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On the basis of a coherent state representation of quantum noise operator and an ensemble
averaging procedure a scheme for quantum Brownian motion has been proposed recently [Banerjee
et al, Phys. Rev. E 65, 021109 (2002); 66, 051105 (2002)]. We extend this approach to formulate
reactive flux theory in terms of quantum phase space distribution functions and to derive a time
dependent quantum transmission coefficient - a quantum analogue of classical Kramers’-Grote-Hynes
coefficient in the spirit of Kohen and Tannor’s classical formulation. The theory is valid for arbitrary
noise correlation and temperature. The specific forms of this coefficient in the Markovian as well as in
the non-Markovian limits have been worked out in detail for intermediate to strong damping regime
with an analysis of quantum effects. While the classical transmission coefficient is independent of
temperature, its quantum counterpart has significant temperature dependence particularly in the
low temperature regime.

PACS numbers: 05.40.-a, 82.20.-w, 82.20.Db, 02.50.Ey

I. INTRODUCTION

The classic work of Kramers1 on the diffusion model of chemical reactions in 1940 forms the dynamical basis of
modern rate theory of activated processes. With the development of ultrafast lasers and time resolved detection
techniques since mid seventies it has been possible to monitor the details of the pathways of a reaction on a micro-
scopic scale2,3. This has provided a major impetus and also generated a renewal of interest in theoretical development
in chemical dynamics, particularly in the problem of reactions in condensed media. Over the decades the field has
grown in various new directions, e.g. , extension of Kramers results to non-Markovian regime4,5,6, generalizations to
higher dimensions7,8, inclusion of complex potentials9,10, generalization to open systems11,12,13, analysis of semiclas-
sical and quantum effects14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, thermal ratchet30 and molecular motors31 etc. These
developments have been the subject of several reviews and monographs.We refer to15,16,17,22.

It is now well known that the rate constant of a chemical reaction may be realized as a typical transport coefficient
in phase space. This transport coefficient can be expressed in the form of a Green-Kubo formulae for the flux-flux
auto correlation function calculated at the transition state17,32,33,34,35,36,37 which acts as a dividing surface between
the reactant and the product states. The theory of reactive flux has been developed both in classical and quantum
mechanical contexts to obtain the rate coefficient of a chemical reaction. Recently Kohen and Tannor36 have developed
a method to calculate the classical rate coefficient and hence the transmission coefficient as a function of time in
terms of phase space distribution function in the high friction regime. The method is simple and directly addresses
the relevant nonequilibrium dynamics at the barrier top. The theory36,37 not only recovers the Kramers-Grote-Hynes
transmission coefficient in the long time or asymptotic limit but also traces the nature of its transient dynamics and
its approach towards the steady state.

The key element of the Kohen-Tannor formulation36 is that it allows us to express the correlation function with the
help of a probability distribution function which describes dynamics of the reaction co-ordinate undergoing Brownian
motion in phase space at the barrier top without resorting to a solution of the generalized Fokker-Planck equation.
It is worthwhile in this context to ask whether the theory can be extended to quantum domain to include the generic
quantum mechanical effects. The essential requirement for such a theory is obviously the quantum phase space
distribution function. Very recently, based on a coherent state representation of quantum noise operator and an
ensemble averaging procedure, we have developed24,25,26,27 a c-number quantum generalized Langevin equation. The
theory is valid for arbitrary temperature and noise correlation. We extend the scheme in the present context to make
use of a true quantum probability distribution function of the relevant dynamical variables in c-numbers and express
the rate constant or transmission coefficient accordingly. Our object is thus two-fold, i.e. ,

(i) to express the quantum mechanical rate constant in terms of the c-number quantum phase space functions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291564126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/cond-mat/0303319v1


2

(ii) to derive a time dependent quantum Kramers-Grote-Hynes (KGH) transmission coefficient which is valid for
arbitrary noise correlation and temperature for intermediate to strong friction regime.

Two pertinent points are now in order. First, generally speaking the phase space distribution functions used in
quantum mechanical contexts, e.g. , in quantum optics are quasi-probability distribution functions like Wigner,
or Glauber-Sudarshan functions38. They often become singular or negative in the fully quantum domain and can
therefore not be regarded as true probability distribution functions as their classical counterparts. We stress that
the present formalism is free from such difficulties. Second, the expression for the rate constant as a time integral
over flux-flux auto correlation function has been evaluated earlier both analytically and numerically using path
integral approaches. Although for equilibrium properties the imaginary time propagator has proved to be very
much successful23, particularly for developing quantum transition state theory35, it is not easy to extract dynamical
information for nonequilibrium problems22 because of the oscillatory nature of the real time propagator in many
situations. The c-number phase space method that we use here, on the other hand, being independent of path
integral approach is an alternative for calculation of the rate without these problems.

The outlay of the paper is as follows; After a brief review of our recent scheme for quantum Brownian motion we
introduce the conditional probability function of c-numbers at the barrier top and an equilibrium distribution function
at the reactant well in Sec.II. In the following section the reactive flux expression for rate constant is formulated in terms
of these c-number phase space functions. The time dependent general quantum Kramers-Grote-Hynes transmission
coefficient has been derived in the spirit of Kohen and Tannor formalism. We work out in detail the Markovian and
non-Markovian limits of this expression. The paper is concluded in Sec.IV.

II. QUANTUM BROWNIAN MOTION ; EVOLUTION OF C-NUMBER PHASE SPACE FUNCTIONS

A. Quantum Langevin equation in c-numbers

The kinetics of a particle undergoing a chemical reaction in a medium can be described by the following generic
system-reservoir Hamiltonian

H =
p̂2

2
+ V (q̂) +

∑

j

{

p̂2
j

2
+

1

2
κj(q̂j − q̂)2

}

(1)

Here q̂ and p̂ are the co-ordinate (here considered as reaction co-ordinate) and momentum operators of the particle,
respectively and the set {q̂j , p̂j} is the set of co-ordinate and momentum operators for the reservoir oscillators linearly
coupled to the system through coupling constant κj . V (q̂) denotes the external potential field which, in general, is
nonlinear. The Hamiltonian contains counter-terms quadratic in q̂ to ensure the independence of barrier height and
coupling constants. The operators follow the usual commutation relations [q̂, p̂] = i~ and [q̂i, p̂j] = i~δij . Over the last
several decades the model and its variants have widely served as the fundamental paradigm for quantum Brownian
motion in chemical dynamics, condensed matter physics, quantum optics and allied areas within various approximate
descriptions. Our primary aim in this section is to search for a true c-number phase space function which describes
the evolution of quantum Brownian motion of the particle at the barrier top and its thermalization in the reactant
well.

Eliminating the reservoir degrees of freedom in the usual way we obtain the operator Langevin equation for the
particle

¨̂q +

∫ t

0

dt′γ(t − t′) ˙̂q(t′) + V ′(q̂) = F̂ (t) (2)

where the noise operator F̂ (t) and the memory kernel γ(t) are given by

F̂ (t) =
∑

j

[

{q̂j(0) − q̂(0)}κj cosωjt + p̂j(0)κ
1/2
j sinωjt

]

(3)

and

γ(t) =
∑

j

κj cosωjt
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or in the continuum limit

γ(t) =

∫ ∞

0

κ(ω)ρ(ω) cosωt dω (4)

with κj = ω2
j . The masses have been assumed to be unity. ρ(ω) represents the density of the reservoir modes.

Eq.(2) is an exact Langevin equation for which the noise properties of F̂ (t) can be defined using a suitable canonical
initial distribution of bath co-ordinates and momentum. Our first task is to replace it by an equivalent generalized
quantum Langevin equation (GQLE) in c-numbers24,25,26,27. To achieve this we proceed in two steps. We first carry
out the quantum mechanical average of Eq.(2).

