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Abstract. We compute the Picard group of the moduli spaceU

′ of semistable vector
bundles of rankn and degreed on an irreducible nodal curveY and show thatU ′ is
locally factorial. We determine the canonical line bundles ofU

′ andU

′

L

, the subvariety
consisting of vector bundles with a fixed determinant. For rank 2, we compute the Picard
group of other strata in the compactification ofU

′.
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1. Introduction

In our previous paper [3] we proved that the Picard group of the moduli spaceU

′

L

(n, d)

of semistable vector bundles of rankn with fixed determinantL (L being a line bundle
of degreed) on an irreducible projective nodal curveY of geometric genusg ≥ 2 is
isomorphic toZ (except possibly in the caseg = 2, n = 2, d even). We used this to show
thatU ′

L

(n, d) is locally factorial. Interestingly, the results for irreducible nodal curves are
very similar to those for smooth curves. However, the proofs are different and much more
difficult. Unlike in the smooth case, the moduli space of vector bundles on a nodal curve is
not projective. Moreover its complement in the compactificationU (moduli of torsion-free
sheaves) has codimension 1. The computation of Picard group needs codimension of the
non-semistable and non-stable strata (see [6,11] for smooth case). Since HN-filtrations of
vector bundles contain non-locally free sheaves and tensor products of stable bundles are
not semistable (onY ), in general it is impossible to determine this codimension directly
onY . We did it by using parabolic bundles on the normalizationX of Y and hence had to
assumeg ≥ 2 and exclude the caseg = n = d = 2.

In this paper, we do a detailed analysis for rank 2 and extend these results to nodal
curves of arithmetic genusg

Y

≥ 0 (rank 2). Combining this with results of [3], we have
the following theorem.

Theorem 1. LetY be an irreducible reduced curve with only ordinary nodes as singular-
ities. Assume that forn ≥ 3, the geometric genusg ≥ 2. Then

(1) PicU

′

L

(n, d) ≈ PicU

′s

L

(n, d) ≈ Z,
(2) U

′

L

is locally factorial.

We also show that the dualising sheafω

L

of U

′

L

(n, d) is isomorphic to the line
bundle −2δL, where δ = gcd(n, d) and L is the ample generator of PicU ′

L

(n, d)

(Theorem 4).
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We then compute the Picard group of the moduli spaceU

′

(n, d) (resp.U ′s

(n, d)) of
semistable (resp. stable) vector bundles of rankn and degreed on Y . Let J denote the
generalised Jacobian of degreed onY .

Theorem (Theorem 3(A)). Let the assumptions be above.

(a) PicU

′s

≈ PicJ ⊕ Z,
(b) PicU

′

≈ PicJ ⊕ Z,
(c) U

′ is locally factorial.

This completes the extension of results of[6] to nodal curves.

Let U = U(n, d) denote the moduli space of torsion-free sheaves of rankn and degree
d onY . If Y has only a single ordinary node as singularity, then the varietyU(2, d) has a
stratification,U = U

′

∪U1 ∪U0, a disjoint union. Points ofU1 correspond to torsion-free
sheavesF of rank 2 withF

y

≈ O

y

⊕m

y

. LetL be a rank 1 torsion-free sheaf which is not
locally free. LetU1,L

(2, d) be the subscheme ofU1 corresponding to torsion-free sheaves
of rank 2 with determinant isomorphic toL.

Theorem (Theorem 2, Theorem 3(B)).Letg
Y

≥ 2; if g

Y

= 2, assume thatd is odd for
(b), (c), (d). Then

(a) PicU1,L

(2, d) ≈ Z,
(b) PicU

s

1(2, d) ≈ PicJ

X

⊕ Z,
(c) PicU1(2, d) ≈ PicJ

X

⊕ Z,
(d) U1(2, d) is locally factorial.

In a subsequent paper, we study the Picard group of a seminormal variety. As an appli-
cation we compute the Picard groups of the compactified Jacobian and some subvarieties
of U(2, d).

Notation. Let Y denote an irreducible reduced projective curve with ordinary nodes
y

j

, j = 1, . . . , m as only singularities. Letg be the geometric genus andg
Y

the arith-
metic genus ofY . Fory ∈ Y , let (O

y

, m

y

) be the local ring aty. A torsion-free sheafN
onY is locally free on the subsetU of non-singular points ofY . The rankr(N) of N is the
rank of the locally free sheafN |

U

. The degreed(N) of N is defined byd(N) = χ(N)

+ r(N)(g − 1), whereχ denotes the Euler characteristic. LetN

∗ denote the torsion-free
sheaf Hom(N, O).

LetJ andJ be respectively the generalised Jacobian and the compactified Jacobian ofY

(of a fixed degree) andP the Poincaŕe bundle. Letp
J

denote the projection toJ . LetU =

U(n, d) be the moduli space of semistable torsion-free sheaves of rankn and degreed on
Y . Letδ = gcd(n, d). LetU ′

⊂ U be the open subvariety corresponding to vector bundles
(i.e. S-equivalence classes ofE such that grE is a vector bundle). Fix a rank 1 torsion-
free sheafL of degreed onY . Let U ′

L

(resp.U1,L

) be the subscheme ofU corresponding
to vector bundles (resp. torsion-free sheaves) with determinant isomorphic toL andU

L

its closure inU . Let U

′s

⊂ U

′

, U

′s

L

⊂ U

′

L

etc. be the open subvarieties corresponding
to stable torsion-free sheaves. The varietyU is seminormal ([13], Theorem 4.2),U

′ and
U

′

L

are normal being GIT-quotients of non-singular varieties [10]. Form = 1, U has a
filtration U ⊃ W

n−1 ⊃ · · · ⊃ W0, with W

i

seminormal closed subvarieties [13].W

i−1 is
the non-normal locus ofW

i

, i = 1, . . . , n andW0 is normal. LetU ′

= U − W1, Ui

=

W

i

− W

i−1(i = 1, . . . , n − 1), U0 = W0.
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2. Torsion-free sheaves of rank 2

In this section we studyU
L

(2, d) andU(2, d). Throughout the sectionE will denote a
torsion-free sheaf of rank 2 and degreed onY .

Lemma2.1. LetE be a torsion-free sheaf with∧2
E = L torsion-free. LetN1 be a rank1

subsheaf ofE such that the quotientN2 = E/N1 is torsion-free.

(1) If N1 or L is locally free, thenN2 ≈ N

∗

1 ⊗ L,
(2) If N2 is locally free, thenN1 ⊗ N2 ≈ L.

