Picard groups of the moduli spaces of semistable sheaves I

USHA N BHOSLE
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
E-mail: usha@math.tifr.res.in

MS received 9 January 2003; revised 12 March 2004

Abstract

We compute the Picard group of the moduli space U^{\prime} of semistable vector bundles of rank n and degree d on an irreducible nodal curve Y and show that U^{\prime} is locally factorial. We determine the canonical line bundles of U^{\prime} and U_{L}^{\prime}, the subvariety consisting of vector bundles with a fixed determinant. For rank 2, we compute the Picard group of other strata in the compactification of U^{\prime}.

Keywords. Picard groups; semistable sheaves; nodal curve.

1. Introduction

In our previous paper [3] we proved that the Picard group of the moduli space $U_{L}^{\prime}(n, d)$ of semistable vector bundles of rank n with fixed determinant L (L being a line bundle of degree d) on an irreducible projective nodal curve Y of geometric genus $g \geq 2$ is isomorphic to \mathbb{Z} (except possibly in the case $g=2, n=2, d$ even). We used this to show that $U_{L}^{\prime}(n, d)$ is locally factorial. Interestingly, the results for irreducible nodal curves are very similar to those for smooth curves. However, the proofs are different and much more difficult. Unlike in the smooth case, the moduli space of vector bundles on a nodal curve is not projective. Moreover its complement in the compactification U (moduli of torsion-free sheaves) has codimension 1. The computation of Picard group needs codimension of the non-semistable and non-stable strata (see [6,11] for smooth case). Since HN-filtrations of vector bundles contain non-locally free sheaves and tensor products of stable bundles are not semistable (on Y), in general it is impossible to determine this codimension directly on Y. We did it by using parabolic bundles on the normalization X of Y and hence had to assume $g \geq 2$ and exclude the case $g=n=d=2$.

In this paper, we do a detailed analysis for rank 2 and extend these results to nodal curves of arithmetic genus $g_{Y} \geq 0$ (rank 2). Combining this with results of [3], we have the following theorem.

Theorem 1. Let Y be an irreducible reduced curve with only ordinary nodes as singularities. Assume that for $n \geq 3$, the geometric genus $g \geq 2$. Then
(1) $\operatorname{Pic} U_{L}^{\prime}(n, d) \approx \operatorname{Pic} U_{L}^{\prime s}(n, d) \approx \mathbb{Z}$,
(2) U_{L}^{\prime} is locally factorial.

We also show that the dualising sheaf ω_{L} of $U_{L}^{\prime}(n, d)$ is isomorphic to the line bundle $-2 \delta \mathbb{L}$, where $\delta=\operatorname{gcd}(n, d)$ and \mathbb{L} is the ample generator of Pic $U_{L}^{\prime}(n, d)$ (Theorem 4).

We then compute the Picard group of the moduli space $U^{\prime}(n, d)\left(\right.$ resp. $\left.U^{\prime s}(n, d)\right)$ of semistable (resp. stable) vector bundles of rank n and degree d on Y. Let J denote the generalised Jacobian of degree d on Y.

Theorem (Theorem 3(A)). Let the assumptions be above.
(a) Pic $U^{\prime s} \approx \operatorname{Pic} J \oplus \mathbb{Z}$,
(b) Pic $U^{\prime} \approx \operatorname{Pic} J \oplus \mathbb{Z}$,
(c) U^{\prime} is locally factorial.

This completes the extension of results of [6] to nodal curves.
Let $U=U(n, d)$ denote the moduli space of torsion-free sheaves of rank n and degree d on Y. If Y has only a single ordinary node as singularity, then the variety $U(2, d)$ has a stratification, $U=U^{\prime} \cup U_{1} \cup U_{0}$, a disjoint union. Points of U_{1} correspond to torsion-free sheaves F of rank 2 with $F_{y} \approx \mathcal{O}_{y} \oplus m_{y}$. Let L be a rank 1 torsion-free sheaf which is not locally free. Let $U_{1, L}(2, d)$ be the subscheme of U_{1} corresponding to torsion-free sheaves of rank 2 with determinant isomorphic to L.

Theorem (Theorem 2, Theorem 3(B)). Let $g_{Y} \geq 2$; if $g_{Y}=2$, assume that d is odd for (b), (c), (d). Then
(a) $\operatorname{Pic} U_{1, L}(2, d) \approx \mathbb{Z}$,
(b) Pic $U_{1}^{s}(2, d) \approx \operatorname{Pic} J_{X} \oplus \mathbb{Z}$,
(c) Pic $U_{1}(2, d) \approx \operatorname{Pic} J_{X} \oplus \mathbb{Z}$,
(d) $U_{1}(2, d)$ is locally factorial.

In a subsequent paper, we study the Picard group of a seminormal variety. As an application we compute the Picard groups of the compactified Jacobian and some subvarieties of $U(2, d)$.

Notation. Let Y denote an irreducible reduced projective curve with ordinary nodes $y_{j}, j=1, \ldots, m$ as only singularities. Let g be the geometric genus and g_{Y} the arithmetic genus of Y. For $y \in Y$, let $\left(\mathcal{O}_{y}, m_{y}\right)$ be the local ring at y. A torsion-free sheaf N on Y is locally free on the subset U of non-singular points of Y. The rank $r(N)$ of N is the rank of the locally free sheaf $\left.N\right|_{U}$. The degree $d(N)$ of N is defined by $d(N)=\chi(N)$ $+r(N)(g-1)$, where χ denotes the Euler characteristic. Let N^{*} denote the torsion-free sheaf $\operatorname{Hom}(N, \mathcal{O})$.

Let J and \bar{J} be respectively the generalised Jacobian and the compactified Jacobian of Y (of a fixed degree) and \mathcal{P} the Poincaré bundle. Let p_{J} denote the projection to \bar{J}. Let $U=$ $U(n, d)$ be the moduli space of semistable torsion-free sheaves of rank n and degree d on Y. Let $\delta=g c d(n, d)$. Let $U^{\prime} \subset U$ be the open subvariety corresponding to vector bundles (i.e. S-equivalence classes of E such that $\operatorname{gr} E$ is a vector bundle). Fix a rank 1 torsionfree sheaf L of degree d on Y. Let U_{L}^{\prime} (resp. $U_{1, L}$) be the subscheme of U corresponding to vector bundles (resp. torsion-free sheaves) with determinant isomorphic to L and U_{L} its closure in U. Let $U^{\prime s} \subset U^{\prime}, U_{L}^{\prime s} \subset U_{L}^{\prime}$ etc. be the open subvarieties corresponding to stable torsion-free sheaves. The variety U is seminormal ([13], Theorem 4.2), U^{\prime} and U_{L}^{\prime} are normal being GIT-quotients of non-singular varieties [10]. For $m=1, U$ has a filtration $U \supset W_{n-1} \supset \cdots \supset W_{0}$, with W_{i} seminormal closed subvarieties [13]. W_{i-1} is the non-normal locus of $W_{i}, i=1, \ldots, n$ and W_{0} is normal. Let $U^{\prime}=U-W_{1}, U_{i}=$ $W_{i}-W_{i-1}(i=1, \ldots, n-1), U_{0}=W_{0}$.

2. Torsion-free sheaves of rank 2

In this section we study $U_{L}(2, d)$ and $U(2, d)$. Throughout the section E will denote a torsion-free sheaf of rank 2 and degree d on Y.

Lemma 2.1. Let E be a torsion-free sheaf with $\wedge^{2} E=L$ torsion-free. Let N_{1} be a rank 1 subsheaf of E such that the quotient $N_{2}=E / N_{1}$ is torsion-free.
(1) If N_{1} or L is locally free, then $N_{2} \approx N_{1}^{*} \otimes L$,
(2) If N_{2} is locally free, then $N_{1} \otimes N_{2} \approx L$.

Proof. The canonical alternating form $E \times E \rightarrow L$ induces an alternating form $N_{1} \times N_{1} \rightarrow$ L. We claim that this form is zero. This is clear at $y \in Y$ such that the stalk $\left(N_{1}\right)_{y}$ is free. If $\left(N_{1}\right)_{y} \not \nsim \mathcal{O}_{y}$, then $\left(N_{1}\right)_{y}=m_{y}$, also $L_{y}=\mathcal{O}_{y}$ or m_{y} ([12], Prop. 2, p. 164). Let u, v be the two generators of $\left(N_{1}\right)_{y}$. Since any \mathcal{O}_{y}-linear map from m_{y} to m_{y} (or \mathcal{O}_{y}) is given by the multiplication by $a \in \overline{\mathcal{O}}_{y}$ (= normalisation of \mathcal{O}_{y}) ([12], p. 169), the map $\left(N_{1}\right)_{y} \rightarrow L_{y}$ defined by $w \mapsto w \wedge u$ is given by $w \wedge u=w a, a \in \overline{\mathcal{O}}_{y}$. In particular, $0=u \wedge u=u a$. Since $\overline{\mathcal{O}}_{y}$ is a domain, this implies $a=0$. Thus $v \wedge u=0$ and hence $\left(N_{1}\right)_{y} \wedge$ $\left(N_{1}\right)_{y}=0$.

Define an \mathcal{O}-bilinear map $b: N_{1} \times N_{2} \rightarrow L$ by $b\left(n_{1}, n_{2}\right)=n_{1} \wedge n_{3}$, where n_{3} is a lift of n_{2} in E. This is well-defined as any two lifts n_{3}, n_{3}^{\prime} differ by an element of N_{1} and $N_{1} \wedge N_{1}=0$ as seen above. The bilinear map b induces an injective sheaf homomorphism $N_{2} \rightarrow \operatorname{Hom}\left(N_{1}, L\right)$ which is an isomorphism outside the singular set of Y. If N_{1} or L is locally free, then $d\left(\operatorname{Hom}\left(N_{1}, L\right)\right)=d(L)-d\left(N_{1}\right)([4]$, Lemma 2.5(B)) and hence $d\left(\operatorname{Hom}\left(N_{1}, L\right)\right)=d\left(N_{2}\right)$. It follows that $N_{2} \approx \operatorname{Hom}\left(N_{1}, L\right)$.

