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A novel path delay fault simulator for combinational logic circuits which is capable of
detecting both robust and nonrobust paths is presented. Particular emphasis has been given
for the use of binary logic rather than the multiple-valued logic as used in the existing
simulators which contributes to the reduction of the overall complexity of the algorithm. A
rule based approach has been developed which identifies all robust and nonrobust paths
tested by a two-pattern test <VI,V2>, while backtracing from the POs to PIs in a depth-first
manner. Rules are also given to find probable glitches and to determine how they propagate
through the circuit, which enables the identification of nonrobust paths. Experimental results
on several ISCAS’85 benchmark circuits demonstrate the efficiency of the algorithm.
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1. INTRODUCTION

There has always been an increasing demand for
faster digital systems. The maximum allowable clock
frequency in a synchronous system is determined by
the propagation delay of a signal in the combinational
network between the latches. Due to some physical
defects, statistical process variations or stray capaci-
tances, if the delay of the manufactured network ex-

ceeds specifications, there is a chance of unstabilized
and possibly incorrect logie values being latched at

the outputs. Delay fault testing can be used to ascer-
tain that manufactured digital circuits meet their tim-

ing specifications and operate correctly at desired
clock rates. Thus, delay fault testing has achieved

great theoretical and practical importance for the de-

sign of high-speed logic circuits. In this paper, we

have presented a novel path delay fault simulator for

combinational circuits which detects the faulty paths
under the application of two-pattern test pairs.
A delay fault only causes logic values to respond

slower than the normal which leads to the malfunc-

tioning of the logic network. Unlike a stuck-at fault, a

delay fault does not affect the steady state logical
operation of a system, but it affects the timing behav-
ior of the system and degrades the overall system
performance. From the operational point of view, a

combinational logic system is said to be free of delay
faults if the transition (rising or falling) initiated at

the primary inputs (PIs) arrives at the primary outputs
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(POs) in less time than the system clock timing spec-
ifications.

In the recent past, two different fault models have
been proposed in literature, viz, the gate delay fault
model and the path delay fault model. The gate delay
fault model as described in [4,7,12,16] was also re-
ferred as transition fault model. In this model, the
lumped gate delay fault is localized to a particular
gate input or output. This is also analogous to dc
stuck-at fault model, i.e., the slow-to-rise and slow-
to-fall transitions correspond to the dc stuck-at zero
and stuck-at one respectively, since it behaves a
stuck-at zero or stuck-at one temporarily [16]. How-
ever, it does not model the cumulative effect of the
gate delays along a path from the PIs to POs. On the
other hand, the path delay fault model [3,6,14,15]
alleviates this deficiency. In this model, the delay
fault is associated with a physical path in the circuit
and the path is declared to be free of delay faults if
the transition provoked at the input propagates to the

outputs through the specified path in less time than
the operational system clock interval. Thus, the path
delay fault model provides the advantageous capabil-
ity of modeling the distributed failures which are

mainly caused by statistical process variations and
physical defects during the manufacturing process.

There is a major bottleneck in selecting the paths
for which the test generation and fault simulation are

to be carried out, since as the circuit size grows the
number of paths grow exponentially with circuit

depth and the number of fanouts. Hence, prior to test

generation and fault simulation process it may be
necessary to focus on a subset of all possible paths in
the logic network. There are several methods avail-
able in literature like worst-case path selection and
threshold-based path selection [9], and a polynomial
time algorithm to find a minimum cardinality path set

has been described in [5].
During the last few years, a considerable number

of test generation methods for path delay faults have
been developed [3,6,8,9,13], whereas the problem of
fault simulation has only been addressed in a few

[2,11,14,15]. Smith [15] has proposed a six-valued

logic, which identifies the paths tested for delay faults

independent of the delays of any individual gate in
the network. Schulz et al [14] have presented a four-
valued logic for an accelerated fault simulation ap-
proach for the delay faults, which applies parallel
processing of patterns at all stages of the calculation

procedure. Bose et al [2] have used Smith’s six-
valued algebra for delay fault simulation of synchro-
nous sequential circuits. Pomeranz et al [11] have
used a non-enumerative method to estimate path de-
lay fault coverage. Similarly, multiple-valued logic
has been used for the test generation process of the

delay faults; e.g., eleven-valued logic in [7], ten-

valued logic in [3,8], and five-valued logic in [6,9].
The number of logic states used is a factor that deter-
mines the time and memory complexity of the algo-
rithms based on them; fewer logic symbols lead to

less complex implementations [6]. Hence, we have

employed the simple two-valued logic for path delay
fault simulation.