Proof. The canonical alternating formE×E → L induces an alternating formN1×N1 →

L. We claim that this form is zero. This is clear aty ∈ Y such that the stalk(N1)y is
free. If (N1)y 6≈ O

y

, then(N1)y = m

y

, alsoL

y

= O

y

or m

y

([12], Prop. 2, p. 164). Let
u, v be the two generators of(N1)y . Since anyO

y

-linear map fromm

y

to m

y

(or O

y

) is
given by the multiplication bya ∈ O

y

(= normalisation ofO
y

) ([12], p. 169), the map
(N1)y → L

y

defined byw 7→ w ∧ u is given byw ∧ u = wa, a ∈ O

y

. In particular,
0 = u∧u = ua. SinceO

y

is a domain, this impliesa = 0. Thusv∧u = 0 and hence(N1)y∧

(N1)y = 0.
Define anO-bilinear mapb : N1 × N2 → L by b(n1, n2) = n1 ∧ n3, wheren3 is a

lift of n2 in E. This is well-defined as any two liftsn3, n
′

3 differ by an element ofN1 and
N1 ∧N1 = 0 as seen above. The bilinear mapb induces an injective sheaf homomorphism
N2 → Hom(N1, L) which is an isomorphism outside the singular set ofY . If N1 or L

is locally free, thend(Hom(N1, L)) = d(L) − d(N1) ([4], Lemma 2.5(B)) and hence
d(Hom(N1, L)) = d(N2). It follows thatN2 ≈ Hom(N1, L).

If N2 is locally free, the bilinear mapb gives an injective homomorphism of torsion-
free sheavesN1 ⊗ N2 → L. Sinced(N1 ⊗ N2) = d(N1) + d(N2) = d(L), this is an
isomorphism. This proves the lemma.

We remark that if bothN1, N2 are not locally free thenN1 ⊗ N2 has a torsion andb
gives a homomorphismN1 ⊗ N2/torsion→ L which is not an isomorphism.

Lemma2.2. Assume thatY has only one nodey. Letπ:X → Y be the normalisation map
andπ

−1
y = {x, z}. LetN1, N2 be line bundles of degree−1 onX.

(a) Given a line bundleL onY with π

∗

L = N1 ⊗ N2(x + z), there exists a vector bundle
E of rank2 and determinantL onY such thatE is S-equivalent toπ

∗

N1 ⊕ π

∗

N2.
(b) There exists a torsion-free sheafE of rank 2 on Y such that(1) E

y

≈ O

y

⊕ m

y

,
(2) determinant ofE is isomorphic toπ

∗

(N1 ⊗ N2(z)) and (3) E is S-equivalent to
π

∗

N1 ⊕ π

∗

N2.

Proof.

(a) We shall construct a generalised parabolic bundle(E

′

, F1(E
′

)) onX which gives the
required vector bundleE on Y . TakeE

′

= L1 ⊕ L2, L1 = N1(x + z), L2 = N2.
Let e1, e2 be basis elements of(L1)x, (L1)z respectively. Letf1, f2 be basis elements
of (L2)x, (L2)z respectively. DefineF1(E

′

) = (e2 −f1, ce1 +f2), c being a non-zero
scalar. Since the projectionsp1, p2 fromF1(E

′

) toE

′

x

, E

′

z

are both isomorphisms,E is
a vector bundle [1]. Choosec such thatL corresponds to the generalised parabolic line
bundle(π

∗

L, (c, 1)), (c, 1) ∈ P1 [1]. One has det(E′

, F1(E
′

)) = (detE′

, (c, 1)) =
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(π

∗

L, (c, 1)). Hence detE = L. SinceF1(L1) = 0, π

∗

L1(−x − z) is a sub-bundle of
E. The quotient isπ

∗

L2 as the projection fromF1(E
′

) to (L2)x ⊕ (L2)z is onto. Thus
E is S-equivalent toπ

∗

(N1 ⊕ N2).
(b) TakeE

′ as in the above proof, defineF1(E
′

) = (e1 + f2, f1). Sincep1 is an isomor-
phism andp2 has rank 1,E

y

≈ O

y

⊕m

y

. Since(e1+f2)∧f1 = 0e1∧e2+f1∧f2+· · · ,

one has det(E′

, F1(E
′

)) = (L1 ⊗ L2, (0, 1)). Hence det(E) = π

∗

(L1 ⊗ L2(−x)) =

π

∗

(N1 ⊗ N2(z)). The final assertion follows as in the above proof.

PROPOSITION 2.3

Letg
Y

= 1. Then one has the following:

(1) U

L

(2, 1) = {a point} for L ∈ J ,

U(2, 1) ≈ J ≈ Y, U

′

(2, 1) ≈ J ≈ Y − {node}.

(2) U

O

(2, 0) ≈ J/i ≈ P

1, wherei:J → J is defined byN 7→ N

∗,

U

L

(2, 0) ≈ P

1 andU

′

L

(2, 0) ≈ A

1, for L ∈ J .

Proof.

(1) Fory ∈ Y , let I
y

denote the ideal sheaf ofy. The dualI ∗

y

is a rank 1 torsion-free sheaf

of degree 1 [5]. It is well-known thaty 7→ I

∗

y

gives an isomorphismY → J

1
, where

J

1
is the compactified Jacobian of degree 1 torsion-free sheaves.
Let E be a stable rank 2 torsion-free sheaf of degree 1 onY . Thenh

1
(E) = 0 asE

is stable and henceh0
(E) = 1. Any non-zero sections ∈ H

0
(E) must be everywhere

non-vanishing, otherwise it will generate a rank 1 torsion-free subsheaf of degree≥ 1
contradicting the stability ofE. Hences ∈ H

0
(E) generates a unique trivial line

sub-bundleO of E. The quotientE/O must be torsion-free, if not then the kernel of
E → (E/O)/torsion will contradict the stability ofE. Thus we have a morphism

h: U(2, 1) → J

1
given byE 7→ E/O. Conversely, givenL ∈ J

1
, Ext1(L, O) = H

1

(L

∗

) ([4], Proof of Lemma 2.5(B)). Sinceh0
(L

∗

) = 0, h

1
(L

∗

) = 1, any non-zero
element in Ext1(L, O) determines a unique (up to isomorphism) torsion-free rank 2
sheafE of degree 1. It is easy to check thatE is stable. This gives the inverse ofh.
Note thath is in fact the determinant map.