〈¨̂q〉 +

∫ t

0

dt′γ(t − t′)〈 ˙̂q(t′)〉 + 〈V ′(q̂)〉 = 〈F̂ (t)〉 (5)

Where the average 〈....〉 is taken over the initial product separable quantum states of the particle and the bath oscil-
lators at t = 0, |φ〉{|α1〉|α2〉.......|αN 〉}. Here |φ〉 denotes any arbitrary initial state of the particle and |αi〉 corresponds
to the initial coherent state of the i-th bath oscillator. |αi〉 is given by |αi〉 = exp(−|αi|2/2)

∑∞
ni=0(α

ni

i /
√

ni!)|ni〉,
αi being expressed in terms of the mean values of the co-ordinate and momentum of the i-th oscillator, 〈q̂i(0)〉 =

(
√

~/2ωi)(αi +α⋆
i ) and 〈p̂i(0)〉 = i

√

~ωi/2 (α⋆
i −αi), respectively. It is important to note that 〈F̂ (t)〉 is a classical-like

noise term which, in general, is a nonzero number because of the quantum mechanical averaging over the co-ordinate
and momentum operators of the bath oscillators with respect to initial coherent states and arbitrary initial state of
the particle and is given by

〈F̂ (t)〉 =
∑

j

[

{〈q̂j(0)〉 − 〈q̂(0)〉}κj cosωjt + 〈p̂j(0)〉κ1/2
j sinωjt

]

(6)

It is convenient to write Eq.(5) as follows;

〈¨̂q〉 +

∫ t

0

dt′ γ(t − t′)〈 ˙̂q(t′)〉 + 〈V ′(q̂)〉 = f(t) (7)

where we let the quantum mechanical mean value 〈F̂ (t)〉 = f(t). We now turn to the ensemble averaging. To realize
f(t) as an effective c-number noise we now assume that the momentum 〈p̂j(0)〉 and the co-ordinate 〈q̂j(0)〉 − 〈q̂(0)〉
of the bath oscillators are distributed according to a canonical distribution of Gaussian form as,

Pj = N exp

{

− [〈p̂j(0)〉2 + κj {〈q̂j(0)〉 − 〈q̂(0)〉}2
]

2~ωj

(

n̄j + 1
2

)

}

(8)

so that for any quantum mean value Oj(〈p̂j(0)〉, {〈q̂j(0)〉 − 〈q̂(0)〉}), the statistical average 〈....〉s is

〈Oj〉s =

∫

Oj Pj d〈p̂j(0)〉 d{〈q̂j(0)〉 − 〈q̂(0)〉} (9)

Here n̄j indicates the average thermal photon number of the j-th oscillator at temperature T and is given by
Bose-Einstein distribution n̄j = 1/[exp(~ωj/kT )− 1] and N is the normalization constant.

The distribution Eq.(8) and the definition of the statistical average over quantum mechanical mean values Eq.(9)
imply that f(t) must satisfy

〈f(t)〉s = 0 (10)

and

〈f(t)f(t′)〉s =
1

2

∑

j

κj ~ωj

(

coth
~ωj

2kT

)

cosωj(t − t′)
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or in the continuum limit

〈f(t)f(t′)〉s =
1

2

∫ ∞

0

dω κ(ω) ρ(ω) ~ω

(

coth
~ω

2kT

)

cosω(t − t′)

≡ c(t − t′) (11)

That is, c-number noise f(t) is such that it is zero-centered and satisfies standard fluctuation-dissipation relation
as known in the literature.

We now add the force term V ′(〈q̂〉) on both sides of the Eq.(7) and rearrange it to obtain

q̈(t) + V ′(q) +

∫ t

0

dt′ γ(t − t′) q̇(t′) = f(t) + Q(t) (12)

where we put 〈q̂(t)〉 = q(t) and 〈 ˙̂q(t)〉 = p(t) ; q(t) and p(t) being quantum mechanical mean values and also

Q(t) = V ′(q) − 〈V ′(q̂)〉 (13)

represents the quantum correction to classical potential.
Eq.(12) offers a simple interpretation. This is that GQLE Eq.(12) is governed by a c-number quantum noise f(t) due

to the heat bath, characterized by the properties Eq.(10), Eq.(11) and a quantum correction term Q(t) characteristic
of nonlinearity of the potential. Our general results contain Q(t) in all orders formally. However for a practical
calculation we need a recipe for calculation of Q(t). This has been discussed earlier in several contexts24,25,26,27,39,40.
For the present purpose we summarize it as follows:

Referring to the quantum mechanics of the system in the Heisenberg picture one may write,

q̂(t) = 〈q̂(t)〉 + δq̂(t)

p̂(t) = 〈p̂(t)〉 + δp̂(t) (14)

δq̂(t) and δp̂(t) are the operators signifying quantum corrections around the corresponding quantum mechanical
mean values q and p. By construction 〈δq̂〉 = 〈δp̂〉 = 0 and [δq̂, δp̂] = i~. Using Eq.(14) in 〈V ′(q̂)〉 and a Taylor series
expansion around 〈q̂〉 it is possible to express Q(t) as

Q(t) = −
∑

n≥2

1

n!
V (n+1)(q)〈δq̂n(t)〉 (15)

Here V (n)(q) is the n-th derivative of the potential V (q). To second order Q(t) is given by Q(t) = − 1
2V ′′′(q)〈δq̂2(t)〉

where q(t) and 〈δq̂2(t)〉 can be obtained as explicit functions of time by solving following set of approximate coupled
equations Eq.(16) to Eq.(18) together with Eq.(12)

˙〈δˆ2〉q = 〈δq̂δp̂ + δp̂δq̂〉 (16)

˙〈δq̂δp̂ + δp̂δq̂〉= 2〈δp̂2〉 − 2V ′′(q)〈δq̂2〉 (17)

˙〈δˆ2〉p = −V ′′(q)〈δq̂δp̂ + δp̂δq̂〉 (18)

While the above set of equations provide analytic solutions containing lowest order quantum corrections, the
successive improvement of Q(t) can be achieved by incorporating higher order contribution due to potential V (q) and
the higher order effect of dissipation on the quantum correction terms. In Appendix A we have derived the equations
for quantum corrections upto forth oder39. Under very special circumstances, it has been possible to include quantum
effects to all orders27,40. The present theory thus takes into account of the anharmonicity as an integral part of the
treatment. This is somewhat different from usual classical theories where anharmonicity is incorporated from outside
as a finite barrier corrections41,42. We mention here that centroid molecular dynamics simulation methods have been
developed to calculate the expression for rate constant which is related to flux-flux correlation functions involving two
nonlinear operators within bilinear system-reservoir coupling43. Apart from anharmonicity of the system potential it
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is also possible to consider nonlinear coupling, e.g. ,
∑

j
1
2 κj f(q̂) q̂j (beyond bilinear) between the system and the

reservoir. In the present context we, however, envisage two difficulties. First, the potential in which the particle moves
gets significantly modified because of the absence of any counter term in the Hamiltonian as in Eq.(1). Secondly, the
operator Langevin equation of motion would contain multiplicative noise for which a linear dissipation fails to satisfy
the usual fluctuation-dissipation relation. Because of these reasons we confine ourselves within traditional bilinear
coupling. The method can, however, be readily extended to anharmonic bath comprising, say, of Morse oscillators or
of two level systems, for which coherent states are well known (Morse oscillator is amenable to a theoretical description
within SU(2) Lie algebra and the associated coherent states51, while the two-level system in terms of Pauli matrix and
Radcliffe coherent states52) for constructing quantum Langevin equation since the quantum mechanical averaging with
these states can be computed exactly in the same way as we proceeded from Eq.(2) to obtain Eq.(5). The present
approach has recently been utilized by us to derive24,26 generalized quantum Kramers’ equation for calculation of
escape rate over the barrier by extending the flux-over-population method to quantum domain.