During event-driven logic simulation with respect
to the first vector (initialization vector) of the two-

pattern test < V1, V2 >, we evaluate the gate sensitiv-

ity, and classify the gate inputs as controlling (CO)
and noncontrolling (NC) based on the logic values on

them. After evaluating the true logic values with re-

spect to the second vector (propagation vector) using
the same event-driven approach, the possibility of a

glitch event at the output of a gate is determined tak-

ing both the initialization and propagation vectors

into account. An event-queue is also maintained for
the propagation of the glitch events from PIs to POs
in order to determine the robustness/nonrobustness of
a path. Finally, we backtrace from the POs to PIs in a

depth-first manner based on some specified rules to

trace the faulty paths. Thus, our algorithm detects
both robust and nonrobust paths during the simula-

tion procedure. Additionally, the program can also
count the total number of all possible paths in the
network. We have not used any of the path selection

algorithms mentioned earlier to create a target path
list from the enormous number of possible paths.
Once a path is detected as faulty by a vector pair, it is

added to the global path list to keep track of the fault
coverage.
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2. THEORETICAL BACKGROUND AND
BASIC DEFINITIONS

Hardware Model and Clock Timings

Unlike a single pattern test as used in case of dc
stuck-at fault testing, delay fault testing requires a

two-pattern test <V, V2>. Considering the well ac-
cepted hardware model as described in literature
[3,6,8,13,15] illustrated in Fig. 1, we assume that the

initialization vector V is loaded into the input latches
at time o After the signals of the network get stabi-
lized under V, the propagation vector V2 is applied
at time t by activating the clock C. Finally, the logic
values are sampled from the output latches at time 2

t + by pulsing clock C2, where represents the
desired system clock interval. The main objective of
delay fault testing is to ensure that the maximum

propagation delay of a path in the circuit is less than
the system clock interval c.

Robust and Nonrobust Paths

Robust path: A structural path P in the logic net-

work can be termed as a robust path with respect to a

two-pattern test <V, V2>, iff,

a transition provoked at the input to the path prop-
agates to output through the structural path P.

V COMBINATIONAL LOGIC BLOCK
C

CLOCK CI

CLOCK C-

Loaded ---------tl t2[
V, is loaded Output sampled

FIGURE Hardware Model & Clock Timings

it is guaranteed that all signals on the structural
path P cannot attain their final values with respect
to the propagation vector V2 of the two-pattern test

<V, V2>, unless the provoked transition at the in-
put has arrived at them.

A delay fault in the robust path will cause a faulty
logic value at the output of the path independent of
other path delays in the network. The corresponding
vector pair which detects the faulty robust path is

defined as a robust test.

Nonrobust Path" A structural path P in the logic
network can be termed as a nonrobust path with re-

spect to a two-pattern test <Vl, V2>, iff,

a transition is provoked at the input of path P by
the test <Vl, V2>.
the excessive delay on path P can be detected by
the two-pattern test <V, V2> under the assumption
that there does not exist any other faulty paths in
the network. In other words, the propagation vector

V2 causes all off-path sensitizing inputs [9,14]
along the structural path P to assume their noncon-

trolling values to propagate the provoked transition
at the input.

The corresponding vector pair which detects the
faulty nonrobust path is termed as nonrobust test.

Fig. 2 illustrates the two-pattern test <V, V2> con-

sisting of the initialization vector V (11110) and
the propagation vector V2 (11010). The structural
path P1 (C-E-I-J-L-N-Q) is referred as a robust
path with respect to the test <V1, V2>, since all lines

in the path P1 cannot attain their final values unless
the transition provoked at input C arrives at them.
The structural path P2 (C-E-I-J-L-M-P) is referred
as a nonrobust path with respect to the test <V1,V2>,
because an excessive delay in the rising transition on
line H may cause the PO (line P) to have its expected
true final logic value at the sampling time t as

shown in Fig. 2(b), regardless the delay on path P2.
Thus., it leads to the conclusion that the circuit is

fault-free, although there are delays on both lines H
and L, M. But if there is no delay on line H as shown
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Example of Robust & Nonrobust Paths

in Fig. 2(c), we will get the faulty logic value 0 at the
PO (line P) at the sampling time 2. Thus, path P2 can
be detected as a nonrobust path with respect to the
test pair <V1, V2>, iff there is no delay on line H.

