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Abstract. After summarizing the relevant observational data, we discuss how a study of flux tube
dynamics in the solar convection zone helps us to understand the formation of sunspots. Then we
introduce the flux transport dynamo model and assess its success in modelling both the solar cycle
and its departures from strictly periodic behaviour.
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1. Introduction

It is a great honour for me to give a plenary talk in the Chandra Centenary Symposium. As
a graduate student of Gene Parker in the early 1980s, I had the privilege of working for four
years in an office about 4 or 5 doors down the corridor from Chandra’s office. Those of you
who had visited University of Chicago in those days may know that most of the astronomy
faculty and students were in a building called Astronomy and Astrophysics Center. The
building next to it — Laboratory for Astrophysics and Space Research — mainly housed the
large cosmic ray research group. However, two of the most beautiful offices in that building
were given to two theoretical astrophysicists — Chandra and Parker. Chandra stopped taking
students after a heart attack in the 1970s and there were no students working with him when
I was in Chicago. For a while I was the only theory student having a very nice office in
that building. When I was attending the first AAS meeting of my life, somebody asked
me at the dinner table, “How big is your theory group?” I replied: “It is a very small
theory group with only three members.” The next question was, “Who are the members?”
I casually said: “Oh, besides myself, the other two members of our small theory group are
Subrahmanyan Chandrasekhar and Eugene Parker.”

There was such an aura around Chandra that, like most other graduate students, [ was in
awe and always tried my best to keep away from him. Since I was the only other Indian
in the building, Chandra seemed somewhat curious about me and often asked Gene what
I was doing. Gene used to tell me that I should overcome my fear of Chandra and should
talk to him some time. A few days after my first paper dealing with the solar dynamo
problem appeared [1], while walking along the corridor, I saw Chandra coming from the
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opposite direction. Normally we would walk past each other as if we were strangers. That
day, to my utter consternation, Chandra suddenly stopped when he came close to me and
looked straight into my eyes. Then he said: “I have seen your paper. It is a nice piece
of work.” Without giving me any time to recover from my dazed state or to respond,
Chandra immediately walked away. I should mention that I had always been a great admirer
of Chandra’s style of writing. Although that first paper of mine presented a relatively
unimportant calculation, it was deliberately written in imitation of the Chandra style. You
may want to compare that paper [1] with the famous S. Candlestickmaker paper! I have
a hope that, if Chandra were present here today, he would have taken some interest in the
subject of my presentation.

All of you know about the 11-year periodicity of the sunspot cycle. There also seems
to be a 50-year periodicity in this field which you may not be aware of! So let me begin
by telling you about this 50-year periodicity. It appears that major breakthroughs in this
field take place approximately at the intervals of 50 years. (1) A little more than 150
years ago, the German amateur astronomer Schwabe [2] reported the first discovery of the
sunspot cycle. (2) About 100 years ago, Hale [3] found the evidence of Zeeman splitting
in the spectra of sunspots, thereby concluding that sunspots are regions of concentrated
magnetic field. It may be mentioned that this was a momentous discovery in the history
of physics because this was the first time somebody found a conclusive evidence of large-
scale magnetic fields outside the Earth’s environment. Now we know that magnetic fields
are ubiquitous in the astronomical Universe. With Hale’s discovery, it also became clear
that the sunspot cycle is essentially a magnetic cycle of the Sun. (3) About 50 years ago,
Parker [4] finally formulated the turbulent dynamo theory, which still provides the starting
point of our understanding of how magnetic fields arise in astronomical systems.

Even without a theoretical model of this 50-year periodicity, you should be able to make
a simple extrapolation and predict that another major breakthrough in this field should be
taking place right now. We are going to argue that such a breakthrough is indeed happening
at the present time. Some of the earlier breakthroughs were achieved single-handedly by
extraordinary individuals like Hale and Parker. Now we probably live in a less heroic age.
The present breakthrough is a result of efforts due to many groups around the world, in
which our group in Bangalore also has made some contributions.

2. Some observational considerations

Let us begin by looking at figure 1, which plots the sunspot number as a function of time
from the year 1610. Galileo and some of his contemporaries were the first scientists to study
sunspots systematically. The initial entries in figure 1 are based on their records. Then, for
nearly a century, sunspots were rarely seen — a period known as the Maunder minimum.
Afterwards the sunspot number has varied periodically with a rough period of about 11
years, although we see a considerable amount of irregularity. Some cycles are stronger
than the average and some are weaker. An intriguing question is whether we can predict
the strength of a cycle in advance. Simple methods like expanding the last few cycles in
a Fourier series and continuing the series to predict the next cycles have failed completely
in the past. It is clearly not a problem of merely extending a mathematical series and we
presumably need a proper understanding of what causes the irregularities of the cycles if
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Figure 1. The yearly averaged number of sunspots plotted against time for the period
1610-2000.

we hope to predict a future cycle successfully. When we discuss the causes of irregularities
in sunspot cycles in §5, we shall address the question whether our understanding of sunspot
cycles at the present time is good enough to make such predictions.