(2) We first prove thatW0 consists of a single point. Any element inW0 has stalk at the
nodey isomorphic tom

y

⊕ m

y

. By [12], Proposition 10, p. 174, such an element is
the direct image of a vector bundleE0 on the desingularisationP1. Sinceπ

∗

E0 is
semistable, so isE0. HenceE0 = O(−1) ⊕ O(−1). By Lemma 2.2(a), for every line
bundleL there exists a vector bundleE with determinantL such thatE isS-equivalent
to π

∗

(O(−1)) ⊕ π

∗

(O(−1)). Thus for anyL ∈ J , U

L

(2, 0) contains the pointπ
∗

E0.
One hasU

L

∩W1 = W0 [1]. Thus every element ofU
L

(2, 0) isS-equivalent to a vector
bundle with determinantL. It follows thatU

L

≈ U

O

.
We now prove thatU

O

(2, 0) ≈ J/i ≈ P

1. Note first that the involutioni keeps the
unique elementπ

∗

O(−1) of J − J invariant and under the isomorphismY ≈ J , the
mapJ → J/i is the double coverY → P

1 ramified at the image of the node. LetE

be a semistable vector bundle of rank 2 with trivial determinant. LetE1 be the vector
bundle of degree 2 obtained by tensoringE with a line bundle of degree 1. SinceE1
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is semistable, with slope> 0, h

1
(E1) = 0, h

0
(E1) = 2. Since the evaluation map

Y × H

0
(E1) → E1 cannot be an isomorphism, there is a section ofE1 vanishing

at a point and hence generating a (torsion-free) subsheafN1 of rank 1, degree≥ 1.
SinceE1 is semistable, one must haved(N1) = 1. HenceE has a rank 1 subsheaf
N of degree 0. The quotientE/N is torsion-free in view of the semistability ofE.
By Lemma 2.1(1),E/N ≈ N

∗. ThusE isS-equivalent toN ⊕N

∗. Using the Poincaré
bundle and the properties of moduli spaces, one sees that this proves the proposition.

Lemma2.4. For g

Y

≥ 2, d even andL ∈ J , one has

codim
U

′

L

(U

′

L

− U

′s

L

) = 2g

Y

− 3.

Proof. A rank 2 vector bundleE which is semistable but not stable contains a torsion-
free subsheafN1 with a torsion-free quotientN2 ≈ Hom (N1, L) = N

∗

1 ⊗ L, whereL is
determinant ofE (Lemma 2.1(1)). ThusE is S-equivalent toN1 ⊕ (N

∗

1 ⊗ L), hence dim
U

′

L

− U

′s

L

= dim J = g

Y

and codim
U

′

L

U

′

L

− U

′s

L

= 2g

Y

− 3 ≥ 3 if g

Y

≥ 3.

Lemma2.5.

(1) Codim
U

L

(U

L

− U

′

L

) ≥ 3 for g

Y

≥ 3.

(2) For g

Y

= 2, codim
U

L

(U

L

− U

′

L

) = 3 if d is odd, U

L

= U

′

L

= P

3 if d is even.

Proof.

(1) The points ofU
L

− U

′

L

correspond to torsion-free sheaves which are direct images of
semistable vector bundles with fixed determinant on partial normalisations ofY . Hence
U

L

− U

′

L

is a finite union of irreducible components each of dimension 3(g

Y

− 1) − 3
= 3g

Y

− 6 for g

Y

≥ 3. Thus codim
U

′

L

(U

L

− U

′

L

) ≥ 3.
(2) For g

Y

= 2 the partial normalisations are of arithmetic genus 1. It follows from
Proposition 2.3(1) that ford odd,U

L

− U

′

L

consists of one or two points according
asg = 1 or g = 0. Ford even,U

L

= U

′

L

≈ P

3 ([2], Lemmas 3.3, 3.4, Corollary
3.5). We remark that Proposition 2.3(2) implies that the subsetU0,L

of non-locally
free sheaves inU

L

is isomorphic toP1 if g = 1 and it consists of two smooth rational
curves intersecting in a point ifg = 0. The intersection point is the direct image of the
unique semistable bundle of degreed − 2 on the desingularisationP1. Note also that
U0,L

= U

L

− U

s

L

in this case.

Lemma2.6. Codim
U

′

U

′

− U

′s

≥ 3 for g

Y

≥ 3 (d even).

Proof. The surjective determinant mapU ′

→ J is a fibration with fibres isomorphic to
U

′

L

, L a fixed line bundle of degreed. Hence the lemma follows from Lemma 2.4.

Remark2.7.

(1) Let g
Y

= 1. Then PicU(2, 1) ≈ G

m

⊕ Z. For L ∈ J, Pic U

L

(2, 0) ≈ Z, and Pic
U

′

L

(2, 0), PicU

′

(2, 0), PicU

′

(2, 1) are trivial.
(2) If g

Y

= 2, then PicU ′

L

(2, d) ≈ Z ≈ PicU

′s

L

(2, d) for all d.
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Proof. Part (1) follows from Proposition 2.3. Part (2) is proved in [3], §2.4.

PROPOSITION 2.8

For g

Y

≥ 3, one has:

(1) U

′s

L

(2, d) ≈ Z,
(2) U

′

L

(2, d) ≈ Z.

Proof. Let p: ˜

U

L

→ U

L

be a (finite) normalisation. SinceU ′

L

is normal,p is an isomor-
phism overU ′

L

andp gives a finite map˜

U

L

− p

−1
U

′

L

→ U

L

− U

′

L

. Therefore codim
˜

U

L

−p

−1
U

′

L

= codimU

L

−U

′

L

≥ 3 by Lemma 2.5. Since˜U
L

is normal, this implies that
Pic ˜

U

L

↪→ Pic(p−1
U

′

L

) ≈ Pic U

′

L

. SinceU

L

is projective, so is˜U
L

and hence rank(Pic
˜

U

L

) ≥ 1. It follows that rank(PicU ′

L

) ≥ 1. SinceU

′

L

is normal and by Lemma 2.4,
codim(U

′

L

− U

′s

L

) ≥ 3 we have PicU ′

L

↪→ Pic U

′s

L

. Thus rank(PicU ′s

L

) ≥ 1. By [3],
Proposition 2.3, one has PicU ′s

L

≈ Z or Z/mZ, m ∈ Z. It follows that PicU ′s

L

≈ Z and
hence PicU ′

L

≈ Z.

Remark2.9. Putting together the results of [3] and Proposition 2.8, we have Theorem 1.

2.10 VarietiesU1 andU1,L

Henceforth we assume that there is only one nodey. We first remark that ifE is a rank
2 vector bundle thenE cannot beS-equivalent to a direct sum of a line bundle and a
non-locally free torsion-free rank 1 sheaf. For, then, one has an exact sequence 0→

L1 → E → L2 → 0 with one of the(L1)y or (L2)y isomorphic toO
y

and the other
isomorphic tom

y

. Since Ext1(m
y

, O

y

) = 0 = Ext1(O
y

, m

y

), this meansE
y

≈ O

y

⊕m

y

,
i.e.,E is not locally free. Similarly one sees that ifE

y

≈ O

y

⊕ m

y

, thenE cannot beS-
equivalent to a direct sum of two locally free sheaves. In particularE with E

y

≈ O

y

⊕O

y

cannot beS-equivalent toE′ with E

′

y

not free unless [E] = [E′] ∈ W0. Hence taking

determinant gives a well-defined morphism det:U

′

∪ U1 → J

Y

with det(U ′

) = J

Y

,
det(U1) = J

Y

− J

Y

≈ J

X

. This morphism induces a morphism of normalisations det:
P

′

∪ P1 →

˜

J

Y

,

˜

J

Y

being the desingularisation ofJ

Y

andP

′

, P1 are respectively the pull
backs ofU ′

, U1 in the normalisation.