Sensitivity and Gate Evaluation

During event-driven logic simulation with respect to

the initialization vector of the two-pattern test <V1,
V2>, we classify each gate into the following classes:

Globally Sensitive (GS): A logic gate with all in-

puts at noncontrolling (NC) value is classified as a
GS gate. Noncontrolling values are 1(0) for AND/

NAND(OR/NOR) gates.
Potentially Sensitive (PS): A logic gate with at

least one input at controlling (CO) value is classi-
fied as a PS gate. Controlling values are 0(1) for
AND/NAND(OR/NOR) gates.
Odd-Parity Sensitive (OPS): A logic gate whose
output is complemented when an odd number of

inputs have events is classified as an OPS gate, e.g.
XOR/XNOR gates. (We have restricted the OPS
gates to two input gates only throughout our dis-

cussion.)

Input Sensitive (IS): A logic gate with single input
is classified as IS gate, since output is comple-
mented by complementing the input. Inverters/

Buffers are IS gates.

3. PATH DELAY FAULT SIMULATION USING
BINARY LOGIC

In order to perform the path delay fault simulation
with respect to the given two-pattern test vector, we
follow the procedures given below:

While doing event-driven logic simulation with re-

spect to the initialization vector V1 of the two-pat-
tern test <V1, V2>, the gate sensitivity (i.e. GS, PS,
OPS, IS) as well as the controlling (CO) and non-

controlling (NC) inputs of the gates are determined
based on the rules specified in the previous section.
An example of the same has been given in Fig. 3,
where we have taken the test pair <V1, V2> as

(11110,11010). The gate inputs having a star (*)
represent the CO inputs with respect to the initial-
ization vector V1.

Secondly, event-driven logic simulation is per-
formed with respect to the propagation vector V2
and the true final logic values are evaluated. Along
with the logic simulation we additionally check for
the possibility of a glitch event at the gate output.
An example showing the generation of a glitch at

the gate output is shown in Fig. 4. There are both
rising and falling transitions at the inputs of the
AND gate. According to the rules of event-driven

logic simulation, we do not have a logic event on

the output of the AND gate. However, this condi-
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FIGURE 3 Evaluation of Gate Sensitivity, CO & NC Inputs
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FIGURE 4 Glitch Generation

Glitch Generation

Rule 1: If the gate is PS, all CO inputs have events

and exactly one NC input has event, then output
will have a glitch as shown in Fig. 5(a).
Rule 2: If the gate is OPS and both inputs have
events, then output will have a glitch as shown in

Fig. 5(b),(c).

tion can cause a glitch event at the gate output, if
the falling transition at the NC input is delayed
with respect to the rising transition on the CO in-

put. Hence, we put the fanouts of this gate into the

event-queue in order to propagate the glitch event

towards the POs. The existence of a glitch helps us

to determine the robustness/nonrobustness of the

path. We have developed a set of rules to accu-

rately model the generation and propagation of a

glitch and these are explained in the next section.
After evaluating the true logic values with respect
to V2, we perform glitch propagation (for those
glitch events which were scheduled in the previous
step) in an event-driven manner towards the pri-
mary outputs.
Finally, we backtrace from the POs to PIs in a

depth-first manner to determine the faulty paths
(both robust as well as nonrobust) based on some

specified rules which are explained in a following
section.

4. GLITCH GENERATION AND
PROPAGATION

In order to determine the robustness/nonrobustness of
a path, we need to check for the possibility of a glitch
event at the gate output. It is also required to deter-
mine whether the glitch can propagate to the primary
outputs or not. Only gates whose output does not

have a logic event need be considered for glitch gen-
eration and propagation. We have developed a set of

simple rules that govern the generation and propaga-
tion of the glitch event as stated below:

Glitch Propagation

Rule 3: If the gate is GS or OPS, a glitch on any
input will propagate to the output as shown in Fig.
6(a),(b).
Rule 4: If the gate is PS, exactly one CO input has
a glitch, all other CO inputs (if more than one CO
input present) have events and no NC input has
event, then the glitch on the CO input will propa-
gate to the gate output as shown in Fig. 6(c). We do
not restrict the presence of glitches on the NC in-

puts.
Rule 5: If the gate is IS, the glitch on the single
input will propagate to the output as shown in Fig.
6(d),(e).