If N_{2} is locally free, the bilinear map b gives an injective homomorphism of torsionfree sheaves $N_{1} \otimes N_{2} \rightarrow L$. Since $d\left(N_{1} \otimes N_{2}\right)=d\left(N_{1}\right)+d\left(N_{2}\right)=d(L)$, this is an isomorphism. This proves the lemma.

We remark that if both N_{1}, N_{2} are not locally free then $N_{1} \otimes N_{2}$ has a torsion and b gives a homomorphism $N_{1} \otimes N_{2} /$ torsion $\rightarrow L$ which is not an isomorphism.

Lemma 2.2. Assume that Y has only one node y. Let $\pi: X \rightarrow Y$ be the normalisation map and $\pi^{-1} y=\{x, z\}$. Let N_{1}, N_{2} be line bundles of degree -1 on X.
(a) Given a line bundle L on Y with $\pi^{*} L=N_{1} \otimes N_{2}(x+z)$, there exists a vector bundle E of rank 2 and determinant L on Y such that E is S-equivalent to $\pi_{*} N_{1} \oplus \pi_{*} N_{2}$.
(b) There exists a torsion-free sheaf E of rank 2 on Y such that (1) $E_{y} \approx \mathcal{O}_{y} \oplus m_{y}$, (2) determinant of E is isomorphic to $\pi_{*}\left(N_{1} \otimes N_{2}(z)\right)$ and (3) E is S-equivalent to $\pi_{*} N_{1} \oplus \pi_{*} N_{2}$.

Proof.
(a) We shall construct a generalised parabolic bundle $\left(E^{\prime}, F_{1}\left(E^{\prime}\right)\right)$ on X which gives the required vector bundle E on Y. Take $E^{\prime}=L_{1} \oplus L_{2}, L_{1}=N_{1}(x+z), L_{2}=N_{2}$. Let e_{1}, e_{2} be basis elements of $\left(L_{1}\right)_{x},\left(L_{1}\right)_{z}$ respectively. Let f_{1}, f_{2} be basis elements of $\left(L_{2}\right)_{x},\left(L_{2}\right)_{z}$ respectively. Define $F_{1}\left(E^{\prime}\right)=\left(e_{2}-f_{1}, c e_{1}+f_{2}\right), c$ being a non-zero scalar. Since the projections p_{1}, p_{2} from $F_{1}\left(E^{\prime}\right)$ to $E_{x}^{\prime}, E_{z}^{\prime}$ are both isomorphisms, E is a vector bundle [1]. Choose c such that L corresponds to the generalised parabolic line bundle $\left(\pi^{*} L,(c, 1)\right),(c, 1) \in \mathbf{P}^{1}[1]$. One has $\operatorname{det}\left(E^{\prime}, F_{1}\left(E^{\prime}\right)\right)=\left(\operatorname{det} E^{\prime},(c, 1)\right)=$
$\left(\pi^{*} L,(c, 1)\right)$. Hence det $E=L$. Since $F_{1}\left(L_{1}\right)=0, \pi_{*} L_{1}(-x-z)$ is a sub-bundle of E. The quotient is $\pi_{*} L_{2}$ as the projection from $F_{1}\left(E^{\prime}\right)$ to $\left(L_{2}\right)_{x} \oplus\left(L_{2}\right)_{z}$ is onto. Thus E is S-equivalent to $\pi_{*}\left(N_{1} \oplus N_{2}\right)$.
(b) Take E^{\prime} as in the above proof, define $F_{1}\left(E^{\prime}\right)=\left(e_{1}+f_{2}, f_{1}\right)$. Since p_{1} is an isomorphism and p_{2} has rank 1, $E_{y} \approx \mathcal{O}_{y} \oplus m_{y}$. Since $\left(e_{1}+f_{2}\right) \wedge f_{1}=0 e_{1} \wedge e_{2}+f_{1} \wedge f_{2}+\cdots$, one has $\operatorname{det}\left(E^{\prime}, F_{1}\left(E^{\prime}\right)\right)=\left(L_{1} \otimes L_{2},(0,1)\right)$. Hence $\operatorname{det}(E)=\pi_{*}\left(L_{1} \otimes L_{2}(-x)\right)=$ $\pi_{*}\left(N_{1} \otimes N_{2}(z)\right)$. The final assertion follows as in the above proof.

PROPOSITION 2.3

Let $g_{Y}=1$. Then one has the following:
(1) $U_{L}(2,1)=\{$ a point $\}$ for $L \in \bar{J}$, $U(2,1) \approx \bar{J} \approx Y, U^{\prime}(2,1) \approx J \approx Y-\{$ node $\}$.
(2) $U_{\mathcal{O}}(2,0) \approx \bar{J} / i \approx \mathbb{P}^{1}$, where $i: \bar{J} \rightarrow \bar{J}$ is defined by $N \mapsto N^{*}$, $U_{L}(2,0) \approx \mathbb{P}^{1}$ and $U_{L}^{\prime}(2,0) \approx \mathbb{A}^{1}$, for $L \in J$.

Proof.
(1) For $y \in Y$, let I_{y} denote the ideal sheaf of y. The dual I_{y}^{*} is a rank 1 torsion-free sheaf of degree 1 [5]. It is well-known that $y \mapsto I_{y}^{*}$ gives an isomorphism $Y \rightarrow \bar{J}^{1}$, where \bar{J}^{1} is the compactified Jacobian of degree 1 torsion-free sheaves.

Let E be a stable rank 2 torsion-free sheaf of degree 1 on Y. Then $h^{1}(E)=0$ as E is stable and hence $h^{0}(E)=1$. Any non-zero section $s \in H^{0}(E)$ must be everywhere non-vanishing, otherwise it will generate a rank 1 torsion-free subsheaf of degree ≥ 1 contradicting the stability of E. Hence $s \in H^{0}(E)$ generates a unique trivial line sub-bundle \mathcal{O} of E. The quotient E / \mathcal{O} must be torsion-free, if not then the kernel of $E \rightarrow(E / \mathcal{O}) /$ torsion will contradict the stability of E. Thus we have a morphism $h: U(2,1) \rightarrow \bar{J}^{1}$ given by $E \mapsto E / \mathcal{O}$. Conversely, given $L \in \bar{J}^{1}, \operatorname{Ext}^{1}(L, \mathcal{O})=H^{1}$ (L^{*}) ([4], Proof of Lemma 2.5(B)). Since $h^{0}\left(L^{*}\right)=0, h^{1}\left(L^{*}\right)=1$, any non-zero element in $\operatorname{Ext}^{1}(L, \mathcal{O})$ determines a unique (up to isomorphism) torsion-free rank 2 sheaf E of degree 1 . It is easy to check that E is stable. This gives the inverse of h. Note that h is in fact the determinant map.
(2) We first prove that W_{0} consists of a single point. Any element in W_{0} has stalk at the node y isomorphic to $m_{y} \oplus m_{y}$. By [12], Proposition 10, p. 174, such an element is the direct image of a vector bundle E_{0} on the desingularisation \mathbb{P}^{1}. Since $\pi_{*} E_{0}$ is semistable, so is E_{0}. Hence $E_{0}=\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. By Lemma 2.2(a), for every line bundle L there exists a vector bundle E with determinant L such that E is S-equivalent to $\pi_{*}(\mathcal{O}(-1)) \oplus \pi_{*}(\mathcal{O}(-1))$. Thus for any $L \in J, U_{L}(2,0)$ contains the point $\pi_{*} E_{0}$. One has $U_{L} \cap W_{1}=W_{0}[1]$. Thus every element of $U_{L}(2,0)$ is S-equivalent to a vector bundle with determinant L. It follows that $U_{L} \approx U_{\mathcal{O}}$.

We now prove that $U_{\mathcal{O}}(2,0) \approx \bar{J} / i \approx \mathbb{P}^{L}$. Note first that the involution i keeps the unique element $\pi_{*} \mathcal{O}(-1)$ of $\bar{J}-J$ invariant and under the isomorphism $Y \approx \bar{J}$, the map $\bar{J} \rightarrow \bar{J} / i$ is the double cover $Y \rightarrow \mathbb{P}^{1}$ ramified at the image of the node. Let E be a semistable vector bundle of rank 2 with trivial determinant. Let E_{1} be the vector bundle of degree 2 obtained by tensoring E with a line bundle of degree 1 . Since E_{1}
is semistable, with slope $>0, h^{1}\left(E_{1}\right)=0, h^{0}\left(E_{1}\right)=2$. Since the evaluation map $Y \times H^{0}\left(E_{1}\right) \rightarrow E_{1}$ cannot be an isomorphism, there is a section of E_{1} vanishing at a point and hence generating a (torsion-free) subsheaf N_{1} of rank 1 , degree ≥ 1. Since E_{1} is semistable, one must have $d\left(N_{1}\right)=1$. Hence E has a rank 1 subsheaf N of degree 0 . The quotient E / N is torsion-free in view of the semistability of E. By Lemma 2.1(1), $E / N \approx N^{*}$. Thus E is S-equivalent to $N \oplus N^{*}$. Using the Poincaré bundle and the properties of moduli spaces, one sees that this proves the proposition.

Lemma 2.4. For $g_{Y} \geq 2$, d even and $L \in J$, one has

$$
\operatorname{codim}_{U_{L}^{\prime}}\left(U_{L}^{\prime}-U_{L}^{\prime s}\right)=2 g_{Y}-3
$$

Proof. A rank 2 vector bundle E which is semistable but not stable contains a torsionfree subsheaf N_{1} with a torsion-free quotient $N_{2} \approx \operatorname{Hom}\left(N_{1}, L\right)=N_{1}^{*} \otimes L$, where L is determinant of E (Lemma 2.1(1)). Thus E is S-equivalent to $N_{1} \oplus\left(N_{1}^{*} \otimes L\right)$, hence dim $U_{L}^{\prime}-U_{L}^{\prime S}=\operatorname{dim} J=g_{Y}$ and $\operatorname{codim}_{U_{L}^{\prime}} U_{L}^{\prime}-U_{L}^{\prime s}=2 g_{Y}-3 \geq 3$ if $g_{Y} \geq 3$.