Lemma2.11. LetL ∈ J

Y

− J

Y

with degree ofL even.

(1) dim(U1,L

− U

s

1,L

) = g

Y

, for all L,
(2) codimU1,L

− U

s

1,L

≥ 3 for g ≥ 3.

Proof.

(1) From §2.10, one sees thatE ∈ U1,L

− U

s

1,L

is S-equivalent toN1 ⊕ N2 with one of
N1, N2 locally free and the other torsion-free but not locally free. Also, one of them is a
subsheaf and the other is a quotient sheaf. By Lemma 2.1,E ∼ M⊕(M

∗

⊗L), M ∈ J

Y

.
It follows that dim(U1,L

− U

s

1,L

) = g

Y

. In fact, one hasU1,L

− U

s

1,L

≈ J

Y

.
(2) One has dimU1,L

= 3g

Y

− 3. Hence codim(U1,L

− U

s

1,L

) = 2g

Y

− 3 ≥ 3 for g

Y

≥ 3.
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Lemma2.12. For L ∈ J

Y

− J

Y

andg

Y

≥ 2, one hascodim
U

L

(U

L

− U1,L

) ≥ 2.

Proof. The subsetU
L

− U1,L

consists of torsion-free (semistable) rank 2 sheavesE ≈

π

∗

E0, E0 semistable vector bundle of rank 2 onX with detE0 ≈ (π

∗

L/torsion)(−x) or
(π

∗

L/torsion)(−z) [1]. Hence dim(U
L

−U1,L

) = 3g

X

−3 if g

X

≥ 2, dim(U

L

−U1,L

) = 0
if g

X

= 1 andd is odd, dim(U

L

−U1,L

) = 1 if g

X

= 1 andd is even. Therefore, one has for
g

Y

≥ 3, dimU

L

−U1,L

= 3g

Y

−6 and codim
U

L

(U

L

−U1,L

) = (3g

Y

−3)−(3g

Y

−6) = 3.
For g

Y

= 2, codim
U

L

(U

L

− U1,L

) = 3 if d is odd and codim
U

L

(U

L

− U1,L

) = 2 if d is
even.

Lemma2.13.

(1) U

s

1 is non-singular, U1 is normal.

(2) U1,L

is normal, U

s

1,L

is non-singular.

(3) W

s

0 is non-singular, W0 is normal.

Proof. The moduli spaceU is the geometric invariant theoretic quotient ofR

ss by a
projective linear group. LetE be the universal quotient sheaf onR

ss

× Y . Let R1 = {t ∈

R

ss

|(E

t

)

y

≈ O

y

⊕ m

y

}, R0 = {t ∈ R

ss

|(E

t

)

y

≈ m

y

⊕ m

y

}, R1,L

= {t ∈ R1|detE
t

= L}.
At any pointp ∈ R

ss , the analytic local model forR1 ↪→ R

ss at p is SpecA/(u, v) ↪→

SpecA whereA = C[u, v]/(uv) ([9], Theorem 2(2), p. 576). Since the spectrum of a
point is a regular scheme,R1 is regular. SinceUs

1 is a geometric quotient ofRs

1, it follows
thatUs

1 is a regular scheme. SinceR1, J Y

− J

Y

are regular andR1,L

are all isomorphic,
R1,L

is regular. Hence the assertion (2) follows. We remark here thatR1, R1,L

are not
saturated forS-equivalence;U1 andU1,L

are G.I.T. quotients of open subsets ofR1 and
R1,L

consisting of sheaves notS-equivalent to elements inR0 and hence are normal. The
assertion (3) follows as (2) using [9], Theorem 2(3).

PROPOSITION 2.14

Let Y be an irreducible projective curve(with one ordinary node), g

Y

≥ 2 andn = 2.
Then

PicU

s

1,L

≈ Z or Z/mZ, m ∈ Z.

Proof. The idea of the proof is the same as that of [6] or [3], Proposition 2.3. Hence we
only indicate the necessary modifications. We may assumed � 0. ThenR

1
p

J∗

P

∗ is a
vector bundle onJ

Y

. Let P = P(R

1
p

J

∗

(P

∗

)), P

L

= fibre of P overL ∈ J

Y

. One has a
universal familyE of rank 2 torsion-free sheavesE of degreed onP×Y . LetPs

, P

s

L

be the
subvarieties corresponding to stable sheaves. Since Ext1

(O

y

, O

y

) = 0 = Ext1(m
y

, O

y

),
one hasE

y

≈ O

y

⊕ O

y

or O

y

⊕ m

y

. Hence by the universal property of moduli spaces,
one has morphismsf

ε

: P

s

→ (U − W

o

)

s andf

ε,L

: P

s

L

→ U

′s

L

(or U

s

1,L

) if L ∈ J

Y

(or L ∈ J

Y

− J

Y

). By [10], Chapter 7, Lemma 5.2′, any semistable torsion-free sheafE

of d � 0 is generated by global sections. IfE

y

≈ O

y

⊕ O

y

or O

y

⊕ m

y

, then by [1],
Lemma 2.7, one has an exact sequence 0→ O

Y

→ E → G → 0 withG torsion-free. Also
G ≈ detE by Lemma 2.1(1). Hencef

ε

andf

ε,L

are surjective. One shows that the induced
mapf

∗

ε,L

on Picard groups is injective. This was checked in [3] forL ∈ J

Y

, the same proof

goes through forL ∈ J

y

− J

Y

asR

s

1,L

andU

s

1,L

are non-singular (Lemma 2.13(2)). Let
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P

J−J

= P(R

1
p

J

∗

(P

∗

|

J−J

)) andf1: P

s

J−J

→ U

s

1. The same argument gives thatf

∗

1 is
injective and one has exact sequences

0 → PicU

s

1 → PicP

s

J−J

→ Z/((n − 1)d/a)Z → 0, a = gcd(n, d),

0 → PicU

s

1,L

→ PicP

s

L

→ Z/((n − 1)d/a)Z → 0.