Illustration: Fig. 7 shows the generation of glitch
events at lines I and J according to Rules and 2
respectively. The glitch events are then propagated
towards primary output based on the Rules 3, 4 and 5
mentioned above. Finally, the path (E-G-M-P) can be
detected as a nonrobust path (based on the Rules de-
scribed in the next section) under the test (011100,
101010).

[b]

[c]

FIGURE 5 Rules for Glitch Generation
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FIGURE 6 Glitch Propagation

5. BACKTRACING FOR ROBUST AND
NONROBUST PATHS

Our strategy in identifying robust and nonrobust
paths detected by a vector pair is to backtrace from
POs to PIs in a depth first manner and mark each
input of gates along the path as robust or nonrobust
based on a set of simple rules. Once we reach a PI,
we have identified a path and it is classified as a
robust or nonrobust path depending on the status of
the lines along the path. Backtrace employs a recur-
sive procedure and to start with, a PO having an
event is marked as robust and a PO with glitch is
marked as nonrobust. A gate is declared robust (non-
robust) if its output is robust (nonrobust). Now the
following rules are applied to compute the robust/

nonrobust status of the inputs of a gate.

Rules for Evaluating the Inputs of a Robust Gate

Rule 1: If the gate is PS, all CO inputs are marked
as robust and all NC inputs with glitches are

marked as nonrobust.

Rule 2: If the gate is GS, exactly one input, say
input j, has event and no other input has a glitch,
then input j is marked as robust. If at least one

input (except j) has a glitch then input j will be
marked as nonrobust.
Rule 3: If the gate is OPS, the input with event is
marked as robust if there is no glitch on the other
input; else both inputs are marked as nonrobust.

Example 1: Fig. 8 illustrates the logic underlying
Rules 1-3 for determining the robust and nonrobust

inputs of a robust gate. In Fig. 8(a), the output D of
AND gate (of type PS) has an event and has been
marked as robust. The controlling inputs A and B
with rising transition (0 ---> 1) will be marked as ro-

bust, since the path delay fault on these inputs can

robustly propagate to output D. The delay fault on

input C (i.e., glitch ---> 0 ---> 1) can be propagated to

output D, if there is no delay on inputs A and B. Thus,
input C is marked as nonrobust and Rule is justi-
fied.

Example 2: In Fig. 8(b), the output D of the OR
gate (of type GS) has an event and has been marked
as robust. The input B having a rising transition (0 --->

1) will be marked as robust, since the delay fault on

this input can be robustly propagated to output D. But
the same input B will be marked as nonrobust as

shown in Fig. 8(c), since there is a glitch (0 --> --->

0) on input A. The glitch on A may cause the true

final logic value on output D at the sampling time
and the delay fault on B may go undetected. The
delay fault on B can propagate to output provided

11
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[a D is Robust [b] D Robust [c] D is Robust &

A. B Robust & B Robust has Glitch
B is Nonrobust

C is Nonrobust

[d] C is Robust [el C Robust & B has Glitch

A is Robust A. B Nonrobust

FIGURE 7 Example of Glitch Generation & Propagation FIGURE 8 Robust & Nonrobust Inputs of a Robust Gate
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there is no delay on input A and thus B is marked as
nonrobust satisfying Rule 2. Again, if there are more
than one input of the GS gate having events, then
none of the inputs will be marked as robust, because
the delay fault on one input will be masked by the
transition on the other input causing the gate output
to have its true final logic value at the sampling time.

Example 3: In Fig. 8(d), the delay fault on input A
of the XOR gate (of type OPS) can robustly propa-
gate to output C and thus it is marked as robust. In
Fig. 8(e), the delay fault on A can be masked by the
delay fault on B (i.e. glitch --> 0 ---> 1) and vice
versa. As a result the output can have its true final

logic value at the sampling time though there are de-
lay faults on both inputs. The delay fault on one input
will propagate to the output provided there is no de-
lay on the other input and thus both inputs A and B
are marked as nonrobust satisfying Rule 3.

Rules for Evaluating the Inputs of a Nonrobust
Gate

Rule 4: If the gate is PS and output has a glitch,
then the single NC input having event is marked as

nonrobust provided all CO inputs have events.