Lemma 2.5.

(1) $\operatorname{Codim}_{U_{L}}\left(U_{L}-U_{L}^{\prime}\right) \geq 3$ for $g_{Y} \geq 3$.
(2) For $g_{Y}=2, \operatorname{codim}_{U_{L}}\left(U_{L}-U_{L}^{\prime}\right)=3$ ifd is odd, $U_{L}=U_{L}^{\prime}=\mathbb{P}^{3}$ ifd is even.

Proof.

(1) The points of $U_{L}-U_{L}^{\prime}$ correspond to torsion-free sheaves which are direct images of semistable vector bundles with fixed determinant on partial normalisations of Y. Hence $U_{L}-U_{L}^{\prime}$ is a finite union of irreducible components each of dimension $3\left(g_{Y}-1\right)-3$ $=3 g_{Y}-6$ for $g_{Y} \geq 3$. Thus $\operatorname{codim}_{U_{L}^{\prime}}\left(U_{L}-U_{L}^{\prime}\right) \geq 3$.
(2) For $g_{Y}=2$ the partial normalisations are of arithmetic genus 1. It follows from Proposition 2.3(1) that for d odd, $U_{L}-U_{L}^{\prime}$ consists of one or two points according as $g=1$ or $g=0$. For d even, $U_{L}=U_{L}^{\prime} \approx \mathbb{P}^{3}$ ([2], Lemmas 3.3, 3.4, Corollary 3.5). We remark that Proposition 2.3(2) implies that the subset $U_{0, L}$ of non-locally free sheaves in U_{L} is isomorphic to \mathbb{P}^{1} if $g=1$ and it consists of two smooth rational curves intersecting in a point if $g=0$. The intersection point is the direct image of the unique semistable bundle of degree $d-2$ on the desingularisation \mathbb{P}^{1}. Note also that $U_{0, L}=U_{L}-U_{L}^{S}$ in this case.

Lemma 2.6. $\operatorname{Codim}_{U^{\prime}} U^{\prime}-U^{\prime s} \geq 3$ for $g_{Y} \geq 3$ (d even).
Proof. The surjective determinant map $U^{\prime} \rightarrow J$ is a fibration with fibres isomorphic to U_{L}^{\prime}, L a fixed line bundle of degree d. Hence the lemma follows from Lemma 2.4.

Remark 2.7.

(1) Let $g_{Y}=1$. Then Pic $U(2,1) \approx G_{m} \oplus \mathbb{Z}$. For $L \in J$, Pic $U_{L}(2,0) \approx \mathbb{Z}$, and Pic $U_{L}^{\prime}(2,0)$, Pic $U^{\prime}(2,0)$, Pic $U^{\prime}(2,1)$ are trivial.
(2) If $g_{Y}=2$, then Pic $U_{L}^{\prime}(2, d) \approx \mathbb{Z} \approx \operatorname{Pic} U_{L}^{\prime s}(2, d)$ for all d.

Proof. Part (1) follows from Proposition 2.3. Part (2) is proved in [3], §2.4.

PROPOSITION 2.8

For $g_{Y} \geq 3$, one has:
(1) $U_{L}^{\prime s}(2, d) \approx \mathbb{Z}$,
(2) $U_{L}^{\prime}(2, d) \approx \mathbb{Z}$.

Proof. Let $p: \tilde{U}_{L} \rightarrow U_{L}$ be a (finite) normalisation. Since U_{L}^{\prime} is normal, p is an isomorphism over U_{L}^{\prime} and p gives a finite map $\tilde{U}_{L}-p^{-1} U_{L}^{\prime} \rightarrow U_{L}-U_{L}^{\prime}$. Therefore codim $\tilde{U}_{L}-p^{-1} U_{L}^{\prime}=\operatorname{codim} U_{L}-U_{L}^{\prime} \geq 3$ by Lemma 2.5. Since \tilde{U}_{L} is normal, this implies that $\operatorname{Pic} \tilde{U}_{L} \hookrightarrow \operatorname{Pic}\left(p^{-1} U_{L}^{\prime}\right) \approx \operatorname{Pic} U_{L}^{\prime}$. Since U_{L} is projective, so is \tilde{U}_{L} and hence $\operatorname{rank}(\operatorname{Pic}$ $\left.\tilde{U}_{L}\right) \geq 1$. It follows that $\operatorname{rank}\left(\operatorname{Pic} U_{L}^{\prime}\right) \geq 1$. Since U_{L}^{\prime} is normal and by Lemma 2.4, $\operatorname{codim}\left(U_{L}^{\prime}-U_{L}^{\prime S}\right) \geq 3$ we have Pic $U_{L}^{\prime} \hookrightarrow$ Pic $U_{L}^{\prime S}$. Thus $\operatorname{rank}\left(\operatorname{Pic} U_{L}^{\prime S}\right) \geq 1$. By [3], Proposition 2.3, one has Pic $U_{L}^{\prime s} \approx \mathbb{Z}$ or $\mathbb{Z} / m \mathbb{Z}, m \in \mathbb{Z}$. It follows that Pic $U_{L}^{\prime s} \approx \mathbb{Z}$ and hence Pic $U_{L}^{\prime} \approx \mathbb{Z}$.

Remark 2.9. Putting together the results of [3] and Proposition 2.8, we have Theorem 1.

2.10 Varieties U_{1} and $U_{1, L}$

Henceforth we assume that there is only one node y. We first remark that if E is a rank 2 vector bundle then E cannot be S-equivalent to a direct sum of a line bundle and a non-locally free torsion-free rank 1 sheaf. For, then, one has an exact sequence $0 \rightarrow$ $L_{1} \rightarrow E \rightarrow L_{2} \rightarrow 0$ with one of the $\left(L_{1}\right)_{y}$ or $\left(L_{2}\right)_{y}$ isomorphic to \mathcal{O}_{y} and the other isomorphic to m_{y}. Since $\operatorname{Ext}^{1}\left(m_{y}, \mathcal{O}_{y}\right)=0=\operatorname{Ext}^{1}\left(\mathcal{O}_{y}, m_{y}\right)$, this means $E_{y} \approx \mathcal{O}_{y} \oplus m_{y}$, i.e., E is not locally free. Similarly one sees that if $E_{y} \approx \mathcal{O}_{y} \oplus m_{y}$, then E cannot be S equivalent to a direct sum of two locally free sheaves. In particular E with $E y \approx \mathcal{O}_{y} \oplus \mathcal{O}_{y}$ cannot be S-equivalent to E^{\prime} with E_{y}^{\prime} not free unless $[E]=\left[E^{\prime}\right] \in W_{0}$. Hence taking determinant gives a well-defined morphism det: $U^{\prime} \cup U_{1} \rightarrow \bar{J}_{Y}$ with $\operatorname{det}\left(U^{\prime}\right)=J_{Y}$, $\operatorname{det}\left(U_{1}\right)=\bar{J}_{Y}-J_{Y} \approx J_{X}$. This morphism induces a morphism of normalisations det: $P^{\prime} \cup P_{1} \rightarrow \tilde{J}_{Y}, \tilde{J}_{Y}$ being the desingularisation of \bar{J}_{Y} and P^{\prime}, P_{1} are respectively the pull backs of U^{\prime}, U_{1} in the normalisation.

Lemma 2.11. Let $L \in \bar{J}_{Y}-J_{Y}$ with degree of L even.
(1) $\operatorname{dim}\left(U_{1, L}-U_{1, L}^{s}\right)=g_{Y}$, for all L,
(2) $\operatorname{codim} U_{1, L}-U_{1, L}^{s} \geq 3$ for $g \geq 3$.

Proof.
(1) From $\S 2.10$, one sees that $E \in U_{1, L}-U_{1, L}^{s}$ is S-equivalent to $N_{1} \oplus N_{2}$ with one of N_{1}, N_{2} locally free and the other torsion-free but not locally free. Also, one of them is a subsheaf and the other is a quotient sheaf. By Lemma 2.1, $E \sim M \oplus\left(M^{*} \otimes L\right), M \in J_{Y}$. It follows that $\operatorname{dim}\left(U_{1, L}-U_{1, L}^{s}\right)=g_{Y}$. In fact, one has $U_{1, L}-U_{1, L}^{s} \approx J_{Y}$.
(2) One has $\operatorname{dim} U_{1, L}=3 g_{Y}-3$. Hence $\operatorname{codim}\left(U_{1, L}-U_{1, L}^{S}\right)=2 g_{Y}-3 \geq 3$ for g_{Y} ≥ 3.

Lemma 2.12. For $L \in \bar{J}_{Y}-J_{Y}$ and $g_{Y} \geq 2$, one has $\operatorname{codim}_{U_{L}}\left(U_{L}-U_{1, L}\right) \geq 2$.
Proof. The subset $U_{L}-U_{1, L}$ consists of torsion-free (semistable) rank 2 sheaves $E \approx$ $\pi_{*} E_{0}, E_{0}$ semistable vector bundle of rank 2 on X with $\operatorname{det} E_{0} \approx\left(\pi^{*} L /\right.$ torsion $)(-x)$ or $\left(\pi^{*} L /\right.$ torsion $)(-z)[1]$. Hence $\operatorname{dim}\left(U_{L}-U_{1, L}\right)=3 g_{X}-3$ if $g_{X} \geq 2, \operatorname{dim}\left(U_{L}-U_{1, L}\right)=0$ if $g_{X}=1$ and d is odd, $\operatorname{dim}\left(U_{L}-U_{1, L}\right)=1$ if $g_{X}=1$ and d is even. Therefore, one has for $g_{Y} \geq 3, \operatorname{dim} U_{L}-U_{1, L}=3 g_{Y}-6$ and $\operatorname{codim}_{U_{L}}\left(U_{L}-U_{1, L}\right)=\left(3 g_{Y}-3\right)-\left(3 g_{Y}-6\right)=3$. For $g_{Y}=2, \operatorname{codim}_{U_{L}}\left(U_{L}-U_{1, L}\right)=3$ if d is odd and $\operatorname{codim}_{U_{L}}\left(U_{L}-U_{1, L}\right)=2$ if d is even.