SinceP

s

L

is an open subset of a projective space, PicP

s

L

is isomorphic toZ or Z/mZ and
the same as true for PicUs

1,L

.
We remark that the injectivity off ∗

ε

does not seem to follow similarly. In the notations
of [6], Corollary 7.4, one certainly gets a codimension one subvariety00−0

′

0 of 00. Since
(U − W0)

s is not necessarily non-singular it is not clear that00 − 0

′

0 is a Cartier divisor,
i.e., its ideal sheaf is locally free.U − W0 is seminormal, but not normal in general, in
particular it is not locally factorial.

PROPOSITION 2.15

Let the notations be as in Proposition2.14. Then forg
Y

≥ 3, n = 2 andg

Y

= 2, n = 2,
d odd, one has

PicU1,L

≈ PicU

s

1,L

≈ Z.

Proof. For d odd, U1,L

= U

s

1,L

. SinceU1,L

is normal and codim(U1,L

− U

s

1,L

) ≥ 3
(Lemma 2.11), PicU1,L

↪→ PicU

s

1,L

for d even,g
Y

≥ 3 as in the proof of Proposition 2.8.
Going to a finite normalisation we see that rank (PicU1,L

) ≥ 1. We need Lemma 2.12 for
this. The result now follows from Proposition 2.14.

2.16

Assume thatg
Y

= 2, g

X

= 1, n = 2, d = 0. LetM be the moduli space ofα-semistable
GPBs(E, F1(E)) of rank 2, degree 0 on a smooth elliptic curveX, 0 < α < 1, α being
close to 1 [1]. LetM

L

be the closed subscheme ofM corresponding toE with deter-
minantL, L ∈ J

X

. Let p1: F1(E) → E

x

, p2: F1(E) → E

z

be the projections. Define
D

L

= {(E, F1(E)) ∈ M

L

|p2 has rank≤ 1} and D1,L

= {(E, F1(E)) ∈ D

L

|rank
p2 = 1, p1 isomorphism}.D1,L

is an open subscheme ofD

L

andD

L

is a closed subscheme
of codimension 1 inD. There is a surjective birational morphismf : M → U such that
D

L

maps ontoU
L

′ inducing an isomorphismD1,L

≈ U1,L

′ whereL

′

= π

∗

(L(−z)). We
shall determineD

L

, D1,L

explicitly and use the explicit description to compute PicU1,L

′ .
Note thatD

L

≈ D

O

for all L.

PROPOSITION 2.17

D

L

is isomorphic to aP2-bundle overP1. OutsideP

1
− {4 points}, this bundle is of the

formP(O ⊕ ε), ε being a rank2 vector bundle.

Proof. It is not difficult to check that(E, F1(E)) of degree 0, rank 2 isα-semistable if
and only ifE is a semistable vector bundle and for any line sub-bundleL of E of degree
0, F1(E) 6= L

x

⊕ L

z

. Moreover,(E, F1(E)) is α-stable if and only ifE is semistable and
F1(E) ∩ (L

x

⊕ L

z

) = 0 for any sub-bundle of degree 0.
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Let e1, e2 and e3, e4 be the bases ofE
x

and E

z

respectively. The subspaceF1(E)

defines a point in the Grassmannian Gr of two-dimensional subspaces ofV = E

x

⊕ E

z

.
Let Gr ⊂ P(∧

2
V ) be the Pl̈ucker embedding, let(X1, Y1, X2, Y2, X3, Y3) be the Pl̈ucker

coordinates. Any element in∧2
V is of the formX1e1∧e2+Y1e3∧e4+X2e1∧e4+Y2e2∧

e3+X3e3∧e1+Y3e2∧e4. The Grassmannian quadric is given byX1Y1+X2Y2+X3Y3 = 0.
SinceE is semistable, one has either (a)E = M ⊕ M

∗

, M ∈ J

X

or (b) there is a non-

trivial extension 0→ M1
g

→ E

h

→ M2 → 0 with M1 ≈ M2 ≈ M ∈ J

X

, M

2
= O.

In either caseE is an extension ofM2 by M1; M1, M2 ∈ J

X

. Choosee1, e2, e3, e4 to be
basis elements of(M1)x, (M2)x, (M1)z, (M2)z respectively. LetD

V

⊂ Gr be defined by
Y1 = 0.

Case(a). Assume thatE = M1 ⊕ M2, M
∗

1 = M2, M1 6= M2. The groupP (Aut
E) = P(G

m

× G

m

) ≈ G

m

acts onD

V

⊂ P(∧

2
V ) by t (X1, X2, Y2, X3, Y3) =

(X1, X2, Y2, tX3, t
−1

Y3). It is easy to see thatD
V

//G

m

≈ P

2, the quotient mapD
V

→ P

2

being given by(X1, X2, Y2, X3, Y3) 7→ (X1, X2, Y2). Let D1,V

= D

V

− {(X1 = 0)

∪(1, 0, 0, 0, 0)}. The image ofD1,V

in P

2 is given byP

2
− {(X1 = 0) ∪ (1, 0, 0)}.

LetP
X

→ J

X

×X be the Poincaŕe bundle,P
x

= P|

J

′

X

×x

, P

z

= P|

J

′

X

×z

, J

′

X

= J

X

−J2,
J2 being the group of 2-torsion points ofJ

X

. The groupG
m

× G

m

acts on the bundles
V = (P

x

⊕ P

∗

x

) ⊕ (P

z

⊕ P

∗

z

), and∧

2
V as above, givingG

m

-action onP(∧

2
V) and

D

V

//G

m

≈ P

2-bundle overJ ′

X

. ThisP

2-bundle is in fact the bundleP(O ⊕ (P

x

⊗ P

∗

z

) ⊕

(P

z

⊗ P

∗

x

)). The involution onJ
X

given byi(M) = M

∗ lifts to an action on this bundle
(switching second and third factors), hence it descends to a bundle onJ

′

X

/i = P

1
− {4

points}, of the formP(O ⊕ ε), ε a vector bundle of rank 2 onJ ′

X

/i.

Case(b). There are, up to isomorphism, exactly four bundlesE given by extension of
type (b). Since any automorphism ofE is of the formλId + µg ◦ h, one hasP (Aut
E) ≈ G

a

under the isomorphism(λ, µ) 7→ t = µλ

−1
∈ G

a

. The action ofG
a

on V is
given byte1 = e1, te3 = e3, te2 = e2 + te1, te4 = e4 + te3 and that onD

V

is given by
t (X1, X2, Y2, X3, Y3) = (X1, Y2 + tY3, X2 + tY3, X3 − t (X2 + Y2) − t

2
Y3, Y3). It is not

difficult to see that the ring of invariants forG
a

-action onD

V

(resp. on the hyperplane
Y1 = 0 ofP(∧

2
V )) is generated byX1, X2−Y2, Y3 (resp.X1, X2−Y2, Y3, X2Y2+X3Y3).

The non-semistable points for theG
a

-action are{X1 = Y3 = X2 − Y2 = 0}. It follows
thatD

V

//G

a

≈ P

2, the quotient mapD
V

→ P

2 being given by(X1, X2, Y2, X3, Y3) →

(X1, X2 − Y2, Y3). Clearly, D1,V

//G

a

≈ P

2
− ({X1 = 0} ∪ (1, 0, 0)). We remark

that non-stable GPBs correspond to the lineY3 = 0 in P

2. In caseE = M1 ⊕ M2,

M1 = M2 with M

2
1 = O, one sees that corresponding quotientD

V

//G

a

is P

1 which is
identified to the lineY3 = 0 in the aboveP2. Note that there are no stable GPBs in the last
case.