Again, the single CO input with a glitch is marked
as nonrobust if there is no event on other NC in-

puts. If the gate is PS and output has event, all CO
inputs having events as well as all NC inputs with

glitches are marked as nonrobust.
Rule 5: If the gate is GS and output has a glitch, all
inputs with glitches are marked as nonrobust. If the
gate is GS and output has event and exactly one

input, say input j, has event, then input j is marked
as nonrobust (independent of the presence of
glitches on other inputs).
Rule 6: If the gate is OPS and output has event or

glitch, then input with event or glitch is marked as
nonrobust.

Example 1: Fig. 9 illustrates the logic behind Rules
4-6 for determining the nonrobust inputs of a nonro-
bust gate. It is to be noted that the inputs of a robust

gate can be marked as robust as well as nonrobust

l/
la] D is Nonrobust [hi D Nonrobust & [cl D is Nonrobust but

C Nonrobust A has Glitch having
A Nonrobust A. B. C Nonrobust

00 01

5L_00 5-

[d] C Nonrobust & [e] C Nonrobust but
A has Glitch having

Nonrobus! A Nonrobust

[f] C is Nonrobust [g] C Nonrobusl & [h] C is Nonrobust but
A, B Nonrobusl B has Glitch having

B Nonrobusl A is Nonrobust

FIGURE 9 Nonrobust Inputs of a Nonrobust Gate

whereas the inputs of a nonrobust gate will be only
nonrobust. In Fig. 9(a), the output D of the AND gate
(of type PS) has a glitch and has been marked as
nonrobust. The delay fault on the single NC input C
can propagate to the output if all CO inputs have
events and there is no delay fault on any one of the
CO inputs. Thus, input C is marked as nonrobust. In
Fig. 9(b), the glitch (0 ---> ---> 0) on the CO input A
can propagate to output D, if there is no event on

other NC inputs and thus input A is marked as non-

robust. In Fig. 9(c), the output D has been marked as
nonrobust though it has an event. (This possibility
has been explained in the previous example used for

illustrating Rules 1-3). Referring to Fig. 9(c), the de-

lay fault on inputs A and B can robustly propagate to

output D, but these inputs will be marked as nonro-

bust since output D is nonrobust. Again, input C hav-

ing a glitch (1 ---> 0---> 1) will be marked as nonrobust
as explained earlier and thus Rule 4 is justified.

Example 2: Consider the case when the output of
the GS gate has a glitch and has been marked as

nonrobust. The delay fault (i.e., glitch) on any input
will propagate to the output. An example is given in

Fig. 9(d) in which input A has a glitch and thus
marked as nonrobust. In Fig. 9(e), the output C of the
GS gate has an event and has been marked as nonro-
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bust. The delay fault on input A having event will

robustly propagate to output C independent of the
presence of glitch on other input B and thus A will be
marked as nonrobust since the output C is nonrobust
satisfying Rule 5.

Example 3: Consider the case when the output of
an OPS gate has a glitch and has been marked as
nonrobust. The delay fault on any input having a

logic event or a glitch event can propagate to the
output. Thus, inputs A and B having logic events will
be marked as nonrobust as shown in Fig. 9(f) and

input B having a glitch event will be marked as non-

robust as shown in Fig. 9(g). If the output of the OPS
gate has an event and has been marked as nonrobust,
then the delay fault on the input having a logic event

will propagate to the output. In Fig. 9(h), the input A
having a logic event will be marked as nonrobust and
hence Rule 6 is justified.

Rules for Evaluating the Input of an IS Gate

Rule 7: If the gate is IS, its input is marked as
robust (nonrobust) provided the output is robust (non-
robust).

Illustration: Fig. 10 shows an example circuit
where we have applied Rules to 7 while backtrac-
ing from POs to PIs and determined the status of each
line. We have applied the two pattern test (110, 101)
at the inputs of the logic circuit and propagated the
logic events as well as the glitch events through the
circuit. Finally, the output P will have a logic event (0

1) whereas the output Q will have a glitch event (1
0 1). Hence, the output P will be marked as

robust and Q as nonrobust. First, we backtrace from

FIGURE 10 Example of Robust & Nonrobust Path Detection

the robust output P towards primary inputs in a depth
first manner. The inputs G and M of the AND gate (of
type PS) will be marked as robust based on Rule 1.