B. Conditional probability function of c-numbers at the barrier top

We now show that the present scheme allows us to derive a quantum conditional probability function in c-numbers
W (q, p, t; q0, p0, t = 0) for an ensemble of trajectories starting from a specific initial condition q = q0, p = p0 at
t = 0 and following the quantum Langevin dynamics Eq.(12). Since we will be primarily concerned with the reactive
flux at the barrier top located at q = q0(= 0) it is convenient to linearize the potential V (q) at this point as
V (q) = V (0) − 1

2ω2
bq2 where ω2

b = V ′′|q0=0 refers to the oscillator frequency of the inverted well at q = q0. We are
then lead to the following Langevin equation;

q̈ − ω2
bq +

∫ t

0

dt′ γ(t − t′) q̇(t′) = f(t) + Q(t) (19)

Laplace transform of Eq.(19) yields the formal solutions for q(t) and p(t) as follows;

q(t) = 〈q(t)〉s +

∫ t

0

Cv(t − τ)f(τ) dτ (20)

p(t) = 〈p(t)〉s +

∫ t

0

Ċv(t − τ)f(τ) dτ (21)

where

〈q(t)〉s = p0 Cv(t) + q0 Cq(t) + G(t) (22)

〈p(t)〉s = p0 Ċv(t) + q0 Ċq(t) + Ġ(t) (23)

G(t) =

∫ t

0

Cv(t − τ) Q(τ) dτ (24)

Cq(t) = 1 + ω2
b

∫ t

0

Cv(τ) dτ (25)

Here Cv(t) is the inverse Laplace transform of C̃v(µ), i.e.

Cv(t) = L−1
[

µ2 + µ γ̃(µ) − ω2
b

]−1
(26)
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with

γ̃(µ) =

∫ t

0

dt γ(t) e−µt (27)

the Laplace transform of γ(t). Several remarks are now in order.
First, the solutions of Eq.(20) and Eq.(21) of the Langevin equation Eq.(12) are the quantum mechanical mean

values distributed around their statistical average 〈q〉s and 〈p〉s. The distribution is due to Gaussian, c-number
quantum noise f(t) which obeys Eq.(10) and Eq.(11).

Second, the averages 〈q〉s and 〈p〉s not only depend on the relaxation functions Cv(t) and Cq(t) in the same way
as in the corresponding classical theory36 but also on the convolution integral G(t) which is a quantum contribution
and takes care of the interplay of dissipation and nonlinearity in the dynamics. It is important to note that although
we have linearized the potential V (q), Q(t) remains finite and nonzero. This is because linearization involves local
dynamics around a specific q (say, around q = 0 for the barrier top) which is a quantum mechanical mean value 〈q̂〉.
Q(t) as expressed in Eq.(15) implies quantum fluctuation around this mean value manifested as shifts in 〈q〉s and
〈p〉s as shown in Eq.(22) and Eq.(23) respectively. Making the quantum fluctuations 〈δq̂n(t)〉 or Q(t) equal to zero
would mean that the quantum mechanical position of the particle is exactly specified. Thus nonzero finite quantum
fluctuation around q = 0 takes care of uncertainty relation. In other words to consider the conditional probability
distribution function which originates as a δ-function in position (means quantum mechanical mean) at the barrier
top, we must have to associate a finite minimum quantum fluctuation or uncertainty around this point.

Third, since no approximation has been made on Q(t), the solutions Eq.(20) and Eq.(21) for q(t) and p(t) formally
take care of quantum effects to all orders. In actual practice, however, they can be calculated order by order to a high
degree of accuracy.

Fourth, the quantum effects enter into the dynamics in two different ways. The quantum nature of the system is
manifested through nonlinearity of the potential while the heat bath imparts quantum noise in a thermal environment.

f(t) is a c-number Gaussian random process. Since the sum of the random processes is Gaussian, so is the integral
in Eq.(20) and Eq.(21) we conclude that q−〈q〉s and p−〈p〉s are Gaussian random processes. Therefore the first and
the second moments suffice to determine the distribution function. Making use of Eq.(20) and Eq.(21) we construct

the second moments of q − 〈q〉s
(

=
∫ t

0
Cv(t − τ)f(τ) dτ

)

and p − 〈p〉s
(

=
∫ t

0
Ċv(t − τ)f(τ) dτ

)

as

A11(t) = 〈(q − 〈q〉s)2〉s = 2

∫ t

0

Cv(t1) dt1

∫ t1

0

Cv(t2) c(t1 − t2) dt2 (28)

A22(t) = 〈(p − 〈p〉s)2〉s = 2

∫ t

0

Ċv(t1) dt1

∫ t1

0

Ċv(t2) c(t1 − t2) dt2 (29)

A12(t) = A21(t) = 〈 (q − 〈q〉s)(p − 〈p〉s) 〉s = 2

∫ t

0

Cv(t1) dt1

∫ t1

0

Ċv(t2) c(t1 − t2) dt2 (30)

We are now in a position to write down the probability distribution function of q, p conditional on q(t = 0) = q0

and p(t = 0) = p0

W (q, p, t; q0, p0, t = 0) =
1

2π(detA)1/2
× exp

[

− 1

2(detA)

{

A22(q − 〈q〉s)2

− 2A12(q − 〈q〉s)(p − 〈p〉s) + A11(p − 〈p〉s)2
}]

(31)

Here detA refers to the determinant of the matrix A. The conditional probability W therefore describes the
transition probability in a c-number quantum phase space. Two remarks are pertinent at this point. First, it is easy
to check that the W reduces to the classical distribution function in the limit ~ → 0, i.e. , when G(t) → 0 and
~ωb

2 coth(~ωb/2kT ) goes over to kT . Second, since W (q, p, t; q0, p0, t = 0) concerns dynamics at the barrier top where
strong nonequilibrium situation prevails, W does not go over to an equilibrium distribution because of hyperbolic
nature of the trajectories emanating from q = q0 = 0. However, this phase space distribution function serves as a
basis for calculation of average of the relevant dynamical quantities at the barrier top.
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C. Equilibrium distribution in the reactant well

In addition to the distribution at the barrier top W (q, p, t; q0, p0, t = 0) it is necessary to consider further the
equilibrium distribution of the particles in the reactant well. As usual a good description of the kinetics can be
obtained by linearizing the potential V (q) at the bottom of the well (say at q = 0 ) so that V (q) = V (0) + 1

2ω2
0q

2

where ω0 corresponds the frequency at the bottom of the reactant well. The Langevin dynamics can be obtained from
Eq.(19) with the replacement of −ω2

b by ω2
0 . The essential changes that are needed for the solution of q(t) and p(t)

are

Cv(t) = L−1C̃(µ) = L−1
[

µ2 + µ γ̃(µ) + ω2
0

]−1
(32)

Cq(t) = 1 − ω2
0

∫ t

0

Cv(τ) dτ (33)

The first and second moments of the distribution W can therefore be calculated by employing the relations Eq.(20)
to Eq.(24) and Eq.(28) to Eq.(30). Since W (q, p, t; q0, p0, t = 0) pertains to the dynamics in the reactant well where the
trajectories evolve around a stable elliptic fixed point, the distribution W eventually reaches an equilibrium thermal
distribution in the long time limit, i.e. ,

Ltt→∞W (q, p, t; q0, p0, t = 0) = Weqm(q, p) (34)

Since an equilibrium distribution does not depend on the way in which the final state is reached, one may consider
the Markovian limit for simplicity but without any loss of generality. In this limit the density distribution of the
reservoir modes is flat, i.e. , κ(ω)ρ(ω) = 2γ/π, γ being dissipation constant. This results in

γ(t) = 2 γ δ(t) (35)

and

c(t) =
1

2
γ ~ω0 coth

(

~ω0

2kT

)

δ(t) (36)

from Eq.(4) and Eq.(11), respectively. From Eq.(35) we have γ̃(µ) = γ which when put in Eq.(32) gives after inverse
Laplace transform

Cv(t) =

(

eµ′
1t − eµ′

2t
)

2ω′
1

(37)

where µ′
1 = −γ

2 + ω′
1 and µ′

2 = −γ
2 − ω′

1 with ω′
1 =

√

γ2

4 − ω2
0 . By Eq.(33) we obtain

Cq(t) = 1 − ω2
0

2ω′
1

[

1

µ′
1

(eµ′
1t − 1) − 1

µ′
2

(eµ′
2t − 1)

]

(38)

It is easy to check the stationary limits for the model

Ltt→∞Cv(t) = 0 Ltt→∞Cq(t) = 0 (39)

Ltt→∞Ċv(t) = 0 Ltt→∞Ċq(t) = 0 (40)

An important quantity that contains quantum contribution due to the system is G(t) as defined in Eq.(24). Putting
Eq.(37) in Eq.(24) we write