Lemma 2.13.
(1) U_{1}^{s} is non-singular, U_{1} is normal.
(2) $U_{1, L}$ is normal, $U_{1, L}^{s}$ is non-singular.
(3) W_{0}^{s} is non-singular, W_{0} is normal.

Proof. The moduli space U is the geometric invariant theoretic quotient of $R^{s s}$ by a projective linear group. Let \mathcal{E} be the universal quotient sheaf on $R^{s s} \times Y$. Let $R_{1}=\{t \in$ $\left.R^{s s} \mid\left(\mathcal{E}_{t}\right)_{y} \approx \mathcal{O}_{y} \oplus m_{y}\right\}, R_{0}=\left\{t \in R^{s s} \mid\left(\mathcal{E}_{t}\right)_{y} \approx m_{y} \oplus m_{y}\right\}, R_{1, L}=\left\{t \in R_{1} \mid \operatorname{det} \mathcal{E}_{t}=L\right\}$. At any point $p \in R^{s s}$, the analytic local model for $R_{1} \hookrightarrow R^{s s}$ at p is $\operatorname{Spec} A /(u, v) \hookrightarrow$ Spec A where $A=\mathbb{C}[u, v] /(u v)$ ([9], Theorem 2(2), p. 576). Since the spectrum of a point is a regular scheme, R_{1} is regular. Since U_{1}^{s} is a geometric quotient of R_{1}^{s}, it follows that U_{1}^{s} is a regular scheme. Since $R_{1}, \bar{J}_{Y}-J_{Y}$ are regular and $R_{1, L}$ are all isomorphic, $R_{1, L}$ is regular. Hence the assertion (2) follows. We remark here that $R_{1}, R_{1, L}$ are not saturated for S-equivalence; U_{1} and $U_{1, L}$ are G.I.T. quotients of open subsets of R_{1} and $R_{1, L}$ consisting of sheaves not S-equivalent to elements in R_{0} and hence are normal. The assertion (3) follows as (2) using [9], Theorem 2(3).

PROPOSITION 2.14

Let Y be an irreducible projective curve (with one ordinary node), $g_{Y} \geq 2$ and $n=2$. Then

$$
\text { Pic } U_{1, L}^{s} \approx \mathbb{Z} \quad \text { or } \quad \mathbb{Z} / m \mathbb{Z}, m \in \mathbb{Z}
$$

Proof. The idea of the proof is the same as that of [6] or [3], Proposition 2.3. Hence we only indicate the necessary modifications. We may assume $d \gg 0$. Then $R^{1} p_{J *} \mathcal{P}^{*}$ is a vector bundle on \bar{J}_{Y}. Let $\mathbb{P}=\mathbb{P}\left(R^{1} p_{J_{*}}\left(\mathbb{P}^{*}\right)\right), \mathbb{P}_{L}=$ fibre of \mathbb{P} over $L \in \bar{J}_{Y}$. One has a universal family \mathcal{E} of rank 2 torsion-free sheaves E of degree d on $\mathbb{P} \times Y$. Let $\mathbb{P}^{s}, \mathbb{P}_{L}^{s}$ be the subvarieties corresponding to stable sheaves. Since $\operatorname{Ext}^{1}\left(\mathcal{O}_{y}, \mathcal{O}_{y}\right)=0=\operatorname{Ext}^{1}\left(m_{y}, \mathcal{O}_{y}\right)$, one has $E_{y} \approx \mathcal{O}_{y} \oplus \mathcal{O}_{y}$ or $\mathcal{O}_{y} \oplus m_{y}$. Hence by the universal property of moduli spaces, one has morphisms $f_{\epsilon}: \mathbb{P}^{s} \rightarrow\left(U-W_{o}\right)^{s}$ and $f_{\epsilon, L}: \mathbb{P}_{L}^{s} \rightarrow U_{L}^{\prime s}\left(\right.$ or $\left.U_{1, L}^{s}\right)$ if $L \in J_{Y}$ (or $L \in \bar{J}_{Y}-J_{Y}$). By [10], Chapter 7, Lemma 5.2', any semistable torsion-free sheaf E of $d \gg 0$ is generated by global sections. If $E_{y} \approx \mathcal{O}_{y} \oplus \mathcal{O}_{y}$ or $\mathcal{O}_{y} \oplus m_{y}$, then by [1], Lemma 2.7, one has an exact sequence $0 \rightarrow \mathcal{O}_{Y} \rightarrow E \rightarrow G \rightarrow 0$ with G torsion-free. Also $G \approx \operatorname{det} E$ by Lemma 2.1(1). Hence f_{ϵ} and $f_{\epsilon, L}$ are surjective. One shows that the induced map $f_{\epsilon, L}^{*}$ on Picard groups is injective. This was checked in [3] for $L \in J_{Y}$, the same proof goes through for $L \in \bar{J}_{y}-J_{Y}$ as $R_{1, L}^{s}$ and $U_{1, L}^{s}$ are non-singular (Lemma 2.13(2)). Let
$\mathbb{P}_{\bar{J}-J}=\mathbb{P}\left(R^{1} p_{J_{*}}\left(\left.\mathcal{P}^{*}\right|_{J_{-J}}\right)\right)$ and $f_{1}: \mathbb{P}_{\bar{J}-J}^{s} \rightarrow U_{1}^{s}$. The same argument gives that f_{1}^{*} is injective and one has exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Pic} U_{1}^{s} \rightarrow \operatorname{Pic} \mathbb{P}_{J-J}^{s} \rightarrow \mathbb{Z} /((n-1) d / a) \mathbb{Z} \rightarrow 0, a=\operatorname{gcd}(n, d), \\
& 0 \rightarrow \operatorname{Pic} U_{1, L}^{s} \rightarrow \operatorname{Pic} \mathbb{P}_{L}^{s} \rightarrow \mathbb{Z} /((n-1) d / a) \mathbb{Z} \rightarrow 0 .
\end{aligned}
$$

Since \mathbb{P}_{L}^{s} is an open subset of a projective space, Pic \mathbb{P}_{L}^{s} is isomorphic to \mathbb{Z} or $\mathbb{Z} / m \mathbb{Z}$ and the same as true for Pic $U_{1, L}^{s}$.

We remark that the injectivity of f_{ϵ}^{*} does not seem to follow similarly. In the notations of [6], Corollary 7.4, one certainly gets a codimension one subvariety $\Gamma_{0}-\Gamma_{0}^{\prime}$ of Γ_{0}. Since $\left(U-W_{0}\right)^{s}$ is not necessarily non-singular it is not clear that $\Gamma_{0}-\Gamma_{0}^{\prime}$ is a Cartier divisor, i.e., its ideal sheaf is locally free. $U-W_{0}$ is seminormal, but not normal in general, in particular it is not locally factorial.

PROPOSITION 2.15

Let the notations be as in Proposition 2.14. Then for $g_{Y} \geq 3, n=2$ and $g_{Y}=2, n=2$, d odd, one has

$$
\operatorname{Pic} U_{1, L} \approx \operatorname{Pic} U_{1, L}^{s} \approx \mathbb{Z}
$$

Proof. For d odd, $U_{1, L}=U_{1, L}^{s}$. Since $U_{1, L}$ is normal and $\operatorname{codim}\left(U_{1, L}-U_{1, L}^{s}\right) \geq 3$ (Lemma 2.11), Pic $U_{1, L} \hookrightarrow \operatorname{Pic} U_{1, L}^{s}$ for d even, $g_{Y} \geq 3$ as in the proof of Proposition 2.8. Going to a finite normalisation we see that rank (Pic $\left.U_{1, L}\right) \geq 1$. We need Lemma 2.12 for this. The result now follows from Proposition 2.14.

Assume that $g_{Y}=2, g_{X}=1, n=2, d=0$. Let M be the moduli space of α-semistable GPBs ($E, F_{1}(E)$) of rank 2, degree 0 on a smooth elliptic curve $X, 0<\alpha<1, \alpha$ being close to 1 [1]. Let M_{L} be the closed subscheme of M corresponding to E with determinant $L, L \in J_{X}$. Let $p_{1}: F_{1}(E) \rightarrow E_{x}, p_{2}: F_{1}(E) \rightarrow E_{z}$ be the projections. Define $D_{L}=\left\{\left(E, F_{1}(E)\right) \in M_{L} \mid p_{2}\right.$ has rank $\left.\leq 1\right\}$ and $D_{1, L}=\left\{\left(E, F_{1}(E)\right) \in D_{L} \mid\right.$ rank $p_{2}=1, p_{1}$ isomorphism $\} . D_{1, L}$ is an open subscheme of D_{L} and D_{L} is a closed subscheme of codimension 1 in D. There is a surjective birational morphism $f: M \rightarrow U$ such that D_{L} maps onto $U_{L^{\prime}}$ inducing an isomorphism $D_{1, L} \approx U_{1, L^{\prime}}$ where $L^{\prime}=\pi_{*}(L(-z))$. We shall determine $D_{L}, D_{1, L}$ explicitly and use the explicit description to compute Pic $U_{1, L^{\prime}}$. Note that $D_{L} \approx D_{\mathcal{O}}$ for all L.

PROPOSITION 2.17

D_{L} is isomorphic to a \mathbb{P}^{2}-bundle over \mathbb{P}^{1}. Outside $\mathbb{P}^{1}-\{4$ points $\}$, this bundle is of the form $\mathbb{P}(\mathcal{O} \oplus \epsilon), \epsilon$ being a rank 2 vector bundle.

Proof. It is not difficult to check that ($E, F_{1}(E)$) of degree 0 , rank 2 is α-semistable if and only if E is a semistable vector bundle and for any line sub-bundle L of E of degree $0, F_{1}(E) \neq L_{x} \oplus L_{z}$. Moreover, $\left(E, F_{1}(E)\right)$ is α-stable if and only if E is semistable and $F_{1}(E) \cap\left(L_{x} \oplus L_{z}\right)=0$ for any sub-bundle of degree 0 .