Backtracing along the line G, the stem line F will be
marked as robust since its fanout branch G is robust.
The input C of the XOR gate (of type OPS) will be
marked robust based on Rule 3 and thus primary in-

put B which is a stem line for C, will also be marked
as robust. After reaching the primary input B, we
found a path (B-C-F-G-P) which is robust since all
the lines along the path have been marked as robust.
Next, backtracing along line M, the stem line L will
be marked as robust. The inputs H and J of the XOR
gate (of type OPS) will be marked as nonrobust based
on Rule 3. Backtracing along the line H, the stem line
F (which has already been marked as robust) will be
marked as nonrobust. The input C of the XOR gate
will be marked as nonrobust based on Rule 6 and
thus the primary input B will also be marked as non-
robust. Hence, we found another path (B-C-F-H-L-
M-P) which is nonrobust since some of the lines

along this path have been marked as nonrobust. Next,
backtracing along the line J, the stem line I will be
marked as nonrobust. The input D of the AND gate
(of type PS) will be marked as nonrobust based on
Rule 4 and thus the primary input B will also be
marked as nonrobust. Hence, we found another path
(B-D-I-J-L-M-P) as nonrobust. After enumerating all
the paths whose output converge on P, we then back-
trace from the nonrobust output Q. The input K of the
NAND gate (of type PS) will be marked as nonrobust
based on Rule 4 and thus the stem line I will also be
marked as nonrobust. Backtracing again, the input D
will be marked as nonrobust according to Rule 4 and
the stem line B will also be marked as nonrobust.
Thus, we found another path (B-D-I-K-Q) as nonro-

bust, and now all robust and nonrobust paths detected
by the vector pair (110, 101) have been enumerated.
As shown in Fig. 10, we have used the following
notation to mark the status of a line, e.g., a line is

denoted as r which is only robust, nr which is only
nonrobust and rnr which is both robust as well as
nonrobust. Thus, we conclude that

1. a line can be robust as well as nonrobust with

respect to different paths.
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2. a functional path will be robust iff all lines of the
path are marked as r or rnr.

3. a functional path will be nonrobust iff at least one

of the lines on the path is marked as nr.

6. SIMULATION RESULTS AND
CONCLUSIONS

We have implemented the proposed path delay fault
simulation algorithm in the C language (about 1500
lines of code) on an IBM RS-6000/580 computer sys-
tem running UNIX. Table I shows the number of pri-
mary inputs, primary outputs, number of levels in the
circuit and total number of physical paths for the IS-
CAS’85 combinational benchmark circuits. The CPU
times for counting the number of paths have been
included in Table I. We have not enumerated the path
lists. Path counting was carried out as described in

[11 ]. The number of logical path delay faults modeled
is equal to twice the number of physical paths present
in a circuit since both the rising and falling transitions
are considered at the input of each path. The number
of logical path faults varies from 17284 for circuit

c880 to 197.88 1018 for circuit c6288.
In order to derive a set of deterministic delay fault

test vectors for use in simulation we have employed
S. Patil’s test generator[9] on the ISCAS’85 bench-
mark circuits. In Table II, the total number of paths
generated by worst-case path selection procedure [9]
is given in column Examined. The number of two-

pattern test vector pairs generated are given in the
column Vectors.

TABLE Number of possible physical paths, PIs, POs, and lev-
els

Circuit # PI # PO # Levels # Physical paths Time (secs.)

c432 36 7 30 83926 0.090
c499 41 32 17 9440 0.130
c880 60 26 35 8642 0.210
c1355 41 32 40 4173216 0.320
c1908 33 25 61 729057 0.460
c2670 233 140 53 679960 0.670
c3540 50 22 71 28676671 0.870
c5315 178 123 68 1341305 1.340
c6288 32 32 218 98.94 108 1.480
c7552 207 108 62 726494 1.880

TABLE II Test generation results

Circuit Examined Tested Dropped Notest Vectors Time(secs.)

c432 330 38 191 101 33 31.73
c499 808 t62 626 20 146 165.41
c880 729 685 21 23 506 10.28
c1355 848 64 582 202 64 140.86
c1908 1282 399 333 550 337 193.07
c2670 1871 619 902 350 531 405.64
c3540 2559 159 910 1490 123 784.27
c5315 4353 2650 1074 629 2322 858.83
c6288 3875 14 1680 2181 10 2379.47
c7552 5432 674 2907 1851 477 2478.18

Table III shows the delay fault simulation results
generated by our fault simulator implementation on

the same circuits. We have simulated three sets of
vector pairs to detect both the robust and nonrobust

