(g).

If » is the average number of clouds per unit distance, then #(s) will be governed by
the Poisson distribution, '
. W)™

n!

r=0,1,...),®

having the variance vs.
The problem is to determine the probability distribution of 7. It is convenient to
reformulate this problem in dimensionless variables. For this purpose we shall let

u=171— and r=vs. (3
Then K
g ()
u=f H g:.ar, )
0 =1
where
£ =L (5

2 C.R. (Doklady) Acad. Sci. URSS, 14, 223, 1944,
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382 S. CHANDRASEKHAR AND G. MUNCH

is the average number of clouds to be expected in the distance L. Also, according to
formula (2), the occurrence of a particular number of clouds, #, in the interval (0, r) will
be governed by the Poisson distribution,

rn

e”;ﬁ m=0,1,..).(

Let g(u, £) denote the frequency distribution of « for a given £. Since the ¢,’s are all
less than, or equal to, 1, it follows from the definition of # as the integral (4) that »
can never exceed £. Hence

g(u, §) =0 for u>§¢. )

In addition to g(w, £), it is convenient to define the probability that # exceeds a
specified value. Let

8 = [g G ) du ®

denote this probability. An integral equation governing f(#, £) can be derived in the
following manner:

By definition .
En('r) >
, = Probability that ar . 9
I (u, &) robability a_/o.gq Zu

Equivalently, we may also write
n(r) n(a) n(r) —n(a)

f (u, &) = Probability thatgf H g:dr+ H q]f qidr} Zu, 10

where a is an arbitrary positive constant < £. Replacing 7 — a by 7 in the second integral
on the right-hand side, we have

nlr) n(a) n(r)

7 (u, §) = Probability that] /* qur—l—nq]f - [1e drf>u. av

Now let a < 1. Then up to O(a?), we have only two possibilities: either there is no
cloud in the interval (0, a), or there is just exactly one cloud. The probabilities of these
two occurrences—again, up to O(a?)—are 1 — a and a, respectively. Hence

n(a)

T ¢:= 1 with probability 1 — a , 4z
i=1
> ¢ and < ¢ + d ¢ with probability ay (¢) dg .

We may, therefore, rewrite equation (11) in the form
2 ()

fu, &) = af dgqy (¢) Xprobability thatg 0a+qf H qidr} >u
=1

(13)
)

+ (1 — a) Xprobability thatga—}—f H qq drs u+0 (a?),
i=1

where 6 < 11s some positive constant. Since we are neglecting all quantities of O(a?) and
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higher, it is clearly sufficient to evaluate the integral in equation (13) which occurs with
the factor a to zero order in a. Thus

n(r)

f(u, £ —af dgy (q) Xprobablhtythat;f qudrz /%

(14)
o nlr)

+ (1 — a) X probability thatgf H qidrg >u—a+0(ad;
=1
or, remembering the definition of f(u, £), we have

£, B =af01dq¢ (q)f(g, )+ -0 fa f-a) +0G). us
Hence
1
a8 =af dQIP(q)f(%, £)+1 w, )

(16)
—af (u, E)—aaf 9

2
95 " 3t 40 (a?) .
The function f(u, £) must therefore satisfy the integral equation,
g+t @ r(te)ae. an

Now, differentiating this equation with respect to #, we obtain the integral equation

governing g(u, £),
g(u,‘q’)-l-ag-l-%—fsb(q)g( 6) s

We have already pointed out that # cannot take values exceeding £. But it can take
the value £ itself with exactly the probability e—¥ since this is the probability that no
cloud will occur in the interval (0, £). The distribution of # has therefore a delta func-
tion, 6(u — £), at w = £ with an “amplitude” ¢~£. Therefore, writing

gu, £) =¢ (u, §) +e*o(u—19),
we find that the differential equation for ¢ is

6o+ y ()4 [y@e (L 6)L

w/t

In deriving this equation the assumption has been made that since
(1450 +% ) e~ Xafunctionof (u— £) =0
FPRIET: unction o =0,

the same is also true of e—46(u — £).
For the case in which the system extends to infinity in the direction of the line of sight,
equation (18) reduces to the one given by Ambarzumian,? namely,

g (u) +g—§=/ﬂl¢ (9) g (g)% (19)

