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Elastic wave surfaces for the (111) plane of cubic crystals
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Abstract. The nature of inverse velocity surfaces as well as energy surfaces for elas-
tic wave propagation in the (111) plane have been studied for a number of cubic
crystals. The sections of inverse velocity surfaces by the (111) plane exhibit six-fold
symmefry in all cases. Cuspidal edges are exhibited with a six-fold symmetry by
both the slow transverse and fast transverse shear modes in the (111) plane, unlike
the case of the (100) and (110) planes for which only the slow transverse shear mode
exhibits cuspidal edges. The slow transverse mode energy surface exhibits cuspidal
edges along (112) direction or an equivalent symmetry direction. The inverse velocity
surfaces of the A-15 compounds exhibit unusually large inflexions for the slow trans-
-verse mode, whereas their energy surfaces have large cuspidal edges which intersect
each other resulting in common regions of cusps.
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1. Inéroduction

The elastic wave surfaces of crystals have been attracting increasing attention in
recent years. These investigations acquire a renewed importance in view of the vast
research that is currently in progress in the fields of phonon focussing (Maris 1971;
McCurdy 1974; Jacob Philip and Viswanathan 1977; Lax and Narayanamurti 1980)
and the propagation of nonlinear pulses or solitons in solids (Toda 1967;
Narayanamurti ez al 1973; Bishop and Schneider 1978). Since elastic wave propa-
gation is anisotropic in crystals, the energy surfaces exhibit cuspidal edges for a
large number of crystals. : :

The elastic wave surfaces have been studied in the past by several workers (Miller
and Musgrave 1956; Farnell 1961; Brugger 1965; Musgrave 1957) and an excellent
introduction of the basic concepts can be obtained from the texts of Musgrave (1970)
and Auld (1973). A very exhaustive study of the nature of the sections of the inverse
velocity surfaces as well as energy surfaces by the (100) and (110) planes of over sixty -
five crystals has been made by Jacob Philip and Viswanathan (1977) and it has been '
found that a large number of cubic crystals exhibit cuspidal edges for the sections
of energy surfaces along the (100), (110) and (111) directions. The most important
symmetry planes for a cubic crystal are the (100), (110) and (111) crystallographic
planes; but however, no work has so far been even attempted on the nature of the 3
elastic wave surfaces by the (111) symmetry plane. A study of the sections of the :
inverse velocity surface as well as energy surface by this symmetry plane is necessary f
to complete our knowledge of the elastic wave surfaces of cubic crystals and it is for
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this purpose that the present investigation has been undertaken. Unlike the case of
the sections by the (100) and (110) planes which exhibit four-fold symmetry, the
sections of the inverse velocity as well as energy surfaces by the (111) plane exhibit
hexagonal symmetry and further both the quasi-shear modes exhibit cuspidal edges
in this case. Some substances like V,Si exhibit large cusps which are so large as
to penetrate into each other resulting in common regions of cusps.

2. The dispersion equation in the (111) plane
Let( I m n) denote the direction cosines of the wave vector of a wave propagating

inside the crystal. Referred to the principal cubic axes of the crystal, the dispersion
cquation, determining the velocities of a wave propagating along (/mn) is then

given by
s (a3 — p2?) 12 I3
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and conversely / = 1 (V2 — V3w’ — ')
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For propagation in the (111) plane, we have I’ = 0 and hence,
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Substituting these in equation (1), we obtain the dispersion relation for the wave
propagation in the (111) plane as (¢ — p #2) = 0 where the elements (a;5) of the
matrix are given by ‘

m""u B ) #Hey + cw Hew + Sey)  (eu — ca)/2(3)12 1T -
Qap $(eq + Ca) Ao+ Scgy)  (cgy— cr)2(3)v2 (m')?
Qg3 Csa $(2cy + ¢q9) 0
= . @y |.@
Q10 —3(csz + 1) $ews + 4) 0
13 0 —4(c12 1+ c4y) —(C1atc49)/2(3)2 2m'n’'
G || 0 —3(ci + e (o1 + cy)203)12 AL _
Writing x = p1?, we find that the dispersion equation (1) reduces to the cubic
equation
X+ ax? + ayx + a, = 0. %

The coefficients ay 4y and a, are functions of the elastic constants and the direction
cosines in the plane.

Considering the wave vector % in the (111) plane, let 8 denote the angle which the
P2
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vestor k make with the Z’ axis so that m' =sin 6 and »’ = cos 0. The components
of the group velocity vector are given by Auld (1973).

Sy = dw/dk, = dv/ol' =0, I
Sy = dow/pk, = ovjom’

=J_(x2.a_‘12_+x?1“i+%)

200D\ om’ om'  om' r ‘ (6)

Sy = dw[ok, = puon’

1 , Oa day aau)
— - xa — — —
2va( on’ + xan' +an’ J

~ where D = (3x* 4 2a,x + ay).