It follows that there is aP2-fibrationφ: D

L

→ P

1 which is locally trivial outside the
set of four points inP1. By Tsen’s theorem ([8], p. 108, Case (d)), φ is a locally trivial
fibration. This completes the proof.

COROLLARY 2.18

Letg
X

= 1, g
Y

= 2, d even, n = 2.

(1) U1,L

′ is non-singular.

(2) PicU1,L

′

≈ Z.
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Proof.

(1) It follows immediately from the proof of Proposition 2.18 thatD1,L

is a (locally trivial)
fibration overP1 with non-singular fibres isomorphic toP2

− {(X1 = 0) ∪ (1, 0, 0)}.
HenceD1,L

andU1,L

′ are non-singular.
(2) D

L

− D1,L

∼

=

(hyperplaneH) ∪ {a line`}, H ∩ ` = 8, PicD

L

≈ Pic P

1
⊕ Pic P

2.
SinceD

L

is non-singular, 0→ ZH → Pic D

L

→ Pic(D
L

− H) → 0 is exact. It
follows that PicD

L

− H

∼

=

Pic P

1
= Z. Since` is of codimension 2, Pic(D1,L

) ≈

Pic(D
L

− H)

∼

=

Z. Thus PicU1,L

′

≈ PicD1,L

≈ Z.

Remark2.19. Note thatH → P

1 is aP

1-bundle. The fibres of this bundle are given by
X1 = 0 inD

V

, the restriction of this bundle toP1
−{4 points} isP(ε). Under the mapD

L

→

U

L

′ , thisP

1-bundle maps onto one component inU

L

′

−U1,L

′ isomorphic toJ
X

/i (≈ P

1
).

This component corresponds to sheaves of the formπ

∗

E0, detE0 ≈ L(−x−z). The line`

maps isomorphically onto the other component isomorphic toP

1, it corresponds toπ
∗

E0,
det E0 ≈ L(−2z). Sinceg

X

= 1, E0 are semistable but not stable. Thus unlike in the
case whenL′ is a line bundle (Y smooth or nodal)U

L

′

− U

s

L

′

is not the Kummer variety.
It has an open subset isomorphic toJ

Y

(Proof of Lemma 2.11(1)) whose complement is
the union of two disjoint smooth rational curves.

Putting together Proposition 2.15 and Corollary 2.18, we have proved the following.

Theorem 2. Let Y be an irreducible projective curve of arithmetic genus≥ 2 with only
a single ordinary node as singularity. LetL be a rank1 torsion-free sheaf which is not
locally free. Then

PicU1,L

≈ Z.

3. Pic and local factoriality of U ′ (n, d), U1,L (2,d)

3.1

In this section we prove Theorems 3A and 3B. Throughout the section, we assume that
n ≥ 2 and ifn ≥ 3 theng ≥ 2. One has a mapU ′

L

× J → U

′ given by tensorisation.
We first remark that PicU ′ cannot be computed easily using this map. The map induces
a map of Picard groups PicU ′

≈ Pic U

′

L

⊕ Pic J → Pic U

′

L

⊕ Pic J . The induced map
Pic J → Pic J is not identity, it is multiplication byn. The right map to consider is the
determinant morphism which does induce identity on PicJ as we show below:

Theorem 3A. One has the following:

(a) PicU

′s

≈ PicJ ⊕ Z,
(b) PicU

′

≈ PicJ ⊕ Z,
(c) U

′ is locally factorial.

Proof.

(a) Without loss of generality, we may assume thatd � 0. Then a semistable vector
bundleE of degreed is globally generated ([10], Lemma 5.2) and contains a trivial
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sub-bundle of rankn − 1. Let P = P(R

1
p

j

∗

(P

∗

⊗ C

n−1
)), it is a projective bundle

overJ . Let P

L

denote its fibre overL ∈ J, P

L

is a projective space.P parametrises
a family E of vector bundles onY of rankn, degreed and containing a trivial sub-
bundle of rankn − 1. LetPs

= {p ∈ P|E

p

stable}, P

s

L

= P

s

∩ P

L

. One has canonical
surjective morphismsf : P

s

→ U

′s

(n, d), f

L

: P

s

L

→ U

′s

L

(n, d) such that the induced
mapsf ∗: PicU

′s

→ PicP

s

, f

∗

L

: PicU

′s

L

→ PicP

s

L

are injective ([3], Proposition 2.3;
[6], Propositions 7.6, 7.8, 7.9). Clearly, PicP ≈ PicJ × Pic P

L

≈ PicJ × Z. Under
the conditions of the theorem we know that ([3], Theorem I) PicU

′s

L

≈ Z and hence
PicP

s

L

≈ Z. Hence the surjective restriction map PicP

L

→ PicP

s

L

is an isomorphism
for all L ∈ J . Hence codim

P

L

(P

L

− P

s

L

) 6= 1 and therefore codim
P

(P − P

s

) ≥ 2.
Thus PicPs

≈ PicP ≈ PicJ ⊕ Z and hence

PicU

′s

↪→ PicJ ⊕ Z.

The natural mapp: P

s

→ J factors asp = det◦f , where det is the determinant map

E 7→

n

∧ E. Since bothf and det are surjections, so isp. Note thatf ∗

◦ det∗ = p

∗: Pic
J → PicP

s is injective. It follows that det∗ is injective.
One has the following diagram with the last column exact.

0 0 0

↓ ↓ ↓

PicJ = PicJ = PicJ

↓ ↓ ↓

PicU

′

→ PicU

′s

↪→ PicJ ⊕ Z

↓ ↓ ↓

PicU

′

L

≈

→ PicU

′s

L

≈

→ Z

↓ ↓ ↓

0 0 0

HereZ denotes the image of PicU ′s

L

in Pic P

s

L

. The map PicU ′s

→ Pic U

′s

L

is the
restriction map and is surjective ([3], Proposition 3.2 and 3.5). It now follows from the
diagram that the injection PicU ′s

→ Pic J ⊕ Z is an isomorphism and the second
column is exact.