Equation (18) is the basic equation of the problem.
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384 S. CHANDRASEKHAR AND G. MUNCH

3. The moments of the distribution funciion g(u, £).—We shall now show how the inte-
gral equation (18) enables us to determine all the moments,

S/ “o(u, £) wd (=01, @0
n = U, urau n=yu,1,...),
KB A 4
of the distribution function g(u, £). But first we may note that, by definition,
3
= ,E)du=1,; 21)
Ko _/(; g (u, §£) du

all the other moments will, however, be functions of &.
Now, multiplying equation (18) by %™ and integrating over the range of %, we obtain

é2”=£1dqu (9) /j%@(g)ﬂg (-13, E). (22)

u,.—l—fo e du+

" An integration by parts reduces the integral on the left-hand side to —nu,_ if use is

made of equation (7). Also, the integral on the right-hand side can be reduced in the
following manner:

/O’ldng (9) /O-Gd—;‘@)"g (g Z) |
= [1dqgw (¢) /O-E/qux"g (x, &) (23)

1 1
= [deav @ fosdxx"g (5, 8) = f 4409 (@)

In the foregoing reductions use has again been made of the fact that g(u, £) = 0 for
# > E. Thus equation (22) becomes

fi—?—’— (1 — gq,) pr=1np,—1 n=0,1,...), 9

where, for the sake of brevity, we have written

J— 1
= Q"= d (q) . (25)
¢n=4 fo 99y ()
It may be noticed here that, by writing

3
o= 6 (u, ) wdnt gremt = u, + gret
0

in equation (24), we find that the equation satisfied by u, is

du,
Tug"l" 1- Qn) Up = g,,f"e_f—i—nu,,_l.

But this same differential equation also follows directly from the equation satisfied by ¢.
It is evident that all the moments u, must vanish at £ = 0. On the other hand, from
equation (22) for n = 2, namely,
d s

d—£+ (1 =g pa=2py, (26)
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we conclude that du,/d£ also vanishes at £ = 0. And by induction it follows quite gen-
erally from equation (24) that u, and its first (n — 1) derivatives must vanish at £ = 0.
Also, the u,’s must be bounded for £ — . As we shall see presently, these boundary
conditions suffice to solve the system of equations (24) uniquely.

By successive applications of equation (24) for » = 1, 2, etc., we obtain

[g(dig+ aj)]#n=n!, 27

a;j=1—¢;. (28)

where

The solution of equation (27) which satisfies the boundary condition at § = o is

n !
o= > Ape 4 n_ (29)
E=1 =
[Ies
=1
where the 4x’s(k = 1, . . ., n) are » constants of integration.
The boundary conditions, p
7
p.=0  and Fn_0o  (j=1,...,n—1), 60
. dgs
now require that
u !
IR
k=1 2
aj
and =t (31)
> Ara=0 (j=1,...,n—1).
k=1

The matrix of the system of equations (30) is seen to be the Vandermondie matrix;? its
reciprocal is the matrix*

Sa—1-1,
T (32)
(1, n) !
I I (“r—aj)
i

in which the S,_14,,s (=0,1,...,n—1; r=1,..., n) are the independent

symmetric functions in the (# — 1) variables (a1, - . . , @r—1; @Grt1, - - - , Ga),
(1, n) (1, n)
So.,=1;  Su,==D a5  Spenr= (=D ]]as. 33
iFEr iEr

The constants A are therefore given by

Sl (=D _

Ak__(lrn) - =5 (k=1,...,n).69
H (o — aj) Haj akH (ar— a;)
17k =1 7%k

3 Cf. O. Perron, 4dlgebra (Leipzig: De Gruyter, 1932), 1, No. 22, 92-94.
4 Cf. S. Chandrasekhar, 4p. J., 101, 328, 1945, esp. egs. (75) and (81).
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Reverting to the variables 1 — ¢; (eq. [28]), we have

A n! 1
= (B=1,..., n) .69

| ) RO

i=k

Extending definition (35) also to £ = 0, we can write the solution for u, in the form

n Ot
_—p! 5S¢ " _
Yn n.;(o,n) m=1,...).@6
IT @—9»
i=k
In particular, for » = 1 and 2 we have
b= [ — ]
1—q1
and 37
2 2 e—(1—a)k 2 e—(1—a,)¢
Mo =

T—d—a T (1= (g1—¢q2)  (2—1)(g2—¢q0) °
If all the clouds are characterized by the same value of g, then
q J— qi (38)

and equations (37) reduce to the ones given by Markarian.?