TABLE III Path delay fault simulation results

Circuit # Vector # Robust # Nonrobust Time (secs.)
pairs paths paths

c432 65 (dpd) 179 278 0.20
45 (dsa) 29 819 0.23
5000 (r) 556 6893 17.53

c499 291 (dpd) 318 4279 1.24
59 (dsa) 109 899 0.28
5000 (r) 71 10729 19.22

c880 1011 (dpd) 2002 3027 8.04
29 (dsa) 112 891 0.39
5000 (r) 1069 5178 29.81

c1355 127 (dpd) 64 1476 1.49
94 (dsa) 69 13625 3.04
5000 (r) 243 171099 215.04

c1908 673 (dpd) 1322 10270 14.21
140 (dsa) 220 5870 3.12
5000 (r) 1395 21976 92.70

c2670 1061 (dpd) 1872 6171 34.78
66 (dsa) 592 4778 2.57
5000 (r) 2388 39655 429.05

c3540 245 (dpd) 593 9771 14.00
109 (dsa) 293 13108 8.54
3000 (r) 2404 174759 3161.80

c5315 2000 (dpd) 4761 27388 185.33
55 (dsa) 810 9179 4.06
4500 (r) 5488 93124 487.76

c6288 19 (dpd) 31 NA 2.14
15 (dsa) 35 NA 1.97
5000 (r) 170 NA 136.50

c7552 953 (dpd) 5760 35797 231.10
86 (dsa) 619 20989 11.63
1500 (r) 3085 90983 628.36

(dpd)-deterministic test patterns for delay faults. (dsa)-determinis-
tic test patterns for stuck-at faults. (r)-random test patterns.
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paths for all circuits. The first row of each circuit
shows the simulation results of the deterministic test

pattern pairs for path delay faults (denoted as dpd)
obtained from Table II. In our simulation procedure,
we use the second pattern (propagation vector) of the
present simulation as the first pattern (initialization
vector) for the next simulation. Hence, we get 2n-1
vector pairs where n is the number of deterministic
vectors generated, which are given in Table II. The
second row in Table III for each circuit shows the
simulation results of the deterministic test patterns
obtained for stuck-at faults and these are denoted as
dsa. The deterministic test patterns for single stuck
faults were obtained using COMPACTEST[10] and
these had complete coverage of all non-redundant
stuck faults. The third row for each circuit shows the
simulation results for random test patterns.

In our implementation, once a faulty path is de-
tected by a test vector pair, it is added to the global
path list of detected paths provided the path does not

already exist in the global list of detected paths. The
circuit c6288 was not simulated for nonrobust paths
since the number of nonrobust paths detected were

extremely large and it did not complete within rea-
sonable CPU time. Hence, the CPU time mentioned
for this circuit is the time taken only for detecting the
robust paths. We have not imposed any restriction on
the path lengths. All faulty paths detected by the test

patterns are added to the global path list.

Table IV shows the overall statistics. The simula-
tion results of circuit c6288 has not been considered
for the statistics in Table IV since we have not con-

sidered the nonrobust paths for this circuit. It is to be
noted that the number of robust paths detected per
vector pair by dpd patterns are greater than that of
random patterns. For example, 291 dpd test patterns
detect 318 robust paths whereas 5000 random pat-

TABLE IV Overall statistics

Type of # Vector # Robust # Nonrobust Paths det./vector pair
vectors pairs paths paths Robust Nonrobust

dpd 6426 16871 98457 2.63 15.32
dsa 683 2853 70158 4.18 102.72
random 39000 16699 614396 0.43 15.75

terns detect only 71 robust paths for circuit c499 and
1011 dpd test patterns detect 2002 robust paths
whereas 5000 random patterns detect only 1069 ro-
bust paths for circuit c880 as given in Table III. On
an average the number of nonrobust paths detected
per vector pair by dsa patterns is greater than that of
dpd patterns since dpd patterns were obtained using
the deterministic test generator generating only ro-

bust tests. As shown in Table IV, the per vector cov-

erage of nonrobust paths by dsa patterns is 102.72
whereas that of dpd patterns is 15.32. For example,
45 dsa patterns detect 819 nonrobust paths whereas
65 dpd patterns detect only 278 for circuit c432 and
94 dsa patterns detect 13625 nonrobust paths whereas
127 dpd patterns detect only 1476 nonrobust paths
for circuit c1355 as shown in Table III. On the whole
the per vector coverage by dsa patterns is better than
that of dpd and random patterns for both robust and
nonrobust paths as shown in Table IV.
We believe that our novel path delay fault simula-

tor which uses the simple two-valued algebra will be
faster and require less memory than the existing sim-

ulators, since the computational complexity is drasti-

cally reduced in our approach. Further, it is not nec-

essary to have a look-up table as required in the mul-

tiple-valued logic evaluation.
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APPENDIX