Let e_{1}, e_{2} and e_{3}, e_{4} be the bases of E_{x} and E_{z} respectively. The subspace $F_{1}(E)$ defines a point in the Grassmannian Gr of two-dimensional subspaces of $V=E_{x} \oplus E_{z}$. Let $\mathrm{Gr} \subset \mathbb{P}\left(\wedge^{2} V\right)$ be the Plücker embedding, let $\left(X_{1}, Y_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}\right)$ be the Plücker coordinates. Any element in $\wedge^{2} V$ is of the form $X_{1} e_{1} \wedge e_{2}+Y_{1} e_{3} \wedge e_{4}+X_{2} e_{1} \wedge e_{4}+Y_{2} e_{2} \wedge$ $e_{3}+X_{3} e_{3} \wedge e_{1}+Y_{3} e_{2} \wedge e_{4}$. The Grassmannian quadric is given by $X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}=0$. Since E is semistable, one has either (a) $E=M \oplus M^{*}, M \in J_{X}$ or (b) there is a nontrivial extension $0 \rightarrow M_{1} \xrightarrow{g} E \xrightarrow{h} M_{2} \rightarrow 0$ with $M_{1} \approx M_{2} \approx M \in J_{X}, M^{2}=\mathcal{O}$. In either case E is an extension of M_{2} by $M_{1} ; M_{1}, M_{2} \in J_{X}$. Choose $e_{1}, e_{2}, e_{3}, e_{4}$ to be basis elements of $\left(M_{1}\right)_{x},\left(M_{2}\right)_{x},\left(M_{1}\right)_{z},\left(M_{2}\right)_{z}$ respectively. Let $D_{V} \subset G r$ be defined by $Y_{1}=0$.

Case (a). Assume that $E=M_{1} \oplus M_{2}, M_{1}^{*}=M_{2}, M_{1} \neq M_{2}$. The group \mathbb{P} (Aut $E)=\mathbb{P}\left(G_{m} \times G_{m}\right) \approx G_{m}$ acts on $D_{V} \subset \mathbb{P}\left(\wedge^{2} V\right)$ by $t\left(X_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}\right)=$ $\left(X_{1}, X_{2}, Y_{2}, t X_{3}, t^{-1} Y_{3}\right)$. It is easy to see that $D_{V} / / G_{m} \approx \mathbb{P}^{2}$, the quotient map $D_{V} \rightarrow \mathbb{P}^{2}$ being given by $\left(X_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}\right) \mapsto\left(X_{1}, X_{2}, Y_{2}\right)$. Let $D_{1, V}=D_{V}-\left\{\left(X_{1}=0\right)\right.$ $\cup(1,0,0,0,0)\}$. The image of $D_{1, V}$ in \mathbb{P}^{2} is given by $\mathbb{P}^{2}-\left\{\left(X_{1}=0\right) \cup(1,0,0)\right\}$.

Let $\mathcal{P}_{X} \rightarrow J_{X} \times X$ be the Poincaré bundle, $\mathcal{P}_{x}=\left.\mathcal{P}\right|_{J_{X}^{\prime} \times x}, \mathcal{P}_{z}=\left.\mathcal{P}\right|_{J_{X}^{\prime} \times z}, J_{X}^{\prime}=J_{X}-J_{2}$, J_{2} being the group of 2-torsion points of J_{X}. The group $G_{m} \times G_{m}$ acts on the bundles $\mathbb{V}=\left(\mathcal{P}_{x} \oplus \mathcal{P}_{x}^{*}\right) \oplus\left(\mathcal{P}_{z} \oplus \mathcal{P}_{z}^{*}\right)$, and $\wedge^{2} \mathbb{V}$ as above, giving G_{m}-action on $\mathbb{P}\left(\wedge^{2} \mathbb{V}\right)$ and $D_{\mathbb{V}} / / G_{m} \approx \mathbb{P}^{2}$-bundle over J_{X}^{\prime}. This \mathbb{P}^{2}-bundle is in fact the bundle $\mathbb{P}\left(\mathcal{O} \oplus\left(\mathcal{P}_{x} \otimes \mathcal{P}_{z}^{*}\right) \oplus\right.$ $\left(\mathcal{P}_{z} \otimes \mathcal{P}_{x}^{*}\right)$). The involution on J_{X} given by $i(M)=M^{*}$ lifts to an action on this bundle (switching second and third factors), hence it descends to a bundle on $J_{X}^{\prime} / i=\mathbb{P}^{1}-\{4$ points $\}$, of the form $\mathbb{P}(\mathcal{O} \oplus \epsilon), \epsilon$ a vector bundle of rank 2 on J_{X}^{\prime} / i.

Case (b). There are, up to isomorphism, exactly four bundles E given by extension of type (b). Since any automorphism of E is of the form $\lambda I d+\mu g \circ h$, one has \mathbb{P} (Aut $E) \approx G_{a}$ under the isomorphism $(\lambda, \mu) \mapsto t=\mu \lambda^{-1} \in G_{a}$. The action of G_{a} on V is given by $t e_{1}=e_{1}, t e_{3}=e_{3}, t e_{2}=e_{2}+t e_{1}, t e_{4}=e_{4}+t e_{3}$ and that on D_{V} is given by $t\left(X_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}\right)=\left(X_{1}, Y_{2}+t Y_{3}, X_{2}+t Y_{3}, X_{3}-t\left(X_{2}+Y_{2}\right)-t^{2} Y_{3}, Y_{3}\right)$. It is not difficult to see that the ring of invariants for G_{a}-action on D_{V} (resp. on the hyperplane $Y_{1}=0$ of $\mathbb{P}\left(\wedge^{2} V\right)$) is generated by $X_{1}, X_{2}-Y_{2}, Y_{3}\left(\right.$ resp. $\left.X_{1}, X_{2}-Y_{2}, Y_{3}, X_{2} Y_{2}+X_{3} Y_{3}\right)$. The non-semistable points for the G_{a}-action are $\left\{X_{1}=Y_{3}=X_{2}-Y_{2}=0\right\}$. It follows that $D_{V} / / G_{a} \approx \mathbb{P}^{2}$, the quotient map $D_{V} \rightarrow \mathbb{P}^{2}$ being given by $\left(X_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}\right) \rightarrow$ $\left(X_{1}, X_{2}-Y_{2}, Y_{3}\right)$. Clearly, $D_{1, V} / / G_{a} \approx \mathbb{P}^{2}-\left(\left\{X_{1}=0\right\} \cup(1,0,0)\right)$. We remark that non-stable GPBs correspond to the line $Y_{3}=0$ in \mathbb{P}^{2}. In case $E=M_{1} \oplus M_{2}$, $M_{1}=M_{2}$ with $M_{1}^{2}=\mathcal{O}$, one sees that corresponding quotient $D_{V} / / G_{a}$ is \mathbb{P}^{1} which is identified to the line $Y_{3}=0$ in the above \mathbb{P}^{2}. Note that there are no stable GPBs in the last case.

It follows that there is a \mathbb{P}^{2}-fibration $\phi: D_{L} \rightarrow \mathbb{P}^{1}$ which is locally trivial outside the set of four points in \mathbb{P}^{1}. By Tsen's theorem ([8], p. 108, Case (d)), ϕ is a locally trivial fibration. This completes the proof.

COROLLARY 2.18

Let $g_{X}=1, g_{Y}=2$, d even, $n=2$.
(1) $U_{1, L^{\prime}}$ is non-singular.
(2) Pic $U_{1, L^{\prime}} \approx \mathbb{Z}$.

Proof.

(1) It follows immediately from the proof of Proposition 2.18 that $D_{1, L}$ is a (locally trivial) fibration over \mathbb{P}^{1} with non-singular fibres isomorphic to $\mathbb{P}^{2}-\left\{\left(X_{1}=0\right) \cup(1,0,0)\right\}$. Hence $D_{1, L}$ and $U_{1, L^{\prime}}$ are non-singular.
(2) $D_{L}-D_{1, L} \cong$ (hyperplane H) $\cup\{$ a line $\ell\}, H \cap \ell=\Phi$, Pic $D_{L} \approx \operatorname{Pic} \mathbb{P}^{1} \oplus$ Pic \mathbb{P}^{2}. Since D_{L} is non-singular, $0 \rightarrow \mathbb{Z} H \rightarrow \operatorname{Pic} D_{L} \rightarrow \operatorname{Pic}\left(D_{L}-H\right) \rightarrow 0$ is exact. It follows that Pic $D_{L}-H \cong \operatorname{Pic} \mathbb{P}^{1}=\mathbb{Z}$. Since ℓ is of codimension 2, $\operatorname{Pic}\left(D_{1, L}\right) \approx$ $\operatorname{Pic}\left(D_{L}-H\right) \cong \mathbb{Z}$. Thus Pic $U_{1, L^{\prime}} \approx \operatorname{Pic} D_{1, L} \approx \mathbb{Z}$.

Remark 2.19. Note that $H \rightarrow \mathbb{P}^{1}$ is a \mathbb{P}^{1}-bundle. The fibres of this bundle are given by $X_{1}=0$ in D_{V}, the restriction of this bundle to $\mathbb{P}^{1}-\{4$ points $\}$ is $\mathbb{P}(\epsilon)$. Under the map $D_{L} \rightarrow$ $U_{L^{\prime}}$, this \mathbb{P}^{1}-bundle maps onto one component in $U_{L^{\prime}}-U_{1, L^{\prime}}$ isomorphic to $J_{X} / i\left(\approx \mathbb{P}^{1}\right)$. This component corresponds to sheaves of the form $\pi_{*} E_{0}, \operatorname{det} E_{0} \approx L(-x-z)$. The line ℓ maps isomorphically onto the other component isomorphic to \mathbb{P}^{1}, it corresponds to $\pi_{*} E_{0}$, $\operatorname{det} E_{0} \approx L(-2 z)$. Since $g_{X}=1, E_{0}$ are semistable but not stable. Thus unlike in the case when L^{\prime} is a line bundle (Y smooth or nodal) $U_{L^{\prime}}-U_{L^{\prime}}^{s}$ is not the Kummer variety. It has an open subset isomorphic to J_{Y} (Proof of Lemma 2.11(1)) whose complement is the union of two disjoint smooth rational curves.