4. A direct proof of the relations satisfied by the moments.—It is of interest to verify that
the relations between the moments of g obtained in § 3 and, in particular, the differential
equation (eq. [24]) governing them are deducible directly from the definition of # as the
integral (4). For this purpose we first establish the following lemma.:

Lemma.—Let f(xy, . . . , x,) be a symmetrical function in the # variables a3, . . . , %,.
Then

I, = ./b‘adxn/b‘adxn_l/b.adxn_z ...fbadxlf (®yy «vy %)
(39)
=n!/b-adx,,/:dx _14}%,,_2 ..._/:dxlf (g, oevy @) .

Proof —First, we verify that the lemma is true for two variables; this is very readily
done. Next we show that, on the assumption that the lemma is true for all multiple
integrals of (# — 1) and lower folds, the truth of the lemma for #-fold integrals can be
deduced. The general truth of the lemma would then follow by induction.

Considering, then, the n-fold integral 7, and transforming the (» — 1)-fold integral
OVer Xn—1, Xn_3, . - . , %1 in accordance with the lemma, we have

= (n—1) lfadxnfadxn_lfadx,,_z ...fadxlf (g, o ey Xp) - (40)
b b Tp s 2,

Splitting the range of integration over x,_; from ¢ to x, and «, to &, we have

L= (n—1) Ifadxnfadx,,_lfadxn_z ...fadxlf (x4, ..., %) +T. @
b 2 Zps 2,

8 0p. cit., eqs. (10) and (13).
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where
T= =01 duy [Tdvey [(dn, o... [ durf @ on, 3. (42)
S s [

Now, inverting the order of the integration over «, and x,-1in J and using the symmetry
of f(xy, . . ., x,) in 2,3 and x,,, we have

J= (n—1)1fb“dx,,ﬂf“dxnf“dx _2,,,/adx1f(x1,...,xn)

= -1 [ dz, [“da S s [ ...fadxlf(xl, e, )
b Zn z, E Zy

The (n — 2)—‘fold integral over x, 5, %, 5, ..., x, in this last expression for J can be
transformed in accordance with the converse form of the lemma for (» — 2) variables
and leads to

J=m—-1) fadx,,fadx _lfadxn_2fadxn_3 ...fadxlf (X1, eovy Xp) . (49
b % e, o, 2y,

By a further application of the lemma for the (» — 1) variables %, 1, ¥»2, . . . , %1, we
obtain

J=m—-1)(n—1) zfadxﬂf“dx_lf“dx,,_z...f“dxlf(xl, e, E) . (49
b 2, 2y z,

(43)

With J given by equation (45), equation (41) becomes
I, =mn! adxn adxn_ adx,,_ ... adxlf (g, eeny X) 3 (46)
Lo [ ]

and this verifies the lemma for » variables. The general truth of the lemma therefore
follows by induction.
An immediate corollary of the lemma is

I,,=nfadxnfadx _1/adx,,_2 ...fadxlf (X, o.., &)« (47)
b z, z, =,

This alternative expression for I, follows from an application of the lemma in the con-
verse form to the (» — 1)-fold integral over «, 1, 2,2, . . . , 1 in equation (46).

Returning to the problem of deriving the differential equation (24) connecting the
moments of g, we first observe that, by definition,

fom= [‘/0. H qu r]average ) “®

Alternatively, we can write

m n(rj)

um=/0.$drm££drm_1£$drm_2.../O-Edrlg]11gqi% ) (49)

average

The integrand of this m-fold integral is clearly a symmetrical function of the variables.
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Accordingly, using the lemma in the form (47), we can rewrite the foregoing expression
for w, in the form

ﬂ(T-

)
¢ ¢ : : s
umsz drmf dfm__lf drm—g...f dYI;HHqu . (50)
0 Tm T Tm i=1 i=1 average