G(t) =
1

2ω′
1

[
∫ t

0

eµ′
1τQ(t − τ) dτ −

∫ t

0

eµ′
2τQ(t − τ) dτ

]

(41)
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For the bound system, i.e. , in the neighborhood of the minimum of the well the solutions q(t) and 〈δq̂n(t)〉, in
general, are oscillating in nature, while the exponentials in Eq.(41) are decaying in time. Keeping in mind the nature

of the system, and expanding Q(t − τ) in Taylor series as Q(t − τ) =
∑

m
(−1)m

m! Qm(t) τm, Qm being the m-th time
derivative of Q(t), the long time limit of G(t) is given by

Ltt→∞G(t) =
1

2ω′
1

[

∑

m

(−1)mQm(t)

(

1

(−µ′
1)

m
− 1

(−µ′
2)

m

)

]

(42)

Since from Eq.(15) the leading order quantum correction is given by Q(t) = − 1
2V ′′′(q)〈δq̂(t)2〉 it is now easy to

check that for the time derivative terms in Eq.(42), this correction leads to (and also for higher order correction terms
in Q(t)),

Ltt→∞G(t) = 0 (43)

for quartic nonlinearity, where we have made use of the relations Eq.(22) and Eq.(23). Similarly one may show

Ltt→∞Ġ(t) = 0 (44)

By virtue of the relations Eq.(39), Eq.(40), Eq.(43) and Eq.(44) we have

〈q〉s = 0 〈p〉s = 0 (45)

Furthermore making use of the relation Eq.(36) for c(t) we obtain from Eq.(28) to Eq.(30) the following expressions
for the second moments.

A11(t) = γ ~ω0 coth

(

~ω0

2kT

)
∫ t

0

C2
v (t1) dt1 (46)

A22(t) = γ ~ω0 coth

(

~ω0

2kT

)
∫ t

0

Ċ2
v (t1) dt1 (47)

A12(t) = A21(t) = γ ~ω0 coth

(

~ω0

2kT

)
∫ t

0

Cv(t1) Ċv(t1) dt1 (48)

Putting Eq.(37) in Eq.(46) to Eq.(48) we obtain the long time limits of the second moments as

Ltt→∞A11(t) =
~

2ω0
coth

(

~ω0

2kT

)

(49)

Ltt→∞A22(t) =
~ω0

2
coth

(

~ω0

2kT

)

(50)

Ltt→∞A12(t) = Ltt→∞A21(t) = 0 (51)

Next we use the relations Eq.(45) and Eq.(49) to Eq.(51) in Eq.(31) to obtain the equilibrium distribution of
quantum mechanical mean values, q, p as

Weqm(q, p) = Z−1 exp

[

−
p2

2 + V (q)
~ω0

2 coth
(

~ω0

2kT

)

]

(52)

where Z−1 is the normalization constant and V (q) has the linearized form in the neighborhood of the bottom of the
reactant well characterized by the frequency ω0. The width of the distribution ~ω0

2 coth
(

~ω0

2kT

)

reduces to kT in the
classical limit and one obtains the usual Maxwell-Boltzmann distribution. We thus note that Eq.(52) has the same
form as Eq.(8) (since, n(x) + 1/2 = 1

2 coth(x/2)). In fact since theq potential at the reactant well is assumed to the
harmonic, it seems consistent to use the same ansatz that was used for the harmonic bath modes. This has turned
out to be the case.

The c-number conditional probability distribution W (q, p, t; q0, p0, t = 0) describing the dynamics at the barrier top
and the thermal distribution Weqm(q, p) describing equilibrium in the reactant well are the two main results of this
section. They are primary elements for calculation of statistical averages used in the expression for reactive flux that
follows in the next section.
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III. C-NUMBER PHASE SPACE FUNCTION FORMULATION OF REACTIVE FLUX THEORY

A. A general expression for quantum transmission coefficient

We now consider q as the reaction co-ordinate and the potential V (q) defines the dividing surface conveniently
located at the transition state q = q0 which separates the reactant state from the product state. While the reactant
particles are thermally equilibriated deep inside the reactant well strong nonequilibrium situation prevails at q = q0.
The key element in the reactive flux formulation is that the nonequilibrium concentration relaxes to the equilibrium
concentration on a timescale at which the equilibrium correlation function decays. Based on a timescale t obeying
1
Γ ≫ t ≫ τc where 1

Γ is the decay time of equilibrium fluctuation and τc is correlation time, the reactive flux expression

for rate coefficient in the form of Green-Kubo transport coefficient has been derived by various workers32,33,34,35,36,37.
Our aim in this section is to provide a c-number quantum phase space representation of the rate coefficient. The present
formulation is a simple quantum translation of the reactive flux formulation advocated by Kohen and Tannor36 a few
years ago.

In the spirit of classical reactive flux theory the quantum rate coefficient k(t) can be expressed in terms of the
following correlation function

k(t) =
〈θ̇P (q0) θP [q(q0, p0, t)]〉qs

〈θR(q0)〉qs
(53)

=
〈p0 δ(q0) θP [q(q0, p0, t)]〉qs

〈θR(q0)〉qs
(54)

Here q is the quantum mechanical mean values of reaction co-ordinate and p is the corresponding momentum. θP [q]
is a step function implying 1 if q > 0 and 0 otherwise. Noting that R and P refer to the reactant and transition
states, respectively, we have θR + θP = 1. q0, p0 correspond to initial co-ordinate (at the barrier top; q = q0 = 0)
and momentum, respectively. The averaging 〈...〉qs is carried over an initial equilibrium distribution, which in our
case is the c-number quantum distribution Weqm(q, p) of q, p as given by Eq.(52). The subscript ’qs’ in the average is
labeled to make a distinction from its classical counterpart. Thus when written explicitly in terms of Eq.(52), Eq.(54)
reduces to the following form

k(t) =
Z−1

〈θR(q0)〉 qs

∫ +∞

−∞

dq0

∫ +∞

−∞

dp0 exp

[

−
p2
0

2 + V (q0)
~ω0

2 coth
(

~ω0

2kT

)

]

p0 δ(q0) θP [q(q0, p0, t)] (55)

For a single realization of a stochastic trajectory the characteristic function θP [q(q0, p0, t)] is either 0 or 1. However

for an ensemble of trajectories starting from q0, p0, θP [q] must be replaced by an average θP [q], which may assume any

value between 0 and 1. In explicit form θP [q] signifies an integral over the c-number quantum conditional probability
distribution function W (q, p, t; q0, p0, t = 0) for the ensemble of particles as given by Eq.(31) so that

θP [q(q0, p0, t)] = χ(p0, t) =

∫ +∞

0

dq

∫ +∞

−∞

dp W (q, p, t; q0 = 0, p0, t = 0) (56)

χ is the usual ”reactivity index” and takes care of recrossing the transition state. With this replacement of
θP [q(q0, p0, t)] by its average according to Eq.(56) we obtain the expression for quantum rate coefficient as

k(t) =
Z−1

〈θR(q0)〉qs

∫ +∞

−∞

dq0

∫ +∞

−∞

dp0 exp

[

−
p2
0

2 + V (q0)

~ω0(n̄0 + 1
2 )

]

p0 δ(q0) χ(q0 = 0, p0, t)

=
Z−1

〈θR(q0)〉qs

∫ +∞

−∞

dp0 p0 exp

[

−
p2
0

2 + V (q0 = 0)

~ω0(n̄0 + 1
2 )

]

χ(q0 = 0, p0, t) (57)

In order to extract out the dynamical contribution to the rate coefficient it is convenient to define the latter as

k(t) = κ(t) kQTST (58)
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where κ(t) is the quantum transmission coefficient and kQTST corresponds to the rate coefficient according to
transition state theory. In the following we outline an expression for kQTST .