Putting together Proposition 2.15 and Corollary 2.18, we have proved the following.
Theorem 2. Let Y be an irreducible projective curve of arithmetic genus ≥ 2 with only a single ordinary node as singularity. Let L be a rank 1 torsion-free sheaf which is not locally free. Then

$$
\text { Pic } U_{1, L} \approx \mathbb{Z} .
$$

3. Pic and local factoriality of $\boldsymbol{U}^{\prime}(n, d), \boldsymbol{U}_{1, L}(2, d)$

3.1

In this section we prove Theorems 3A and 3B. Throughout the section, we assume that $n \geq 2$ and if $n \geq 3$ then $g \geq 2$. One has a map $U_{L}^{\prime} \times J \rightarrow U^{\prime}$ given by tensorisation. We first remark that Pic U^{\prime} cannot be computed easily using this map. The map induces a map of Picard groups Pic $U^{\prime} \approx \operatorname{Pic} U_{L}^{\prime} \oplus \operatorname{Pic} J \rightarrow \operatorname{Pic} U_{L}^{\prime} \oplus \operatorname{Pic} J$. The induced map Pic $J \rightarrow$ Pic J is not identity, it is multiplication by n. The right map to consider is the determinant morphism which does induce identity on Pic J as we show below:

Theorem 3A. One has the following:
(a) Pic $U^{\prime s} \approx \operatorname{Pic} J \oplus \mathbb{Z}$,
(b) Pic $U^{\prime} \approx \operatorname{Pic} J \oplus \mathbb{Z}$,
(c) U^{\prime} is locally factorial.

Proof.
(a) Without loss of generality, we may assume that $d \gg 0$. Then a semistable vector bundle E of degree d is globally generated ([10], Lemma 5.2) and contains a trivial
sub-bundle of rank $n-1$. Let $\mathbb{P}=\mathbb{P}\left(R_{p_{j_{*}}}^{1}\left(\mathcal{P}^{*} \otimes \mathbb{C}^{n-1}\right)\right)$, it is a projective bundle over J. Let \mathbb{P}_{L} denote its fibre over $L \in J, \mathbb{P}_{L}$ is a projective space. \mathbb{P} parametrises a family \mathcal{E} of vector bundles on Y of rank n, degree d and containing a trivial subbundle of rank $n-1$. Let $\mathbb{P}^{s}=\left\{p \in \mathbb{P} \mid \mathcal{E}_{p}\right.$ stable $\}, \mathbb{P}_{L}^{s}=\mathbb{P}^{s} \cap \mathbb{P}_{L}$. One has canonical surjective morphisms $f: \mathbb{P}^{s} \rightarrow U^{\prime s}(n, d), f_{L}: \mathbb{P}_{L}^{s} \rightarrow U_{L}^{\prime s}(n, d)$ such that the induced maps f^{*} : Pic $U^{\prime s} \rightarrow \operatorname{Pic} \mathbb{P}^{s}, f_{L}^{*}$: Pic $U_{L}^{\prime s} \rightarrow \operatorname{Pic} \mathbb{P}_{L}^{s}$ are injective ([3], Proposition 2.3; [6], Propositions 7.6, 7.8, 7.9). Clearly, Pic $\mathbb{P} \approx \operatorname{Pic} J \times \operatorname{Pic} \mathbb{P}_{L} \approx \operatorname{Pic} J \times \mathbb{Z}$. Under the conditions of the theorem we know that ([3], Theorem I) Pic $U_{L}^{\prime s} \approx \mathbb{Z}$ and hence Pic $\mathbb{P}_{L}^{s} \approx \mathbb{Z}$. Hence the surjective restriction map Pic $\mathbb{P}_{L} \rightarrow$ Pic \mathbb{P}_{L}^{s} is an isomorphism for all $L \in J$. Hence $\operatorname{codim}_{\mathbb{P}_{L}}\left(\mathbb{P}_{L}-\mathbb{P}_{L}^{s}\right) \neq 1$ and therefore $\operatorname{codim}_{\mathbb{P}}\left(\mathbb{P}-\mathbb{P}^{s}\right) \geq 2$. Thus Pic $\mathbb{P}^{s} \approx \operatorname{Pic} \mathbb{P} \approx \operatorname{Pic} J \oplus \mathbb{Z}$ and hence

$$
\operatorname{Pic} U^{\prime s} \hookrightarrow \operatorname{Pic} J \oplus \mathbb{Z}
$$

The natural map $p: \mathbb{P}^{s} \rightarrow J$ factors as $p=\operatorname{det} \circ f$, where det is the determinant map $E \mapsto \wedge^{n} E$. Since both f and det are surjections, so is p. Note that $f^{*} \circ \operatorname{det}^{*}=p^{*}:$ Pic $J \rightarrow$ Pic \mathbb{P}^{s} is injective. It follows that det* is injective.

One has the following diagram with the last column exact.

Here \mathbb{Z} denotes the image of Pic $U_{L}^{\prime s}$ in Pic \mathbb{P}_{L}^{s}. The map Pic $U^{\prime s} \rightarrow$ Pic $U_{L}^{\prime s}$ is the restriction map and is surjective ([3], Proposition 3.2 and 3.5). It now follows from the diagram that the injection Pic $U^{\prime s} \rightarrow$ Pic $J \oplus \mathbb{Z}$ is an isomorphism and the second column is exact.
(b) and (c). Since $\operatorname{codim}_{U^{\prime}}\left(U^{\prime}-U^{\prime s}\right) \geq 2$ under the conditions of the theorem and U^{\prime} is normal ([3], Proposition 3.4(i)), it follows that the restriction map Pic $U^{\prime} \rightarrow \operatorname{Pic} U^{\prime s}$ is injective. The restriction morphism $\operatorname{Pic} U^{\prime} \rightarrow \operatorname{Pic} U_{L}^{\prime}$ is surjective ([3], Propositions 3.2, 3.5). The restriction map Pic $U_{L}^{\prime} \rightarrow$ Pic $U_{L}^{\prime s}$ is an isomorphism [3]. It now follows from the commutative diagram that Pic $U^{\prime} \approx \operatorname{Pic} U^{\prime s}$ under the restriction map. By arguments similar to those in the proof of [3], Proposition 3.6, this implies that U^{\prime} is locally factorial.

Theorem 3B. Let Y be an irreducible projective curve of arithmetic genus $g_{Y} \geq 2$ with only a single ordinary node as singularity. If $g_{Y}=2$, then assume that d is odd. Let L be a
rank 1 torsion-free sheaf of degree d which is not locally free. Let $U_{1, L}$ be the subscheme of U corresponding to torsion-free sheaves of rank 2 with determinant isomorphic to L.
(a) Pic $U_{1}^{s} \approx \operatorname{Pic} J_{X} \oplus \mathbb{Z}$,
(b) Pic $U_{1} \approx \operatorname{Pic} J_{X} \oplus \mathbb{Z}$,
(c) U_{1} is locally factorial.

Proof. The proof is more or less identical with that of Theorem 3A. One has only to replace f, f_{L} by the maps $f_{1}, f_{\epsilon, L}$ of Proposition 2.14 and use Theorem 2 instead of Theorem 1.

4. The dualising sheaves of \boldsymbol{U}^{\prime} and $\boldsymbol{U}_{\boldsymbol{L}}^{\prime}$

4.1

Let $K(Y)$ denote the Grothendiéck group of vector bundles on Y. Then $K(Y) \approx \mathbb{Z} \oplus$ Pic Y under the map $[E] \mapsto(\operatorname{rank} E$, det $E),[E]$ being the class of a vector bundle E in $K(Y)$. The inverse map is given by $n \mapsto\left[n \cdot \mathcal{O}_{Y}\right]$ for $n \in \mathbb{Z}$ and $L \mapsto[L]-\left[\mathcal{O}_{X}\right]$ for $L \in \operatorname{Pic} Y$.

Let $\chi=d+n(1-g), P(m)=\chi+r m$, fix $m \gg 0$. Let $Q=\operatorname{Quot}\left(\mathbb{C}^{P(m)} \otimes \mathcal{O}_{Y}(-m), P\right)$ be the Hilbert scheme ('the Quot scheme') of quotients of $\mathbb{C}^{P(m)} \otimes \mathcal{O}_{Y}(-m)$ with Hilbert polynomial P. Let $\mathcal{F} \rightarrow Q \times Y$ be the universal family. Let $R_{m} \subset Q$ be the open subset consisting of $q \in Q$ such that $H^{1}\left(\mathcal{F}_{q}(m)\right)=0, H^{0}\left(\sum(m)\right) \simeq H^{0}(\mathcal{F}(m))$ under the canonical map, $\sum=\mathbb{C}^{P(m)} \otimes \mathcal{O}_{Y}(-m)$. The open subvariety $R^{s s}$ of Q consisting of $q \in Q$ such that \mathcal{F}_{q} is a semistable torsion-free sheaf is contained in R_{m}. The subset $R^{\prime s s}$ of $R^{s s}$ corresponding to semistable vector bundles is a smooth variety, so is the closed subset $R_{L}^{\prime s s} \subset R^{\prime s s}$ consisting of semistable vector bundles with fixed determinant L ([10], Remark, p. 167).

The moduli space U^{\prime} (resp. U_{L}^{\prime}) is a geometric invariant theoretic good quotient of the smooth irreducible scheme $R^{\prime s s}$ (resp. $R_{L}^{\prime s s}$) by the group $G=P$ (Aut $\left.\sum\right) \approx P G L(N), N \gg 0[10,12]$. The restriction of the universal family on $Q \times Y$ gives a universal family $\mathcal{F} \rightarrow R_{L}^{\prime s s} \times Y$ of vector bundles on Y of rank n, degree d. Let $\mathrm{Pic}^{G}\left(R_{L}^{\prime s s}\right)$ denote the group of line bundles on $R_{L}^{\prime S S}$ with G-action (compatible with the G-action on $\left.R_{L}^{\prime s s}\right)$. For a vector bundle E on Y, one defines an element $\lambda_{\mathcal{F}}(E) \in \operatorname{Pic}^{G}\left(R_{L}^{\prime s}\right)$ by

$$
\lambda_{\mathcal{F}}(E):=\otimes_{i}\left(\operatorname{det} R_{p_{1 *}}^{i}\left(\mathcal{F} \otimes p_{2}^{*} E\right)\right)^{(-1)^{i+1}}
$$

where p_{1} and p_{2} are projections to $R_{L}^{\prime s s}$ and Y respectively. $\lambda_{\mathcal{F}}(E)$ depends only on the class of E and $\lambda_{\mathcal{F}}: K(Y) \rightarrow \operatorname{Pic}^{G}\left(R_{L}^{\prime s s}\right)$ is a group homomorphism.