With the integration over the variables carried out in this fashion,
r; 2> r,  forall j<m—1. (51)
Under these circumstances

n(r) —n(rn) =n(ri—rm), (52)
and

o= {TIerHIT 1T o

In view of the inequality (51), it is evident that the occurrence of clouds in the interval
(0, r.) is uncorrelated with the occurrence of clouds in any of the intervals r; — 7,
(j=m—1,...,1). Hence

m n(r) n(rm) m—1 n(r-—rm)

ggljl%é =ggql~"§ ng H Qi% . (59

average
Using this result in equation (50), we have

X_/T.sdrm_lfgdrm_2...ffdrl

average average

n

)
“m=m[$drmg ];_[qzm}

average

(55)

m—1 n(rj—‘rm)

XATT T o
7':1 1=1 average
Now, writing 7; in place of r; —7.(j =m — 1,. .., 1) in equation (55), we have
()
£ 2 §—r g—r g—r
pm=m [ dr%HqZ"% X[ drr [ drns.. dr
0 =1 average 0 0 0

m—1 n(rj) (56)

U T od,,.....

average

where, for brevity, we have suppressed the subscript # in 7,,. The (m — 1)-fold integral
in equation (56) is clearly . 1(£ — 7). Accordingly, we may rewrite equation (56) in

the form
n(r)
£
m= df% Z"} m1 (E— 7). (57)
I m[ g q M1 (§—7)

average

On the other hand (cf. egs. [6] and [25]),
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n(r) fo's) e-r rn n 1
4 = dg:qTy (g2)
3 111 q %average n2=0 'ﬂ‘ ];__1[ q q
(58)
_ E - (rgm™_ ) -
pope n!
Hence
§ o 1—g,)
bm=m [ dre " ™1 (E— 7). (59)
fo .

But this is the integrated form of equation (24) when the boundary condition u, = 0
at £ = 0 is also satisfied. The equations and boundary conditions from which solution
(36) for the moments was derived in § 3 have now been obtained directly from the
definition of «.

5. An application of the formulae for the moments w, to derive certain statistical properties
of the interstellar clouds.—As an illustration of the application of the formulae for the
moments derived in § 3, we shall reconsider an example investigated by Markarian,' on
the assumption that all the interstellar clouds are equally transparent.

Markarian’s example is based principally on van Rhijn’s tabulation of the counts® of
the number of stars V,.(8, N), per square degree, brighter than a given apparent magni-
tude m, and in a region of the sky centered at galactic latitude B and galactic longitude \.
In terms of these numbers” Markarian evaluated the quantity

TN =D {Npt1(B, N) — N (B, N) ] X 107047, (60)

m

as a function of 8 and . This quantity, (8, N), is clearly a measure of the brightness of
the Milky Way in the region considered. It is, therefore, comparable, apart from a con-
stant of proportionality, to I as we have defined it in equation (1).

In a detailed investigation it will be necessary to compare the observed fluctuations
of the quantity (60) from the mean with the theoretical distributions derived on the
basis of the integral equation (18). However, in a first attempt, it may suffice to restrict
ourselves to the dispersion of the brightness about the mean.

Since we may expect the average number of absorbing clouds in the direction of galac-
tic latitude B to vary with 8 as cosec §, it is clear that, in determining the dispersion of
I(B, \) about the mean, we must treat the regions with different f’s, separately. Thus,
denoting the dispersion in the brightness of the Milky Way at galactic latitude 8 as

62(B), we have
Mean { I (8, \) }
[Mean {1 (8, N\) }]

where, in taking the means, 3 is kept constant.

In the investigation we have quoted, Markarian has derived values for the dispersion
6%(B), according to equation (61) for those values of B8 for which van Rhijn’s (Groups
I-1V) and Baker and Kiefer’s (Groups V-VII) tables permit a determination. His final
results are summarized in Table 1.