It has been shown that thermalization of the reactant in the well can be described by the distribution Eq.(52).
Assuming that this equilibrium distribution holds good even at the barrier top q0 Eq.(52) reduces to

Weqm(q0 = 0, p) = Z−1 exp

[

−
p2

2 + V (q0 = 0)

~ω0(n̄0 + 1
2 )

]

(59)

and we may calculate the rate coefficient as

kQTST =

∫ ∞

0

p Weqm(q0 = 0, p) dp (60)

which represents the positive average velocity of the particles at the barrier top. The recrossing of the trajectories
is therefore completely ignored. Explicit integration in Eq.(60) using Eq.(59) yields

kQTST = Z−1
~ω0(n̄0 +

1

2
) exp

[

− V (q0 = 0)

~ω0(n̄0 + 1
2 )

]

(61)

We now note that the total reactant concentration in the left well is given by equilibrium average over the charac-
teristic function 〈θR(q0)〉qs which is obtained by

〈θR(q0)〉qs = Lta→∞

∫ q′+a

q′−a

dq

∫ +∞

−∞

Weqm(q, p) (62)

where Weqm(q, p) is given by Eq.(52) with the linearization of the potential well at q = q′ such that V (q) =
V (q′) + 1

2 ω2
0 (q − q′)2. By setting V (q′) = 0 and calculating the normalization constant Z−1 = 2π~(n̄0 + 1

2 ), we have

〈θR〉qs = 1 (63)

Now putting the value of 〈θR〉qs in Eq.(57) and dividing k(t) by kQTST as given in Eq.(61) we obtain the expression
for quantum time dependent transmission coefficient κ(t) as;

κ(t) =
1

~ω0(n̄0 + 1
2 )

∫ +∞

−∞

p0 exp

[

−
p2
0

2

~ω0(n̄0 + 1
2 )

]

χ(q0 = 0, p0, t) dp0 (64)

where the fractional reactivity index χ is given by Eq.(56), i.e. ;

χ(p0, t) =

∫ +∞

0

dq

∫ +∞

−∞

dp W (q, p, t; q0 = 0, p0, t = 0) (65)

On explicit integration over p using Eq.(31) the above expression gives

χ(p0, t) =
1

(2πA11)1/2

∫ ∞

0

dq exp

[

− (q − 〈q〉s)2
2A11

]

(66)

Furthermore with the transformation variables h = q−〈q〉s

2A11
, Eq.(66) reduces to

χ(p0, t) =
1

π1/2

∫ ∞

−
〈q(t)〉s

[2A11(t)]1/2

dh e−h2

(67)
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The expression for κ(t) is given by

κ(t) =
1

~ω0(n̄0 + 1
2 )

∫ +∞

−∞

dp0 p0 exp

[

−
p2
0

2

~ω0(n̄0 + 1
2 )

]





1

π1/2

∫ ∞

−
〈q(t)〉s

[2A11(t)]1/2

dh e−h2



 (68)

The primary quantities that determine κ(t) are therefore 〈q(t)〉s and A11(t) as given by Eq.(22) and Eq.(28),
respectively, pertaining to the dynamics at the barrier top. Putting the value of 〈q(t)〉s in the lower limit of the
second integral and carrying out integration by parts we obtain the general expression for quantum transmission
coefficient κ(t) as follows;

κ(t) =
Cv(t)

{

C2
v (t) + A11(t)

~ω0(n̄0+
1
2 )

}1/2
exp

[

− G2(t)

2{C2
v (t) ~ω0(n̄0 + 1

2 ) + A11(t)}

]

(69)

The expression Eq.(69) is the direct quantum generalization of Kohen-Tannor formulae36 for classical time dependent
transmission coefficient. The classical formulae can be recovered in the limit kT ≫ ~ω0, so that ~ω0(n̄0 + 1

2 ) and

~ωb(n̄b + 1
2 ) reduce to kT and G(t) → 0. A few pertinent points are to be noted: First, since no approximation has

been made on the order of quantum correction in G(t), the expression takes care of quantum effects to all orders and
thus retains its validity even in the limit T → 0, i.e. , in the vacuum regime. Second, since we have not assumed
any specific form of the density of modes of the bath oscillators so that κ(ω)ρ(ω) is arbitrary, the theory developed
so far is equipped to deal with arbitrary noise correlation. Third, it is important to note that important quantities
in the expression Eq.(69), Cv(t), A11(t), and G(t) are the key elements required for calculation of the dynamics
of transmission coefficient κ(t). While Cv(t) is the same as in the classical theory, A11(t) and G(t) are quantum
mechanical objects. A11(t) carries the imprints of quantum fluctuation-dissipation relationship characterizing the
quantum nature of the heat bath. G(t) on the other hand, as mentioned earlier is a reflection of the characteristic
of the nonlinear potential. The interplay of the dissipation with the nonlinearity of the system is expressed through
this convolution integral. A complete calculation of the transmission coefficient thus requires the explicit knowledge
of these three quantities.

In order to proceed further it is necessary to specify the nature of the time dependent friction γ(t). This is crucially
dependent on the distribution of the density of modes of the bath oscillators. In the present case we assume a specific
form of Lorentian type, i.e. ;

κ(ω)ρ(ω) =
2

π

(

A

1 + ω2 τ2
c

)

(70)

where A is the damping constant in the Markovian limit and τc is the correlation time. This form of density by
virtue of Eq.(4) results in,

γ(t) =
A

τc
e−t/τc

= A α e−αt (71)

where α = 1/τc.
Depending on τc we consider two different limits; Markovian and non-Markovian friction. We consider the former

case first.

B. Markovian friction

For α → ∞ or τc → 0, we have κ(ω)ρ(ω) = 2A/π; γ(t) and its Laplace transform thus reduce to

γ(t) = 2 A δ(t)
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and

γ̃(µ) = A (72)

respectively. According to Eq.(26) Cv(t) is then given by

Cv(t) =
eµ1t − eµ2t

2ω1
(73)

where µ1,2 = −A
2 ± ω1 and ω1 =

√

A2

4 + ω2
b . Furthermore the correlation function as given by Eq.(11) yields

c(t1 − t2) =
1

2
A ~ωb coth

(

~ωb

2kT

)

δ(t1 − t2) (74)

Making use of the last two relations for Cv(t) and c(t1 − t2) for the barrier top in Eq.(28) we obtain

A11(t) =
A

2ω2
1

~ωb(n̄b +
1

2
)

[

1

2µ1
e2µ1t +

1

2µ2
e2µ2t +

2

A
e−At − 2ω2

1

ω2
bA

]

(75)

Having known Cv(t) and A11(t) in the Markovian limit we are in a position to use them in the general expression
for quantum transmission coefficient Eq.(69) to obtain,

κ(t) =
eµ1t − eµ2t

{

(e2µ1t + e2µ2t − 2e−At) +
2A~ωb(n̄b+

1
2 )

~ω0(n̄0+ 1
2 )

[

1
2µ1

e2µ1t + 1
2µ2

e2µ2t + 2
Ae−At − 2ω2

1

ω2
bA

]}1/2

× exp



− G2(t)
~ω0(n̄0+

1
2 )

2ω2
1

[

(e2µ1t + e2µ2t − 2e−At) +
2A~ωb(n̄b+

1
2 )

~ω0(n̄0+
1
2 )

[

1
2µ1

e2µ1t + 1
2µ2

e2µ2t + 2
Ae−At − 2ω2

1

ω2
bA

]]



 (76)

It is instructive to work out the assymptotic limit of κ(t). For a bistable potential of the form V (q) = aq4− bq2, the
leading order quantum correction is given by Q(t) = −12 a q(t) 〈δq̂2(t)〉. Since the dynamics pertains to the barrier
top we have approximately [see Appendix B]

G(t) = − 3a

ωb ω1 A2

[

~
3ω0(n̄0 +

1

2
)

]1/2 [

ω1

ωb
sinh 2ωbt (eµ1t + eµ2t) − 2 cosh2 ωbt (eµ1t − eµ2t)

]

(77)

which may be put in the form

G(t) = − 3a

ωb ω1 A2

[

~
3ω0(n̄0 +

1

2
)

]1/2

eµ1t

[

1

2
elnω1+2ωbt − 1

2
eln ωb+2ωbt − ωb

]

(78)

in the long time for which lnω1 ≪ 2ωbt and lnωb ≪ 2ωbt. Eq.(78) then gives

G(t) =
3 a

ωb ω1 A2

[

~
3ω0(n̄0 +

1

2
)

]1/2

eµ1t (79)

Putting Eq.(79) in Eq.(76) and using the limit t → ∞ we obtain the assymptotic expression for the transmission
coefficient in the Markovian limit,

κ(∞) =
1

1 +
A ~ωb(n̄b+

1
2 )

µ1 ~ω0(n̄0+
1
2 )

exp

[

− 18 a2
~

2 µ1 ω0(n̄0 + 1
2 )

A4 ω2
b

(

µ1 ω0(n̄0 + 1
2 ) + A ωb(n̄b + 1

2 )
)

]

(80)
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In the classical limit as ~ → ∞, ~ωb(n̄b + 1
2 ) and ~ω0(n̄0 + 1

2 ) both goes over to kT ; Eq.(80) results in

κ(∞) =

[

1

1 + A
µ1

]1/2

(81)

Since µ1 + µ2 = −A and µ1µ2 = −ω2
b the above relation can be put into the following form

κ(∞) =
µ1

ωb
(82)

The classical Markovian coefficient, i.e. , the ratio of the positive unstable root µ1 to the frequency of the barrier
ωb is therefore reduced to Kramers’ prefactor.