From the first of the equations (6), it follows that the energy flux vector lies in the
Y'Z' plane itself. The exact direction of the group velocity vector and the
magnitude of the group velocity vector are given by

tan 0, = (8y/S,) }
. ™

S = (5% + Sz

Equations (5), (6) and (7) were solved using a TDC 316 computer for different
values of 6 from 0°to 180° in steps of 5° and sections of the inverse velocity as well as
energy surfaces by the (111) planes of the following crystals were plotted: copper,
gold, lithium, sodium, potassium, lead, molybdenum, tungsten, vanadium, niobium,
PbS, V;Si (transforming as well as. nontransforming at 300°K and 4-2°K), NaCl,
KI, RbF and some of the quantum crystals.argon, krypton, xenon and neon.

3. Results and discussion

Figure 1 depicts a (111) section of the inverse velocity surface of potassium iodide.
It is seen that the sections of inverse velocity surface of quasilongitudinal (L) and
quasi-shear modes (T and T}) exhibit six-fold symmetry. The six-fold symmetry
is exhibited sharply especially for the two shear modes. It can be noted that the posi-
tion of a maximum inflexion for the slow transverse mode (Tp corresponds to a
minimum inflexion in the fast transverse mode (T,) and vice versa. This is characteris-
tic of the sections of the inverse surfaces of all the substances we have studied.

‘The criteria for the existence of inflexions and cusps for cubic and hexagonal
crystal ha.ve_b'een discussed in detail by Musgrave (1957, see also the footnote on
page 903 of this paper). A pointed out by him; the inverse velocity -surface is-of
degree six and it is not possible for a straight line to make more than six intersections
with the inverse velocity. surface. ..If. the minimum occurred in the-same. direction,

-




Elastic wave surfaces of cubic crystals S 139

Figure 1. Section of the inverse velocity surface of the cr ...
1O ystal potassium iodide i

the (111) plane. Unit: 10-¢ cm~? sec, ¥ and Z” Lo lodide in

of the cubic crystal. nd Z” refer to the (110) and (112) directions

-- Figure 2, - Section of the enérgy & sium jodide i i
t 3 gy surface of potassium jodide in the (111) plane. Unit:
10 cms/sec.- ¥ and Z’ refer to the (T10) and (112) directions_of th(e cu)b?c crysta{f1
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a straight line could possibly result making eight intersections with the surface.
These mathematical conclusions are supported by our numerical computations which
show that the minimum of the slow transverse mode (77) should correspond to the
maximum of the fast transverse mode (T3) or vice versa.

In figure 2, we reproduce the sections of the energy surfaces of KI. An interesting
aspect of these figures is that cuspidal edges are exhibited by both the shear modes
(fast transverse as well as slow transverse), unlike the case of the (100) and (110)
planes for which only the slow transverse quasi shear mode exhibits cuspidal edges.
The reason for this is that in the (111) plane both the transverse modes are quasi
shear and not ‘ pure’ shear modes. For the case of (100) plane, both the inverse
as well as the energy surfaces of the ¢ pure ’ shear mode are circles, whereas they are
ellipses for the (110) plane. For only the (111) plane do the section of the inverse
velocity surfaces exhibit inflexions and hence the energy surface also exhibits cuspidal
edges for both the quasi-shear modes. The cusps corresponding to the fast trans-
verse mode are centred between the cusps for the slow transverse mode and vice
Versa.

Also, all the six inflexion maxima seen in figure 1 for the slow transverse mode
correspond to the (1T0) or an equivalent symmetry direction as can be verified by
substituting the corresponding direction in the transformation equation (3). The
cusps for these slow transverse modes are centred along the direction (112) or an
equivalent symmetry direction. It is important to note that cusps could occur along
directions like (T12) apart from the principal axes, face diagonals and cube diagonals.
For fz%st transverse mode, the cusp oceurs along the face diagonal.

As in the case of (100) plane, the inverse velocity surfaces of the A-15 compounds
stand aloof distinctly and exhibit unusual characteristics at low temperatures. In

zl

Figure 3. Section of the inverse velocity surface of V.§; e i
Y’ and Z’ refer to the (T10) and (T12) dirctions of thzsét?gi‘é %rifsteg i 107t o sec.
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Figure 4. Section of the energy surface of V,Siat 4-2°K. Unit: 108 cms/sec. ¥/ and Z’
refer to the (110) and (T72) directions of the cubic crystal.

Table 1. Elastic constant data

Elastic constants X 10'* dynes/cm?

Substance Density gfcc
Cll 012 CA!
KI* 0-211 0-045 00364 313
VaSi*#* 1-795 1-765 0-761 5720
*Federov 1966

**Testardi et al 1965

figure 3 we reproduce sections of the inverse velocity surface of V,Si (transforming)
at 4-2°K. Since one of the quasi-shear modes propagating along the (110) direction
with (110) polarization becomes soft for this material, the section of the inverse
velocity surface for this mode exhibits very large inflexion. The other shear mode also
has six-fold symmetry, but not pronounced peaks. Figure 4 gives the section of the
energy surface of V;Si (transforming) by the (111) plane. As stated before both the
quasi-shear modes exhibit cuspidal edges and the cusps corresponding to the slow
transverse mode (7}) are very large, so large that the cuspidal edges cross each other
resulting in common regions of the cusps.

In table 1, we have given the values of elastic constants and density used in our
computations.
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