Now, on the model of the distribution of stars and clouds adopted in this paper (§ 1),
the value of §%(8) should be compared with the theoretical quantity,

8 (B) =

5 — 1 (61)

bl

62(5) =I"'_z__ . (62)
Ky
6 Groningen Pub., No. 43, 1924. Markarian has also used the data given in R. H. Baker and L. Kiefer,
Ap. J., 94, 482, 1941,

7Since the areas actually used in van Rhijn’s tabulation extend over an appreciable range of 8,
Markarian had to reduce the observed numbers to a mean latitude 8 by applying a correction based on
the observed mean variation of N,(B8, \) with 8.
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With w and ps given by equations (37), we have

2 (1 - 91) (1 - QQ) [ 1— e —a)é] — (1 — 91) [1 — e~ (—0,)¢]
(1—g2) (g1—q2) [1—e—A—a)E]2
where it may be recalled that ¢ is the average number of clouds in the direction of the

line of sight and ¢; and ¢, are the mean and the mean square of the transparency factor
g of the clouds:

8% (&) = —1, (3

1 1
QI=/ g¥ (9)dg  and qz=f g (g) dg. (64)
0 0
While ¢; and ¢, occur as two independent parameters in equation (63), it is evident that,
TABLE 1
RESULTS OF MARKARIAN’S ANALYSIS OF Nu(8, )
Grour
I I 1 v v VI VII
[ P 0° +10° +30° +40° —10° +10° 0°
) P 100° 100° 100° 100° 160° 130° 130°
No. of regions
used...... 11 12 10 11 10 9 11
#B)........ 0.092 0.075 0.030 0.020 0.082 0.100 0.126

by virtue of definitions (64), our freedom in assigning values to ¢» for a given ¢, is strictly
limited; for the inequality

1< ¢:< g1 (65)
is a consequence of the definitions of these quantities only. And, moreover, the equality

between ¢} and g» can occur only when all the clouds are equally transparent with a factor
¢i- It may also be noted in this connection that, according to equation (63),

(1—91) (Q1—‘92) as oo
1—2g¢: (66)

82(¢) -0 as £-0.

3 () —

and

For a comparison of the observed values of §(8) with the theoretical predictions based
on equation (63), we require a knowledge of the three parameters, £, g1, and ¢», which the
theoretical expression for §2(¢) involves. However, of the three parameters, £ and ¢ are
not independent if we make use of the results of the counts of extragalactic nebulae.?
According to these latter counts, the mean photographic absorption, Am(f), in the direc-
tion of galactic latitude g is given by

Am (B) =0725 cosec 8. (67)

If 7 is the mean absorption, in magnitudes, per cloud, the number of clouds to be ex-
pected, on the average, in the direction 8 is

_ 0725 | cosec |

T

(68)

£

SE. P. Hubble, Ap. J., 79, 8, 1934.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1950ApJ...112..380C

T I T127°380C!

BRIGHTNESS OF MILKY WAY. I 391

But, by definition, 7 is related to § = ¢1 by the equation

7= —2.51og q1- (69)
Hence | 8|
cosec
= — I B (70)
£ (B) 0.1 Tog 4

Consequently, for any assigned value of ¢1, we can determine the average number of
clouds in the direction 8. Values of ¢ derived in this fashion for three assigned values of
¢ (0.75, 0.80, and 0.85) are listed in Table 2.

TABLE 2

AVERAGE NUMBER OF CLOUDS IN DIRECTION OF GALACTIC
LATITUDE 8 FOR THREE ASSIGNED VALUES OF 1

£

T

1} (Mae.)
B=0° B=1+10° | B=%30° | B=140°
|
0.75 0.31 @ 4.61 1.60 1.24
.80 .24 © 5.94 2.06 1.61
0.85 0.18 w 8.15 2.83 2.20

In interpreting his deduced values of §2(8), Markarian made the assumption that all
the clouds are equally transparent. On this assumption, ¢ = ¢}, and 6%(8) becomes deter-
minate when ¢; is given. However, the expression for 62(£), which allows for an arbitrary
distribution of g, involves the additional parameter g;. Accordingly, using equation (63),
we have computed 82(¢) for various values of g2 and for ¢: = 0.75, 0.80, and 0.85, respec-
tively. The results of the calculation are illustrated in the form of curves in Figure 1, a
(g1 = 0.75), b(¢q1 = 0.80), and c(g; = 0.85).