C. Non-Markovian friction

We now return to the Eq.(70) and Eq.(71). Corresponding to Eq.(71) we have γ̃(µ) = A α
µ+α from Eq.(27). Cv(t) is

therefore is given by

Cv(t) = L−1

[

µ2 − ω2
b +

µ A α

µ + α

]−1

(83)

Following Kohen and Tannor36 we consider the case when α is small, i.e. , the relevant zeros of the quantity in the
parenthesis in Eq.(83) may be written as the solutions of

µ2 − ω2
b + A α = 0 (84)

Depending on the relative magnitudes of ω2
b and Aα it is convenient to discuss two situations ω2

b − Aα > 0 and
ω2

b − A α < 0 separately.
(i) ω2

b − A α > 0

Here the two roots become µ1,2 = ±
√

ω2
b − A α, with µ1 = −µ2 and Cv(t) is given by

Cv(t) =
sinhµ1t

µ1
(85)

Since κ(ω)ρ(ω) = 2A
π

α2

ω2+α2 we have from Eq.(11) the correlation function as follows;

c(t1 − t2) =
1

2

∫ ∞

0

dω

(

2A

π

)

α2

ω2 + α2
~ω coth

(

~ω

2kT

)

cosω(t1 − t2) (86)

Putting Eq.(85) and Eq.(86) in Eq. (28) it is possible to express A11(t) as

A11(t) =
A α2

~ sinh2 µ1t

πµ2
1

M − 2 A α2
~ sinhµ1t

πµ1
N − 2 A α2

~ coshµ1t

π
O +

A α2
~

π
P (87)

where

M =

∫ ∞

0

ω coth ~ω
2kT

(α2 + ω2) (ω2 + µ2
1)

dω (88)

N =

∫ ∞

0

ω2 sinωt coth ~ω
2kT

(α2 + ω2) (ω2 + µ2
1)

2
dω (89)

O =

∫ ∞

0

ω cosωt coth ~ω
2kT

(α2 + ω2) (ω2 + µ2
1)

2
dω (90)

P =

∫ ∞

0

ω coth ~ω
2kT

(α2 + ω2) (ω2 + µ2
1)

2
dω (91)
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The nonlinear term G(t) in Eq.(69) can be obtained as before by considering the leading order quantum correction
as shown in Appendix B for the case ω2

b − Aα > 0. This is given by

G(t) = − 3 a

2 ωb µ2
1 A α

[

~
3ω0

(

n̄0 +
1

2

)]1/2 [

µ1 sinh(µ1t) +
A α

ωb
cosh(µ1t) sinh(

2ωb

A
)

− ωb sinh(
2ωb

A
) cosh(µ1t −

2µ1

A
) − µ1 cosh(

2ωb

A
) sinh(µ1t −

2µ1

A
)

]

(92)

Having obtained Cv(t), A11(t) and G(t) from Eq.(85), Eq.(87) and Eq.(92), respectively, we may write down the
quantum transmission coefficient using Eq.(69) in the adiabatic regime (ω2

b > Aα)

κ(t) =
[ sinh µ1t

µ1
]

[

sinh2 µ1t
µ2

1
+ Aα2~

π~ω0(n̄0+
1
2 )

[

sinh2 µ1t
µ2

1
M − 2 sinh µ1t

µ1
N − 2 coshµ1t O + 2P

]]1/2

× exp



− G(t)2

2
{

~ω0(n̄0 + 1
2 ) sinh2 µ1t

µ2
1

+ Aα2~

π ( sinh2 µ1t
µ2

1
M − 2 sinhµ1t

µ1
N − 2 coshµ1t O + 2P )

}



 (93)

In order to check the workability of the above method we first test it against two typical benchmark calculations.
To this end we first employ the double-well potential as used earlier in exact numerical calculation of quantum
rate coefficient in Ref.[22] with scaled parameters (actual parameters in Table I. of DW1 in Ref.[22]) Eb = 26.188,
ωb = 1.0, ω0 = 1.414 for two different scaled temperatures kT = 2.617(300K) and kT = 1.744(200K). The results for
assymtotic transmission coefficient as a function of damping constant from Fig.(9) of Ref.[22] are compared against
our analytical expression for the same according to Eq.(93) in Fig.(1). The agreement is excellent at relatively higher
temperature i.e. at kT = 2.617(300K). However it is apparent that at lower temperature the analytical results is
slightly higher than than exact one. Keeping in view of the fact that the maximum deviation is less than 8 percent
and that the analytical quantum correction in Eq.(93) is of lowest order, the result is fairly satisfactory. For a
more accurate calculation one would require higher order corrections in Q(t) which can be obtained from numerical
solution of the equations in Appendix A and be included in G(t) to be used in Eq.(63). In what follows we also
make use of the classical results of Cohen and Tannor36 for a consistency check of our quantum calculation in the
approximate limits as we proceed. We now show the detailed behavior of κ(t) as a function of time for different values
of temperature T , damping constant A and correlation time τc(= 1/α). To this end we first compare the quantum
nature of transmission coefficient as a function of time against its classical counterpart for A = 50, τc = 100, kT = 1.0,
ωb = 1.0, ω0 =

√
2 and a = 0.01 in Fig.(2). It is apparent that there is a significant increase in quantum values.

The variation of temperature has been depicted further in Fig.(3). At higher temperature the quantum coefficient
merges into the classical coefficient of Kohen and Tannor36. An important new content of the present theory is
that it is equipped to deal with zero point fluctuations. Around this teperature the transmission coefficient hardly
departs from its maximum value. In Fig.(4) we show the explicit variation of assymptotic transmission coefficient
with temperature. While classically κ(t) is independent of temperature, quantum nature of the heat bath imparts a
temperature dependence which is particularly strong in the low temperature regime. This is one of the most distinctive
features of the present calculation.

Fig.(5) shows the two sets of transmission coefficient κ(t) as a function of time for different values of dissipation
parameters A ranging from 30 to 90 one for quantum and other for the classical. The input parameters are kT = 1.0,
ωb = 1.0, ω0 =

√
2, a = 0.01 and τc = 100. It is apparent that there is marginal increase of the corresponding quantum

values when compared to the classical transmission coefficient. In Fig.(6) the assymptotic transmission coefficient is
plotted as a function of damping constant. The typical behavior in the intermediate to strong dissipation regime is
observed which is in complete conformity with the earlier results. Fig.(7) shows an illustrative variation of the time
dependent quantum transmission coefficient for several values of correlation time τc. With increase in τc κ(t) increases
significantly - a trend which is similar to what is observed in the classical case. With increase in time the transmission
coefficient κ(t) reaches its plateau value in the Markovian as well as non-adiabatic non-Markovian regime.