PROPOSITION 4.2

Let E be a vector bundle on Y with $\operatorname{rank}(E)=n / \delta, \operatorname{det}(E)=\mathcal{O}_{Y}\left(-\frac{\chi}{\delta}\right), \chi=d+n(1-g)$, $\delta=\operatorname{gcd}(n, d)$. Then $\lambda_{\mathcal{F}}(E)$ descends to $U_{L}^{\prime}(n, d)$ as the generator \mathbb{L} of Pic $U_{L}^{\prime}(n, d)$.

Proof. By [3], Propositions 3.2, 3.5, the generator \mathbb{L} is obtained by the descent of the line bundle \mathbb{L}^{\prime} on $R_{L}^{\prime s s}$ given by

$$
\mathbb{L}^{\prime}=\left(\operatorname{det} R p_{1_{*}} \mathcal{F}\right)^{\frac{n}{\delta}} \otimes\left(\wedge^{n}\left(\left.\mathcal{F}\right|_{R_{L}^{\prime s s} \times y_{0}}\right)\right)^{\chi / \delta}
$$

y_{0} being a non-singular point of Y. Here $\operatorname{det} R p_{1_{*}} \mathcal{F}$ denotes the determinant of cohomology ([7], Ch.VI, pp. 135-136). However, our definition is different from the standard one, it is the inverse of the line bundle defined in [7] as det $R p_{1_{*}} \mathcal{F}$. One has det $R_{p_{1 *}}(\mathcal{F})=\lambda_{\mathcal{F}}$ (1), $1=$ class of \mathcal{O}_{Y}. If h denotes the class of the structure sheaf of the point $y_{0}, h=$ $\left[\mathcal{O}_{Y}\left(y_{0}\right)\right]-\left[\mathcal{O}_{Y}\right]$, then we claim that

$$
\left.{ }^{n} \mathcal{F}\right|_{R_{L}^{s s s} \times y_{0}}=-\lambda_{\mathcal{F}}(h)
$$

Proof of the Claim. For $m \gg 0$ one has the exact sequence

$$
\left.0 \rightarrow \mathcal{F}(m) \rightarrow \mathcal{F}(m+1) \rightarrow \mathcal{F}(m)\right|_{R_{L}^{\prime s s} \times y_{0}} \rightarrow 0
$$

$\mathcal{F}(m)=\mathcal{F} \otimes \mathcal{O}_{Y}(m), \mathcal{O}_{Y}(1)$ being a line bundle of degree 1 on Y. Since $R_{p_{1_{*}}}^{1}\left(\mathcal{F}\left(m^{\prime}\right)\right)=0$ $\forall m^{\prime} \geq m, R^{1} p_{1_{*}}\left(\left.\mathcal{F}(m)\right|_{R_{L}^{s s} \times y_{0}}\right)=0$, the direct image sequence gives

$$
0 \rightarrow R^{0} p_{1_{*}}(\mathcal{F}(m)) \rightarrow R^{0} p_{1_{*}}(\mathcal{F}(m+1)) \rightarrow R^{0} p_{1_{*}}\left(\left.\mathcal{F}(m)\right|_{R_{R_{L}^{\prime s}}^{\prime s} \times y_{0}}\right) \rightarrow 0
$$

Since $\operatorname{det} p_{1_{*}}\left(\mathcal{F}\left(m^{\prime}\right)\right)=-\lambda_{\mathcal{F}}\left(1+m^{\prime} h\right), m^{\prime} \geq m$, and

$$
\operatorname{det}\left(\left.p_{1_{*}} \mathcal{F}(m)\right|_{R_{L}^{\prime s s} \times y_{0}}\right) \approx \operatorname{det}\left(\left.p_{1_{*}} \mathcal{F}\right|_{R_{L}^{\prime s s} \times y_{0}}\right)=\left.\wedge \mathcal{F}\right|_{R_{L}^{\prime s s} \times y_{0}},
$$

one has

$$
\begin{aligned}
\left.{ }^{n} \mathcal{F}\right|_{R_{L}^{\prime s s} \times y_{0}} & =-\lambda_{\mathcal{F}}((m+1) h)+\lambda_{\mathcal{F}}(1+m h) \\
& =-\lambda_{\mathcal{F}}(h) .
\end{aligned}
$$

This proves the claim.
Thus we have

$$
\begin{aligned}
\mathbb{L}^{\prime} & =\frac{n}{\delta} \lambda_{\mathcal{F}}(1)-\frac{\chi}{\delta} \lambda_{\mathcal{F}}(h) \\
& =\lambda_{\mathcal{F}}\left(\frac{n}{\delta}-\frac{\chi h}{\delta}\right)=\lambda_{\mathcal{F}}(E) .
\end{aligned}
$$

Remark 4.3. Note that the line bundle \mathbb{L}^{\prime} exists on $R^{s s}$ and descends to U^{\prime} ([3], Proposition 3.5). Also $\lambda_{\mathcal{F}}(E)$ makes sense for $\mathcal{F} \rightarrow R^{s s} \times Y$, the universal family on $R^{s s} \times Y$. The above relation between $\lambda_{\mathcal{F}}(E)$ and $\mathbb{L} \in$ Pic $U_{L}^{\prime}(n, d)$ holds for $\lambda_{\mathcal{F}}(E)$ and $\mathbb{L} \in$ Pic $U^{\prime}(n, d) \approx \operatorname{Pic} U_{L}^{\prime} \oplus \operatorname{Pic} J$.

4.4 Computation of the dualising sheaves

Both U^{\prime} and U_{L}^{\prime} are normal and Cohen-Macaulay as they are quotients of smooth varieties by $\operatorname{PGL}(N)$. They are also locally factorial ([3], Theorem 2 ; Theorem 1). A locally factorial Cohen-Macaulay variety is Gorenstein, i.e., its dualising sheaf ω is locally free. The tangent sheaf $T_{U^{\prime}}$ of U^{\prime} is locally free on the smooth open subscheme $U^{\prime s}$ of codimension ≥ 2. Hence the determinant of $T_{U^{\prime}}$ defines a line bundle det $T_{U^{\prime}}$ on U^{\prime}. Since it coincides with ω^{-1} on $U^{\prime s}$, it follows that $\omega^{-1}=\operatorname{det} T_{U^{\prime}}$. Similarly one has a locally free dualising sheaf ω_{L} on U_{L}^{\prime} with $\omega_{L}^{-1}=\operatorname{det} T_{U_{L}^{\prime}}$.

Theorem 4. Let the assumptions be as in Theorem 1. Then one has the following:
(a) $\omega \approx-2 \delta \mathbb{L}, \mathbb{L}=$ generator of Pic $U_{L}^{\prime}(n, d)$,
(b) Let F_{0} be a vector bundle on Y of rank $2 r$ and degree $2(-d+r(g-1))$. Then $\omega \approx \lambda_{\mathcal{F}}\left(F_{\mathrm{o}}\right) \otimes \operatorname{det} \wedge$, where \wedge is a line bundle on J given by

$$
\wedge=\operatorname{det}\left(p_{J!}[\mathcal{P}] \otimes \operatorname{det} p_{J!}\left[\mathcal{P}^{*}\right]\right)^{r-1} \otimes \operatorname{det} p_{J!}\left(\left[\mathcal{P} \otimes p_{2}^{*} F_{0}\right]\right)^{-1}
$$

Proof. In view of the injective morphism $f_{L}^{*}: \operatorname{Pic} U_{L}^{\prime} \rightarrow \operatorname{Pic} P_{L}^{s}$ mapping \mathbb{L} to $\mathcal{O}_{p_{L}^{s}}\left(\frac{d}{\delta}(r-\right.$ 1)), it suffices to prove that

$$
\operatorname{det} f_{L}^{*} T_{U_{L}^{\prime}} \approx \mathcal{O}_{\mathbb{P}_{L}^{s}}(2 d(r-1)) .
$$

One has $f^{*} T_{U^{\prime}} \approx R_{p_{\mathbb{P}_{*}^{S}}}^{1}\left(\mathcal{E}^{*} \otimes \mathcal{E}\right),\left.f_{L}^{*} T_{U_{L}^{\prime}} \approx R_{p_{\mathbb{P}_{L *}^{s}}^{s}}^{1}(A d \mathcal{E}) \approx R_{p_{\mathbb{P}_{*}^{s}}}^{1}(\operatorname{Ad\mathcal {E}})\right|_{\mathbb{P}_{L}^{s}}$. Also, det $R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(\mathcal{E}^{*} \otimes \mathcal{E}\right) \approx \operatorname{det} R_{p_{\mathbb{P}_{*}^{s}}^{s}}^{1}(A d \mathcal{E})$, so that $\operatorname{det} f_{L}^{*} T_{U_{L}^{\prime}}^{\prime *} \approx \operatorname{det} R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(\mathcal{E} \otimes \mathcal{E}^{*}\right) \mathbb{P}_{L}^{s}$.

Computation of $\operatorname{det} R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(\mathcal{E} \otimes \mathcal{E}^{*}\right)$
There is a universal exact sequence on $\mathbb{P}^{s} \times Y$.