(b) and (c). Since codim
U

′

(U

′

− U

′s

) ≥ 2 under the conditions of the theorem andU

′ is
normal ([3], Proposition 3.4(i)), it follows that the restriction map PicU

′

→ PicU

′s is
injective. The restriction morphism PicU ′

→PicU

′

L

is surjective ([3], Propositions 3.2,
3.5). The restriction map PicU ′

L

→ Pic U

′s

L

is an isomorphism [3]. It now follows
from the commutative diagram that PicU ′

≈ Pic U

′s under the restriction map. By
arguments similar to those in the proof of [3], Proposition 3.6, this implies thatU

′ is
locally factorial.

Theorem 3B. LetY be an irreducible projective curve of arithmetic genusg

Y

≥ 2 with
only a single ordinary node as singularity. Ifg

Y

= 2, then assume thatd is odd. LetL be a
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rank1 torsion-free sheaf of degreed which is not locally free. LetU1,L

be the subscheme
of U corresponding to torsion-free sheaves of rank2 with determinant isomorphic toL.

(a) PicU

s

1 ≈ PicJ

X

⊕ Z,

(b) PicU1 ≈ PicJ

X

⊕ Z,

(c) U1 is locally factorial.

Proof. The proof is more or less identical with that of Theorem 3A. One has only to
replacef, f

L

by the mapsf1, fε,L

of Proposition 2.14 and use Theorem 2 instead of
Theorem 1.

4. The dualising sheaves ofU ′ and U ′

L

4.1

Let K(Y) denote the Grothendiéck group of vector bundles onY . ThenK(Y) ≈ Z ⊕ Pic
Y under the map [E] 7→ (rankE, detE), [E] being the class of a vector bundleE in K(Y).
The inverse map is given byn 7→ [n · O

Y

] for n ∈ Z andL 7→ [L] − [O
X

] for L ∈ PicY .
Letχ = d+n(1−g), P (m) = χ+rm, fix m � 0. LetQ = Quot(CP(m)

⊗O

Y

(−m), P )

be the Hilbert scheme (‘the Quot scheme’) of quotients ofC

P(m)

⊗ O

Y

(−m) with Hilbert
polynomialP . Let F → Q × Y be the universal family. LetR

m

⊂ Q be the open subset
consisting ofq ∈ Q such thatH 1

(F

q

(m)) = 0, H

0
(

∑

(m)) ' H

0
(F(m)) under the

canonical map,
∑

= C

P(m)

⊗ O

Y

(−m). The open subvarietyRss of Q consisting of
q ∈ Q such thatF

q

is a semistable torsion-free sheaf is contained inR

m

. The subsetR′ss

of R

ss corresponding to semistable vector bundles is a smooth variety, so is the closed
subsetR′ss

L

⊂ R

′ss consisting of semistable vector bundles with fixed determinantL ([10],
Remark, p. 167).

The moduli spaceU ′ (resp. U

′

L

) is a geometric invariant theoretic good quo-
tient of the smooth irreducible schemeR′ss (resp.R′ss

L

) by the groupG = P (Aut
∑

) ≈ PGL(N), N � 0 [10,12]. The restriction of the universal family onQ×Y gives a
universal familyF → R

′ss

L

×Y of vector bundles onY of rankn, degreed. Let PicG

(R

′ss

L

)

denote the group of line bundles onR

′ss

L

with G-action (compatible with theG-action on
R

′ss

L

). For a vector bundleE onY , one defines an elementλ

F

(E) ∈ PicG

(R

′ss

L

) by

λ

F

(E) := ⊗

i

(detRi

p1∗

(F ⊗ p

∗

2E))

(−1)

i+1
,

wherep1 andp2 are projections toR′ss

L

andY respectively.λ
F

(E) depends only on the
class ofE andλ

F

: K(Y) → PicG

(R

′ss

L

) is a group homomorphism.

PROPOSITION 4.2

LetE be a vector bundle onY with rank(E) = n/δ, det(E) = O

Y

(−

χ

δ

),χ = d+n (1−g),
δ = gcd(n, d). Thenλ

F

(E) descends toU ′

L

(n, d) as the generatorL of PicU

′

L

(n, d).

Proof. By [3], Propositions 3.2, 3.5, the generatorL is obtained by the descent of the line
bundleL

′ onR

′ss

L

given by

L

′

= (detRp1
∗

F)

n

δ

⊗ (

n

∧ (F |

R

′ss

L

×y0
))

χ/δ

,
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y0 being a non-singular point ofY . Here detRp1
∗

F denotes the determinant of cohomology
([7], Ch.VI, pp. 135–136). However, our definition is different from the standard one, it
is the inverse of the line bundle defined in [7] as detRp1

∗

F . One has detR
p1∗

(F) = λ

F

(1), 1 = class ofO
Y

. If h denotes the class of the structure sheaf of the pointy0, h =

[O
Y

(y0)] −[O
Y

], then we claim that

n

∧ F |

R

′ss

L

×y0
= −λ

F

(h).

Proof of the Claim.Form � 0 one has the exact sequence

0 → F(m) → F(m + 1) → F(m) |

R

′ss

L

×y0
→ 0,

F(m) = F ⊗O

Y

(m), O

Y

(1) being a line bundle of degree 1 onY . SinceR1
p1

∗

(F(m

′

)) = 0

∀m

′

≥ m, R

1
p1

∗

(F(m)|

R

′ss

L

×y0
) = 0, the direct image sequence gives

0 → R

0
p1

∗

(F(m)) → R

0
p1

∗

(F(m + 1)) → R

0
p1

∗

(F(m)|

R

′

ss

R

L

×y0
) → 0.

Since detp1
∗

(F(m

′

)) = −λ

F

(1 + m

′

h), m

′

≥ m, and

det(p1
∗

F(m)|

R

′ss

L

×y0
) ≈ det(p1

∗

F |

R

′ss

L

×y0
) =

n

∧ F |

R

′

ss

L

×y0
,

one has
n

∧ F |

R

′ss

L

×y0
= −λ

F

((m + 1)h) + λ

F

(1 + mh)

= −λ

F

(h).

This proves the claim.
Thus we have

L

′

=

n

δ

λ

F

(1) −

χ

δ

λ

F

(h)

= λ

F

(

n

δ

−

χh

δ

)

= λ

F

(E).

Remark4.3. Note that the line bundleL′ exists onRss and descends toU ′ ([3], Proposi-
tion 3.5). Alsoλ

F

(E) makes sense forF → R

ss

× Y , the universal family onRss

× Y .
The above relation betweenλ

F

(E) andL ∈ Pic U

′

L

(n, d) holds forλ
F

(E) andL ∈ Pic
U

′

(n, d) ≈ PicU

′

L

⊕ PicJ .