(ii) ω2
b − A α < 0

Here from the equation for µ, i.e. , µ2 + (A α − ω2
b ) = 0 we obtain two purely imaginary roots µ2,3

µ2,3 = ± iµ̃2
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where µ̃2 =
√

Aα − ω2
b . Cv(t) in this case is given by

Cv(t) =
sin µ̃2t

µ̃2
(94)

Proceeding as before we arrive at the quantum transmission coefficient in the so called caging regime as follows

κ(t) =
[ sin µ̃2t

µ2
]

[

sin2 µ̃2t
µ̃2

2 + Aα2~

π~ω0(n̄0+
1
2 )

[

sin2 µ̃2t
µ̃2

2
M1 − 2 sin µ2t

µ̃2
N1 − 2 cos µ̃2t O1 + 2P1

]]1/2

× exp



− G(t)2

2
{

~ω0(n̄0 + 1
2 ) sin2 µ2t

µ̃2
2

+ Aα2~

π ( sin2 µ̃2t
µ̃2

2
M1 − 2 sin µ̃2t

µ̃2
N1 − 2 cos µ̃2t O1 + 2P1)

}



 (95)

Here G(t) is given by [see Appendix B]

G(t) = − 3 a

2 ωb µ̃2
2 A α

[

~
3ω0

(

n̄0 +
1

2

)]1/2 [

ωb sinh

(

2ωb

A

)

cos

(

µ̃2t −
2 µ̃2

A

)

− µ̃2 cosh

(

2ωb

A

)

sin

(

µ̃2t −
2µ̃2

A

)

+ µ̃2 sin (µ̃2t) −
Aα

ωb
cos (µ̃2t) sinh

(

2ωb

A

)]

(96)

where

M1 =

∫ ∞

0

ω coth ~ω
2kT

(α2 + ω2) (ω2 − µ̃2
2)

dω (97)

N1 =

∫ ∞

0

ω2 sinωt coth ~ω
2kT

(α2 + ω2) (ω2 − µ̃2
2)

2
dω (98)

O1 =

∫ ∞

0

ω cosωt coth ~ω
2kT

(α2 + ω2) (ω2 − µ̃2
2)

2
dω (99)

P1 =

∫ ∞

0

ω coth ~ω
2kT

(α2 + ω2) (ω2 − µ̃2
2)

2
dω (100)

The behavior of the transmission coefficient is very much similar to that for the classical case as discussed in detail
by Kohen and Tannor36. In order to allow ourselves a fair comparison with this theory we calculate according to
Eq.(95) and the corresponding classical case for the parameters A = 150, τc = 100, kT = 1.0, ωb = 1.0, ω0 =

√
2 and

a = 0.01. The results are shown in Fig.(8). It is apparent that the oscillating nature persists even in the quantum
case although this is accompanied by a loss of amplitude compared to the classical case. In Fig.(9) and Fig.(10)
we illustrate the dependence of transmission coefficient with temperature and damping, respectively. Apart from
temperature dependence no significant difference from classical behaviour is observed.

IV. CONCLUSION

In this paper we have derived a general time-dependent quantum Kramers’-Grote-Hynes rate constant for a chemical
reaction in a condensed medium. This is based on quantum phase space probability distribution functions proposed
recently by us to describe quantum Brownian motion in terms of a generalized quantum Langevin equation. We have
correlated the time dependence of the transmission coefficient in detail with the variation of dissipation, temperature
and correlation time of the noise. Our results can be summarized as follows:

(i) The quantum KGH transmission coefficient Eq.(69), the central result of this paper reduces to to its well known
classical limit when ~ → 0. The expression retains its full validity even in the vacuum limit, i.e. , T → 0.

(ii) We have worked out in detail the specific form of this transmission coefficient in the Markovian as well as
in the non-Markovian case. Depending on the dissipation, correlation time and frequency at the barrier top, both
adiabatic and non-adiabatic situations have been considered with a comparison with the classical theory of Kohen
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and Tannor36.While classical transmission coefficient is independent of temperature its quantum counterpart depends
on temperature significantly, particularly in the low temperature regime marked by quantum effects.

(iii) The general expression for quantum KGH transmission coefficient contains quantum corrections to all orders.
We have shown that the systematic corrections can be obtained explicitly order by order by simply solving a number
of coupled ordinary differential equations.

(iv) The expression for the quantum KGH transmission coefficient is a natural extension of classical theory to
quantum domain and provides a unified description of thermally activated process and tunneling.

Before conclusion we now make a few remarks on the present method.
First, since the advent of quantum mechanics several methods of quantization have been in use for description of

quantum Brownian motion. Of these, Lagrangian and Hamiltonian formulation have been proposed in the frame-
work of Feynman (path integral) quantization15,20,45 and been most widely used since early eighties. Dynamical
quantization46,47,48 have been tried with some preliminary success. The present method is based on canonical
Heisenberg quantization procedure and has been recently utilized to propose non-Markovian quantum version of
Kramers24,26, Fokker-Planck25, Smoluchowski27 and diffusion equations25. The main advantage of this approach is
that it allows the classical method of solution of equation for probability distribution functions to be applied in the
same way as one makes use of flux-over-population method or reactive flux method for calculation of rate coefficients.

Second, since the phase space function formulation of classical reactive flux theory by Kohen and Tannor is partic-
ularly useful for visualization of the behaviour of phase space trajectories, a direct extension of this method to the
quantum domain as done in the present formulation allows us to achieve a similar objective in terms of c-number
trajectories. It is also important to point out that path integral approach also gives rise to several approximations
that have a classical flavour43,44.

Third, an important advantage of this approach is that one not only obtains the asymptotic quantum rate coefficient
but also the details of its behaviour at all time analytically including its approach towards the steady state. In this
sense it is complimentary to the exact numerical work of Ref.[22].

Fourth, although the present method employs system-reservoir oscillator model for evolution of quantum mechanical
rate, in the phase space distribution function approach bath co-ordinates do not appear explicitly in the ultimate
calculation. One can also avoid multidimensional integration employed in more powerful path integral approach.
The present method instead takes care of improvement of quantum corrections successively order by order by solving
coupled ordinary differential equations of Appendix (A).

In the view of the above discussions we anticipate that the present approach can readily be adopted to numerical
scheme, for example, to that of classical method of Berne and co-workers49,50, for calculation of time- dependent quan-
tum transmission coefficient beyond linearization over the entire range of friction, noise correlation and temperature,
to explain quantum turnover and other interesting features. The work in this direction is in progress.
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APPENDIX A: EVOLUTION EQUATIONS FOR HIGHER-ORDER QUANTUM CORRECTIONS FOR

ANHARMONIC POTENTIAL

The equations upto fourth order for quantum corrections (corresponding to the contribution of anharmonicity of the
potential) are listed below.
Equations for the second order are:

d

dt
〈δq̂2〉 = 〈δq̂δp̂ + δp̂δq̂〉,

d

dt
〈δp̂2〉 = −2Γ〈δp̂2〉 − V ′′〈δq̂δp̂ + δp̂δq̂〉 − V ′′′〈δq̂δp̂δq̂〉, (A1)

d

dt
〈δq̂δp̂ + δp̂δq̂〉 = −Γ〈δq̂δp̂ + δp̂δq̂〉2〈δp̂2〉 − 2V ′′〈δq̂2〉 − V ′′′〈δq̂3〉,

Those for the third order are:
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d

dt
〈δq̂3〉 = 3〈δq̂δp̂δq̂〉,

d

dt
〈δp̂3〉 = −3Γ〈δp̂3〉 − 3V ′′〈δp̂δq̂δp̂〉 + V ′′′

(

3

2
〈δq̂2〉〈δp̂2〉 − 3

2
〈δp̂δq̂2δp̂〉 + ~

2

)

,

d

dt
〈δq̂δp̂δq̂〉 = −Γ〈δq̂δp̂δq̂〉 + 2〈δp̂δq̂δp̂〉 − V ′′〈δq̂3〉 − V ′′′

2

(

〈δq̂4〉 − 〈δq̂2〉2
)

, (A2)

d

dt
〈δp̂δq̂δp̂〉 = −2Γ〈δp̂δq̂δp̂〉 + 〈δp̂3〉 − 2V ′′〈δq̂δp̂δq̂〉

+
V ′′′

2

(

〈δq̂2〉〈δq̂δp̂ + δp̂δq̂〉 − 〈δq̂3δp̂ + δp̂δq̂3〉
)