Pseudo Code for Fault Simulation Algorithm

main(

read_ckt( ); /* reads the circuit information from
netlist */

get_init_vector( ); /* gets the initialization vector

V1 */

logsim( );/* event-driven logic simulation w.r.t V1,
also evaluates the gate sensitivity as

well as the CO and NC inputs */

get_prop_vector( );/* gets the propagation vector

V2 */

logsim( );/* event-driven logic simulation w.r.t V2,

also finds the probability of a glitch at

the gate output */

glitch_propagation( ); /* propagates the glitch to

POs */

rob_nonrob_test( );/* backtrace from POs to PIs in
a depth-first manner to trace the faulty
robust and nonrobust paths */

print_paths( );/* displays the faulty paths detected
by the test pattern */

Pseudo Code for the Main Program

rob_nonrob_test(

for each primary output (i)
if there is no event, but a glitch on (i)
mark output (i) as nonrobust;
backtrace_nonrobust_path(i);

else if there is event on output (i)
mark output (i) as robust;
backtrace_robust_path(i);

Pseudo Code for Robust & Nonrobust Test

glitch_propagation(

if the gate output does not have event

if the gate is GS
if one of the input is having a glitch

glitch will propagate to output;

else if the gate is PS
if((only one CO input has a glitch) && (other

CO inputs if any have events) && (no NC
input is having event))

glitch will propagate to the output;

else if gate is OPS
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if at least one input has a glitch, output will have
a glitch;

else if gate is IS
if input has a glitch, output will have a glitch;

Pseudo Code for Glitch Propagation

backtrace_robust_path(n)
int n;

if gate is not a PI
if gate is PS

for each CO input (i)
mark (i) as robust; backtrace_robust-

_path(i);

for each NC input (j) with glitch
mark (j) as nonrobust; backtrace_nonro-

bust_path(j);

else if gate is GS
if only one NC input (m) has event

if none of the input has a glitch
mark input (m) as robust; backtrace_ro-

bust_path(m);

else if at least one input has a glitch
mark input (m) as nonrobust; back-

trace_nonrobust_path(m);

else if gate is OPS
if only one input (p) has event

if there is no glitch on the other input
mark input (p) as robust; backtrace_ro-

bust_path(p);

else if there is a glitch on the other input
mark both inputs as nonrobust;
for each input (q)

backtrace_nonrobust_path(q);

else if gate is IS
mark input (r) as robust; backtrace_robust-

_path(r);

Pseudo Code for the Recursive Backtrace Proce-
dure of Robust Paths

backtrace_nonrobust_path(n)
int n;

if gate is not a PI
if there is no event but a glitch on gate output

if gate is PS
if all CO inputs have events & only one NC

input (i) has event

mark input (i) as nonrobust; backtrace_n-
onrobust_path(i);

else if no events in the inputs & only one
CO input (j) has a glitch

mark input (j) as nonrobust; backtrace_n-
onrobust_path(j);

else if gate is GS
for each input (k) having a glitch

mark (k) as nonrobust; backtrace_nonro-
bust_path(k);

else if gate is OPS
for each input (1) having an event or glitch

mark (1) as nonrobust; backtrace_nonro-
bust_path(l);

else if gate is IS
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mark input (m) as nonrobust; backtrace_n-
onrobust_path(m);

else if gate output has an event

if gate is PS
for each CO input (i)
mark (i) as nonrobust; backtrace_nonro-

bust_path(i);

for each NC input (j) with glitch
mark (j) as nonrobust; backtrace_nonro-

bust_path(j);

else if gate is GS or OPS
if only one NC input (m) has event

mark input (m) as nonrobust; back-
trace_nonrobust_path(m);

else if gate is IS
mark input (q) as nonrobust; backtrace_non-

robust_path(q);

Pseudo Code for the Recursive Backtrace Proce-
dure of Nonrobust Paths
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