4.4 Computation of the dualising sheaves

Both U

′ andU

′

L

are normal and Cohen–Macaulay as they are quotients of smooth vari-
eties byPGL(N). They are also locally factorial ([3], Theorem 2; Theorem 1). A locally
factorial Cohen–Macaulay variety is Gorenstein, i.e., its dualising sheafω is locally free.
The tangent sheafT

U

′ of U

′ is locally free on the smooth open subschemeU

′s of codi-
mension≥ 2. Hence the determinant ofT

U

′ defines a line bundle detT
U

′ on U

′. Since it
coincides withω−1 onU

′s , it follows thatω−1
= detT

U

′ . Similarly one has a locally free
dualising sheafω

L

onU

′

L

with ω

−1
L

= detT
U

′

L

.
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Theorem 4. Let the assumptions be as in Theorem1. Then one has the following:

(a) ω≈ − 2δL, L = generator ofPicU

′

L

(n, d),
(b) Let F0 be a vector bundle onY of rank 2r and degree2(−d + r(g − 1)). Then

ω ≈ λ

F

(F

◦

)⊗ det∧, where∧ is a line bundle onJ given by

∧ = det(p
J ! [P] ⊗ detp

J ! [P
∗])r−1

⊗ detp
J !([P ⊗ p

∗

2F0])−1
.

Proof. In view of the injective morphismf ∗

L

: PicU

′

L

→ PicP

s

L

mappingL to O

p

s

L

(

d

δ

(r −

1)), it suffices to prove that

detf ∗

L

T

U

′

L

≈ O

P

s

L

(2d(r − 1)).

One hasf ∗

T

U

′

≈ R

1
p

P

s

∗

(E

∗

⊗ E), f

∗

L

T

U

′

L

≈ R

1
p

P

s

L∗

(AdE) ≈ R

1
p

P

s

∗

(AdE) |

P

s

L

. Also, det

R

1
p

P

s

∗

(E

∗

⊗ E) ≈ detR1
p

P

s

∗

(AdE), so that detf ∗

L

T

U

′

L

≈ detR1
p

P

s

∗

(E ⊗ E

∗

)|P

s

L

.

Computation ofdetR1
p

P

s

∗

(E ⊗ E

∗

)

There is a universal exact sequence onP

s

× Y .

0 → O

P

s

×Y

⊗ C

r−1
→ E → (1 × p)

∗

P ⊗ p

∗

P

s

O

P

s

(−1) → 0. (1)

Ford � 0, H

0
(E

∗

t

) = 0∀t ∈ P

s

, H

0
(E

t

⊗E

∗

t

) consists of scalars asE
t

is stable. Hence by
tensoring (1) withE∗ and taking direct images, one gets (ford � 0 and(1 × p)

∗

= p

#
)

0 → O

P

s

→ O

P

s

(−1) ⊗ p

P

s

∗

(p

#
P ⊗ E

∗

) → R

1
p

P

s

∗

(E

∗

⊗ C

r−1
)

→ R

1
p

P

s

∗

(E

∗

⊗ E) → 0.

Hence,

detR1
p

P

s

∗

(E ⊗ E

∗

) ≈ det(R1
p

P

s

∗

E

∗

)

r−1

⊗ det(O
P

s

(−1) ⊗ p

P

s

∗

p

#
P ⊗ E

∗

)

−1
. (2)

R

1
p

P

s

∗

(E

∗

) is computed by taking dual of (1) and direct images as follows:

0 → p

#
P

∗

⊗ p

∗

P

s

O

P

s

(1) → E

∗

→ O

P

s

×Y

⊗ C

r−1
→ 0. (1)

∗

Sincep

P

s

∗

p

#
P

∗

= 0 = p

P

s

∗

(E

∗

) for d � 0, one has the direct image sequence

0 → O

P

s

⊗ C

r−1
→ O

P

s

(1) ⊗ R

1
p

P

s

∗

(p

#
P

∗

) → R

1
p

P

s

∗

E

∗

→ O

P

s

⊗ C

(r−1)g

→ 0

and hence

detR1
p

P

s

∗

E

∗

≈ det(O
P

s

(1) ⊗ R

1
p

P

s

∗

(p

#
P

∗

)).
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Sinceh

1
(P

∗

t

) = −χ(P

∗

t

) = d + g − 1 for t ∈ J , one gets

detR1
p

P

s

∗

E

∗

≈ O

P

s

(d + g − 1) ⊗ detR1
p

P

s

∗

(p

#
P

∗

). (3)

Tensoring(1)

∗ with p

#
P gives

0 → p

∗

P

s

O

P

s

(1) → E

∗

⊗ p

#
P → O

P

s

×Y

⊗ C

r−1
⊗ p

#
P → 0,

and hence the direct image sequence

0 → O

P

s

(1) → p

P

s

∗

(E

∗

⊗ p

#
P) → p

P

s

∗

(C

r−1
⊗ p

#
P) → 0.

By tensoring withO
P

s

(−1) and taking det, one has

det(p
P

s

∗

(p

#
P ⊗ E

∗

) ⊗ O

P

s

(−1)) ≈ det(p
P

s

∗

(p

#
P ⊗ C

r−1
) ⊗ O

P

s

(−1)).

Sinceh

0
(P

t

) = d + 1 − g for t ∈ J , the latter is isomorphic to detp
P

s

∗

(p

#
P ⊗ C

r−1
) ⊗

O

P

s

((g − d − 1)(r − 1)). Thus we have

det(p
P

s

∗

(p

#
P ⊗ E

∗

) ⊗ O

P

s

(−1))

≈ detp
P

s

∗

(p

#
P ⊗ C

r−1
) ⊗ O

P

s

((r − 1)(g − d − 1)). (4)

Substituting in (2) from (3) and (4) gives

detR1
p

P

s

∗

(E

∗

⊗ E) ≈ O

P

s

(2(r − 1)d) ⊗ 1

r−1
, (5)

where1

−1
= det(R1

p

P

s

∗

p

#
P

∗

) ⊗ det(p
P

s

∗

p

#
P).

Since1|

P

s

L

is trivial, from (5) one has

detf ∗

L

T

U

′

L

≈ O

P

s

L

(2(r − 1)d),

this proves (a).
If F0 is a vector bundle of rank 2r and degree 2(−d + r(g − 1)), then from sequence

(1), one sees that

λ

E

([F0]) ≈ O

P

s

(−2d(r − 1)) ⊗ det∗(p
J

∗

P ⊗ p

∗

Y

F0),

so that (5) becomes

det(R1
p

P

s

∗

(E ⊗ E

∗

)) ≈ λ

E

([F0])−1
⊗ det∗(p

J

∗

(P ⊗ p

∗

Y

F0)) ⊗ 1

r−1
.

Sincep = det◦ f, p

∗

= f

∗

◦ det∗ andf

∗ is injective, (b) also follows.
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