To appreciate what latitude we have for changing ¢, for a given ¢1 and what a differ-
ence in ¢» from ¢ means in terms of the distribution of ¢, we may note that, for the fre-

quency function,
() = (n+1) g 0<gs ), oy

_n41 _n+1
(h_n—l—Z’ 42~n+3,

In particular, for n = 5,

29 1
q3 n+3)(n+1) "

(72)

and

¢1=0.857, ¢i=0.735, ¢=0.75, and L—-1=0.021. 3

1

Accordingly, for ¢, = 0.85, a change of ¢, from (0.85)? = 0.7225 to 0.7325 is by no means
an unduly large change. Bearing this in mind, we conclude from an examination of the
curves in Figure 1 that the predicted variation of §2(¢) for a given ¢, depends rather sen-
sitively on ¢»; indeed, it would appear that relatively slight changes in ¢, (keeping ¢
fixed) affect 62(¢) almost as much as quite appreciable changes in ¢ (keeping g. = ¢3).
This is a somewhat unexpected result disclosed by the present analysis.

In Figure 1, g, b, and ¢ we have plotted the observed values of §2(8) against the £’s ap-
propriate for the values of ¢; to which each of the figures refers (cf. Table 2). It is seen
that, with the present data, we cannot distinguish in a unique manner the different
effects of ¢; and ¢o. However, it does appear that

¢;=0.85 and ¢,=0.7325 (79)
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give the best fit with the observations. It is of interest to recall in this connection that,
on the balance of all the evidence available, Markarian favored® the acceptance of a
value of g1 = 0.85, though the agreement of his observed points with the curve ¢ = 0.75
and ¢; = ¢} = 0.5625 is definitely better than with the curve ¢, = 0.85 and ¢, = ¢} =
0.7225 (cf. Fig. 1, ¢ and ¢).

While the values derived for ¢, and ¢, (eq. [74]) are uncertain, it is nevertheless of some
interest to observe that these values correspond to a root-mean-square deviation of 0.1
in ¢. A variation in ¢ of this amount (i.e., £0.1) about the mean value ¢; = 0.85 corre-
sponds to a variation in the true optical thicknesses of interstellar clouds in the range

2:q, *0.5825

3 12 q, =0.5628 1:q, *0.64
q,%075
3:q, *0.6025

8°(£)

R Tl L [} 1 1 1 Lt atig1) ) L 1 I 1 1 IR TT 1 1 L .

® 10 § 3 2 15 | @ 10 5 3 2 15 I © 10 5 3 2 1.5 1
3 & 3
(a) (b) (c)

F1c. 1.—The transparency factor g of the interstellar clouds as derived from the observed dispersion
in the brightness of the Milky Way at various galactic latitudes. The curves represent the predicted varia-
tion of the dispersion 62(£) with the average number of absorbing clouds, £, in the line of sight for various
values of the mean (¢;) and mean square (g2) of the transparency factor of the clouds. The different sets of
curves are for different values of ¢; (0.75 in @, 0.80 in b; and 0.85 in ¢), the parameter distinguishing the
curves in each set being g. The lowest curve in each is for the case in which all the clouds are equally
transparent and ¢» = ¢3.

The dispersion of the observed brightness of the Milky Way, 8%(8), at various galactic latitudes can be
represented as a variation with £ if a value of ¢, is assumed (cf. eq. [70]). The values of §2(8) deduced by
Markarian are plotted in the figure against the £'s appropriate for each figure (cf. Table 2). The crosses,
the open circles, and the solid dots refer to the regions centered at A = 130°, A = 100°, and N = 160°,
respectively.

0.29 and 0.05; a variation in the absorptive power of clouds of this amount is entirely
reasonable.

Again, if we assume that the average photographic extinction coefficient is 2 mag. per
kiloparsec,'® then we shall need an average of 10-11 clouds per kiloparsec. This estimate
is not necessarily in discord with the usual estimate!! of 7 clouds per kiloparsec; for it may
be estimated that a dispersion of 0.1 in ¢ means that about three-fourths of all the clouds
(i.e., 7 or 8 in the present instance) will have values in the range 0.75-0.95 and it is pos-
sible that the few dense clouds, recognized as such, are not included in the general survey.
In any case the present rediscussion of Markarian’s example would seem to indicate that
a great deal of information concerning the interstellar clouds can be derived by an exten-
sion of the basic observational material and their discussion along the lines of this paper.

9 This value of ¢; is also favored by L. Spitzer, 4. J., 108, 276, 1948, esp. p. 278.
10 H. van de Hulst, Reck. Astr. Obs. Utrecht, Vol. 11, Part II, 1949.
It Cf, Spitzer, 0p. cit.; and B. Strémgren, Ap. J., 108, 242, 1948.
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