,

And lastly, the fourth order equations are:

d

dt
〈δq̂4〉 = 2〈δq̂3δp̂ + δp̂δq̂3〉,

d

dt
〈δp̂4〉 = −4Γ〈δp̂4〉 − 2V ′′〈δq̂δp̂3 + δp̂3δq̂〉 + 2V ′′′〈δq̂2〉〈δp̂3〉,

d

dt
〈δq̂3δp̂ + δp̂δq̂3〉 = −Γ〈δq̂3δp̂ + δp̂δq̂3〉 − 2V ′′〈δq̂4〉 − 3~

2 + 6〈δp̂δq̂2δp̂〉

+ V ′′′〈δq̂2〉〈δq̂3〉, (A3)

d

dt
〈δq̂δp̂3 + δp̂3δq̂〉 = −3Γ〈δq̂δp̂3 + δp̂3δq̂〉 + 2〈δp̂4〉 + 3V ′′(~2 − 2〈δp̂δq̂2δp̂〉)

+ 3V ′′′〈δq̂2〉〈δp̂δq̂δp̂〉,
d

dt
〈δp̂δq̂2δp̂〉 = −2Γ〈δp̂δq̂2δp̂〉 − V ′′〈δq̂3δp̂ + δp̂δq̂3〉 + 〈δp̂3δq̂ + δq̂δp̂3〉

+ V ′′′〈δq̂2〉〈δq̂δp̂δq̂〉.
The derivatives of V (q), i.e., V ′′ or V ′′′ etc. in the above expressions are functions of q the dynamics of which is given
by Eq.(12).

APPENDIX B: CALCULATION OF G(t)

It is already been pointed out that G(t) as defined in Eq.(24) describes an interplay of dissipation and nonlinearity
in terms of the following convolution integral

G(t) =

∫ t

0

Cv(t − τ) Q(τ)dτ (B1)

where Q(t) is given by Eq.(15) and the relaxation function Cv(t) refers to Eq.(26) pertaining to the dynamics at the
barrier top. When Q(t) is taken in full G(t) contains quantum corrections to all orders and is formally exact. However
for practical calculation we evaluate this quantity order by order. Leading order quantum correction in Eq.(15) as
given by Q(t) = − 1

2V ′′′(q)〈δq̂(t)2〉 for the bistable potential V (q) = a q4 − b q2 results in

Q(t) = −12 a q(t) 〈δq̂(t)2〉 (B2)

Explicit solution of 〈δq̂(t)2〉 at the barrier top24,39 at q = q0 = 0 is given by〈δq̂(t)2〉 = 〈δq̂2〉t=0 cosh 2ωbt +
〈δq̂ δp̂+δp̂ δq̂〉t=0

2ωb
sinh 2ωbt. Furthermore q(t) is known from Eq.(20) upto a leading order so that we have

q(t) = p0 Cv(t) (B3)

Since with minimum uncertainty product state24,39 we require

〈δq̂ δp̂ + δp̂ δq̂〉t=0 = 0 (B4)
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〈δq̂2〉t=0 =
~

2ωb
(B5)

and so we have

〈δq̂(t)2〉 =
~

2ωb
cosh 2ωbt (B6)

For an initially thermally distributed p0 we may write

p0 =

[

~ω0(n̄0 +
1

2
)

]1/2

(B7)

With Eq.(B7), Eq.(B6) and Eq.(B3), Q(t) yields

Q(t) = −6 a ~
3ω0(n̄0 + 1

2 )

ωb
Cv(t) cosh 2ωbt (B8)

Putting Eq.(B8) in Eq.(B1) we obtain the general expression for G(t) upto the leading order in quantum correction
as

G(t) = −6 a

ωb

[

~
3ω0(n̄0 +

1

2
)

]1/2 ∫ t

0

Cv(t − τ) Cv(τ) cosh 2ωbτ dτ (B9)

The rest of the treatment depends on specific nature of Cv(t).
Case(I) Markovian friction: For this case Cv(t) is given by Eq.(73). Explicit evaluation of the integral in Eq.(B9)

results

G(t) = − 3 a

ω1 ωb A2

[

~
3ω0(n̄0 +

1

2
)

]1/2 [

ω1

ωb
sinh 2ωbt (eµ1t + eµ2t) − 2 cosh2 ωbt (eµ1t − (eµ2t)

]

(B10)

Case(II) non-Markovian friction:
Similarly the evaluation of the integral in Eq.(B9) using Cv(t) from Eq.(85) for the non-adiabatic case ω2

b −Aα > 0
leads to

G(t) = − 3 a

2 ωb µ2
1 A α

[

~
3ω0

(

n̄0 +
1

2

)]1/2 [

µ1 sinh(µ1t) +
A α

ωb
cosh(µ1t) sinh(

2ωb

A
)

− ωb sinh(
2ωb

A
) cosh(µ1t −

2µ1

A
) − µ1 cosh(

2ωb

A
) sinh(µ1t −

2µ1

A
)

]

(B11)

where to avoid divergence we have used a cut off for the integral at time t = 1/A. This is a good approximation in
view of the fact that quantum correction in Eq.(B11) has been considered to a leading order.

For adiabatic or so called caging regime (ω2
b − Aα < 0), on the other hand Cv(t) is given by Eq.(94). The

corresponding G(t) can be calculated to obtain from Eq.(B9) as

G(t) = − 3 a

2 ωb µ̃2
2 A α

[

~
3ω0

(

n̄0 +
1

2

)]1/2 [

ωb sinh

(

2ωb

A

)

cosh

(

µ̃2t −
2 µ̃2

A

)

− µ̃2 cosh

(

2ωb

A

)

sinh

(

µ̃2t −
2µ̃2

A

)

+ µ̃2 sinh (µ̃2t) −
Aα

ωb
cosh (µ̃2t) sinh

(

2ωb

A

)]

(B12)
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FIG. 1: Asymptotic quantum transmission coefficient κst is plotted as a function of damping strength (A) at two different
temperatures (a) kT = 2.617(300K) and (b) kT = 1.744(200K) for the parameter set mentioned in the text. The numerical
results of Fig.9 of Ref.(22) are shown by solid circles and squares and compared to our analytical results (solid triangles)
corresponding to Eq.(93).
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FIG. 2: The quantum (continuous line) transmission coefficient is plotted against time and compared to classical (dotted line)
one for the parameter values A = 50, τc = 100, kT = 1.0, ωb = 1.0, ω0 =

√

2, a = 0.01.
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FIG. 3: The quantum transmission coefficient is plotted against time for several values of temperature kT = 0.0 (continuous
line); kT = 0.3 (dashed line); kT = 25.0 (dotted line) for A = 50, τc = 100, kT = 1.0, ωb = 1.0, ω0 =

√

2, a = 0.01.
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FIG. 4: The assymptotic quantum transmission coefficient κst is plotted against temperature kT for the set of parameters as
in Fig.2.
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FIG. 5: The quantum (continuous lines) transmission coefficient κ(t) is plotted against time for different values of damping
constant (a) A = 30, (b) A = 70, (c) A = 90 and compared with classical (dotted lines) ones for the parameters τc = 100,
kT = 1.0, ωb = 1.0, ω0 =

√

2, a = 0.01.
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FIG. 6: The assymptotic quantum transmission coefficient κ(t) is plotted against damping constant A for the parameter values
as in Fig.4.
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FIG. 7: The quantum transmission coefficient is plotted against time for different values of correlation time, τc = 65 (continuous
line), τc = 75 (dotted line), τc = 95 (dashed and dotted line), τc = 110 (dashed line) for other parameters as in Fig.4.
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FIG. 8: The quantum (continuous line) transmission coefficient is plotted against time and compared with classical (dotted
line) one for the set of parameters A = 150, τc = 100, kT = 1.0, ωb = 1.0, ω0 =

√

2, a = 0.01 (in the caging regime).
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FIG. 9: Same as in Fig.7 but for kT = 0.0 (dotted line), and kT = 25.0 (continuous line).
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FIG. 10: Same as in Fig.7 but for A = 120 (continuous line) and A = 170 (dotted line).
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