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{s} \times Y} \otimes \mathbb{C}^{r-1} \rightarrow \mathcal{E} \rightarrow(1 \times p)^{*} \mathcal{P} \otimes p_{\mathbb{P}^{s}}^{*} \mathcal{O}_{\mathbb{P}^{s}}(-1) \rightarrow 0 \tag{1}
\end{equation*}
$$

For $d \gg 0, H^{0}\left(\mathcal{E}_{t}^{*}\right)=0 \forall t \in \mathbb{P}^{s}, H^{0}\left(\mathcal{E}_{t} \otimes \mathcal{E}_{t}^{*}\right)$ consists of scalars as \mathcal{E}_{t} is stable. Hence by tensoring (1) with \mathcal{E}^{*} and taking direct images, one gets (for $d \gg 0$ and $\left.(1 \times p)^{*}=p^{\#}\right)$

$$
\begin{aligned}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{s}} & \rightarrow \mathcal{O}_{\mathbb{P}^{s}}(-1) \otimes p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathcal{E}^{*}\right) \rightarrow R_{p_{\mathbb{\mathbb { ~ }}}^{*}}^{1}\left(\mathcal{E}^{*} \otimes \mathbb{C}^{r-1}\right) \\
& \rightarrow R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(\mathcal{E}^{*} \otimes \mathcal{E}\right) \rightarrow 0
\end{aligned}
$$

Hence,

$$
\begin{align*}
\operatorname{det} R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(\mathcal{E} \otimes \mathcal{E}^{*}\right) & \approx \operatorname{det}\left(R_{p_{\mathbb{P}_{*}^{\mathcal{S}}}^{1}}^{1} \mathcal{E}^{*-1}\right. \\
& \otimes \operatorname{det}\left(\mathcal{O}_{\mathbb{P}^{s}}(-1) \otimes p_{\mathbb{P}_{*}^{s}} p^{\#} \mathcal{P} \otimes \mathcal{E}^{*}\right)^{-1} \tag{2}
\end{align*}
$$

$R_{p_{\mathbb{S}}^{s}}^{1}\left(\mathcal{E}^{*}\right)$ is computed by taking dual of (1) and direct images as follows:

$$
\begin{equation*}
0 \rightarrow p^{\#} \mathcal{P}^{*} \otimes p_{\mathbb{P}^{s}}^{*} \mathcal{O}_{\mathbb{P}^{s}}(1) \rightarrow \mathcal{E}^{*} \rightarrow \mathcal{O}_{\mathbb{P}^{s} \times Y} \otimes \mathbb{C}^{r-1} \rightarrow 0 \tag{1}
\end{equation*}
$$

Since $p_{\mathbb{P}_{*}^{s}} p^{\#} \mathcal{P}^{*}=0=p_{\mathbb{P}^{s} *}\left(\mathcal{E}^{*}\right)$ for $d \gg 0$, one has the direct image sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{\mathbb{P}^{s}} \otimes \mathbb{C}^{r-1} \rightarrow \mathcal{O}_{\mathbb{P}^{s}}(1) \otimes R_{\mathbb{P}_{\mathbb{*}}}^{1}\left(p^{\#} \mathcal{P}^{*}\right) \rightarrow R_{p_{\mathbb{P}}^{s}}^{1} \mathcal{E}^{*} \\
& \rightarrow \mathcal{O}_{\mathbb{P}^{s}} \otimes \mathbb{C}^{(r-1) g} \rightarrow 0
\end{aligned}
$$

and hence

$$
\operatorname{det} R_{p_{\mathbb{P}_{*}^{\mathbb{S}}}}^{1} \mathcal{E}^{*} \approx \operatorname{det}\left(\mathcal{O}_{\mathbb{P}^{s}}(1) \otimes R_{p_{\mathbb{P}_{*}^{s}}^{s}}^{1}\left(p^{\#} \mathcal{P}^{*}\right)\right) .
$$

Since $h^{1}\left(\mathcal{P}_{t}^{*}\right)=-\chi\left(\mathcal{P}_{t}^{*}\right)=d+g-1$ for $t \in J$, one gets

$$
\begin{equation*}
\operatorname{det} R_{p_{\mathbb{P}_{*}^{*}}}^{1} \mathcal{E}^{*} \approx \mathcal{O}_{\mathbb{P}^{s}}(d+g-1) \otimes \operatorname{det} R_{p_{\mathbb{P}_{*}^{s}}}^{1}\left(p^{\#} \mathcal{P}^{*}\right) . \tag{3}
\end{equation*}
$$

Tensoring (1)* with $p^{\#} \mathcal{P}$ gives

$$
0 \rightarrow p_{\mathbb{P}^{s}}^{*} \mathcal{O}_{\mathbb{P}^{s}}(1) \rightarrow \mathcal{E}^{*} \otimes p^{\#} \mathcal{P} \rightarrow \mathcal{O}_{\mathbb{P}^{s} \times Y} \otimes \mathbb{C}^{r-1} \otimes p^{\#} \mathcal{P} \rightarrow 0
$$

and hence the direct image sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{s}}(1) \rightarrow p_{\mathbb{P}_{*}^{s}}\left(\mathcal{E}^{*} \otimes p^{\#} \mathcal{P}\right) \rightarrow p_{\mathbb{P}_{*}^{s}}\left(\mathbb{C}^{r-1} \otimes p^{\#} \mathcal{P}\right) \rightarrow 0
$$

By tensoring with $\mathcal{O}_{\mathbb{P}^{s}}(-1)$ and taking det, one has

$$
\operatorname{det}\left(p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathcal{E}^{*}\right) \otimes \mathcal{O}_{\mathbb{P}^{s}}(-1)\right) \approx \operatorname{det}\left(p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathbb{C}^{r-1}\right) \otimes \mathcal{O}_{\mathbb{P}^{s}}(-1)\right) .
$$

Since $h^{0}\left(\mathcal{P}_{t}\right)=d+1-g$ for $t \in J$, the latter is isomorphic to det $p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathbb{C}^{r-1}\right) \otimes$ $\mathcal{O}_{\mathbb{P}^{s}}((g-d-1)(r-1))$. Thus we have

$$
\begin{align*}
& \operatorname{det}\left(p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathcal{E}^{*}\right) \otimes \mathcal{O}_{\mathbb{P}^{s}}(-1)\right) \\
& \quad \approx \operatorname{det} p_{\mathbb{P}_{*}^{s}}\left(p^{\#} \mathcal{P} \otimes \mathbb{C}^{r-1}\right) \otimes \mathcal{O}_{\mathbb{P}^{s}}((r-1)(g-d-1)) . \tag{4}
\end{align*}
$$

Substituting in (2) from (3) and (4) gives

$$
\begin{equation*}
\operatorname{det} R_{p_{\mathbb{P}_{*}^{\mathbb{S}}}}^{1}\left(\mathcal{E}^{*} \otimes \mathcal{E}\right) \approx \mathcal{O}_{\mathbb{P}^{s}}(2(r-1) d) \otimes \Delta^{r-1} \tag{5}
\end{equation*}
$$

where $\Delta^{-1}=\operatorname{det}\left(R_{p_{\mathbb{P}_{\mathbb{*}}}}^{1} p^{\#} \mathcal{P}^{*}\right) \otimes \operatorname{det}\left(p_{\mathbb{P}_{*}^{s}} p^{\#} \mathcal{P}\right)$.
Since $\left.\Delta\right|_{\mathbb{P}_{L}^{s}}$ is trivial, from (5) one has

$$
\operatorname{det} f_{L}^{*} T_{U_{L}^{\prime}} \approx \mathcal{O}_{\mathbb{P}_{L}^{s}}(2(r-1) d)
$$

this proves (a).
If F_{0} is a vector bundle of rank $2 r$ and degree $2(-d+r(g-1))$, then from sequence (1), one sees that

$$
\lambda_{\mathcal{E}}\left(\left[F_{0}\right]\right) \approx \mathcal{O}_{\mathbb{P}^{s}}(-2 d(r-1)) \otimes \operatorname{det}^{*}\left(p_{J_{*}} \mathcal{P} \otimes p_{Y}^{*} F_{0}\right),
$$

so that (5) becomes

$$
\operatorname{det}\left(R^{1} p_{\mathbb{P}_{*}^{s}}\left(\mathcal{E} \otimes \mathcal{E}^{*}\right)\right) \approx \lambda_{\mathcal{E}}\left(\left[F_{0}\right]\right)^{-1} \otimes \operatorname{det}^{*}\left(p_{J_{*}}\left(\mathcal{P} \otimes p_{Y}^{*} F_{0}\right)\right) \otimes \Delta^{r-1}
$$

Since $p=\operatorname{det} \circ f, p^{*}=f^{*} \circ \operatorname{det}^{*}$ and f^{*} is injective, (b) also follows.

Acknowledgement

We would like to thank C S Seshadri for useful discussions and correspondence.

References

[1] Bhosle Usha N, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Arkiv for Matematik 30(2) (1992) 187-215
[2] Bhosle Usha N, Vector bundles of rank 2, degree 0 on a nodal hyperelliptic curve, in: Algebraic geometry (eds) P E Newstead, Lecture Notes in Pure and Appl. Math. 200 (1998) 271-281
[3] Bhosle Usha N, Picard groups of the moduli spaces of vector bundles, Math. Ann. 314 (1999) 245-263
[4] Bhosle Usha N, Maximal subsheaves of torsionfree sheaves, TIFR Reprint (2003)
[5] D'Souza C, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. (Math. Sci.) 88 (1979) 419-457
[6] Drézet J M and Narasimhan M S, Groupe de Picard des variétiés de modules de fibrés semistable sur les courbes algebriques, Invent. Math. 97 (1989) 53-94
[7] Lang S, Introduction to Arakelov theory (Springer-Verlag) (1988)
[8] Milne J S, Etale cohomology (Princeton University Press) (1980)
[9] Narasimhan M S and Ramadas T, Factorisation of generalised theta functions-I, Invent. Math. 114 (1993) 565-623
[10] Newstead P E, Introduction to moduli problems and orbit spaces, TIFR Lecture Notes 51 (1978)
[11] Ramanan S, The moduli space of vector bundles on an algebraic curve, Math. Ann. 200, (1973) 69-84
[12] Seshadri C S, Fibrés vectoriels sur les courbes algebriques, Asterisque 96 (1982) 1-209; Vector bundles on curves, Contemporary Math. 153 (1993) 163-200
[13] Sun Xiaotao, Degeneration of moduli spaces and generalized theta functions, J. Alg. Geom. 9 (2000) 459-527