A few years after Schwabe’s discovery of the sunspot cycle [2], Carrington [5] noted
that sunspots seemed to appear at lower and lower latitudes with the progress of the solar
cycle. It may be mentioned that individual sunspots live from a few days to a few weeks.
Most of the sunspots in the early phase of a solar cycle are seen between 30° and 40°. As
the cycle advances, new sunspots are found at increasingly lower latitudes. Then a fresh
cycle begins with sunspots appearing again at high latitudes. Maunder [6] made the first
graphical representation of this. In a time-latitude plot, the latitudes where sunspots were
seen at a particular time can be marked by black bars. Figure 2 shows one such plot. The
explanation of the grey-scale background will be provided later. The sunspot distribution in
a time—latitude plot is often referred to as a butterfly diagram, since the pattern (the regions
marked in black bars in figure 2) reminds one of butterflies.
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Figure 2. A ‘butterfly diagram’ of sunspots, with shades of grey showing the latitude—
time distribution of longitudinally averaged weak, diffuse magnetic field (B is in Gauss).
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We have mentioned Hale’s discovery of magnetic fields in sunspots [3]. A large sunspot
has a typical magnetic field of about 3000 G. A few years later, Hale and his coworkers
made another significant discovery [7]. Often two large sunspots are seen side by side. Hale
et al [ 7] found that they invariably have opposite polarities. Figure 3 shows a magnetogram
map of the Sun in which white and black indicate respectively regions of strong positive and
negative polarities, grey being put in regions where the magnetic field is below a threshold.
A bipolar sunspot pair appears as a white patch and a black patch side by side. You may
note in figure 3 that the right sunspots in the sunspot pairs in the northern hemisphere are
positive, whereas the right sunspots in the sunspot pairs in the southern hemisphere are
negative. This is the case for a particular cycle. In the next cycle, the polarity reverses. The
right sunspots in the northern hemisphere would become negative in the next cycle and the
right sunspots in the southern hemisphere would become positive. If we only look at the
sunspot number, we may think that the sunspot cycle has a period of 11 years. However, by
taking account of the configuration of the magnetic field, we realize that the Sun’s magnetic
cycle has actually a period of 22 years.

You may note another thing in figure 3. The line joining the centres of a bipolar sunspot
pair is, on an average, nearly parallel to the solar equator. Hale’s co-worker Joy, however,
noted that there is a systematic tilt of this line with respect to the equator (the right sunspot
in a pair appearing closer to the equator) and that this tilt increases with latitude [7]. This
result is usually known as Joy’s law. The tilts, however, show a considerable amount of
scatter around the mean given by Joy’s law. As we shall see later, this law of tilts of sunspot
pairs plays a very important role in solar dynamo theory.

We shall present a detailed discussion in §3 on how the bipolar sunspot pairs arise. For
the time being, let us just mention that there has to be a strand of sub-surface magnetic field

Figure 3. A magnetogram image of the full solar disk. The regions with positive
and negative magnetic polarities are respectively shown in white and black, with grey
indicating regions where the magnetic field is weak.
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which occasionally breaks out of the solar surface as shown in figure 7b. Then magnetic
field lines would come out of one sunspot (making its polarity positive) and would go down
into the other sunspot (making its polarity negative). A look at figure 3 suggests that there
must be a sub-surface magnetic field with field lines going from the right to the left in the
northern hemisphere and there must be an oppositely directed magnetic field in the southern
hemisphere. Such a magnetic field in the azimuthal direction is called a toroidal field. This
seems to be the dominant component of the magnetic field in the Sun. In contrast, the
magnetic field of the Earth seems to be of poloidal nature.

In his seminal paper on the turbulent dynamo, Parker [4] proposed that the sunspot cycle
is produced by the oscillation between toroidal and poloidal components of the Sun’s mag-
netic field, just as we see the oscillation between kinetic and potential energies in a simple
harmonic oscillator. This was a truly extraordinary suggestion because almost nothing was
known about the Sun’s poloidal field at that time. Babcock and Babcock [8] were the first
to detect the weak poloidal field having a strength of about 10 G near the Sun’s poles. Over
the last few years, there is increasing evidence that the field outside the sunspots is actu-
ally not weak and diffuse, but concentrated in intermittent flux concentrations [9]. Only
in low-resolution magnetograms in which these flux concentrations are not resolved, the
field appears weak and diffuse. This seems to be the case even in the polar regions [10].
However, we shall not get into a more detailed discussion of this point here. Only from
mid-1970s, we have systematic data of the Sun’s polar fields. Figure 4 shows the polar
fields of the Sun plotted as a function of time (N and S indicating north and south poles),
with the sunspot number plotted below. It is clear that the sunspot number, which is a
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Figure 4. The polar field of the Sun as a function of time (on the basis of the Wilcox
Solar Observatory data) with the sunspot number shown below. The top panel, with N
and S representing north and south poles, is adapted from [51]. The yearly modulations
in the measurements of the polar fields are due to the Sun’s polar axis being slightly
inclined to the orbital plane of the Earth’s revolution around the Sun.
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proxy of the toroidal field, is maximum at a time when the polar field is nearly zero. On the
other hand, the polar field is strongest when the sunspot number is nearly zero. This clearly
shows an oscillation between the toroidal and poloidal components, as envisaged by Parker
[4]. The theoretical reason behind this oscillation will be discussed in §4.

Let us make some more remarks on the poloidal field of the Sun. It was found that there
were large unipolar patches of diffuse magnetic field on the solar surface which migrated
poleward [11]. Even when averaged over longitude, one finds predominantly one polarity
in a belt of latitude which drifts poleward [12]. The reversal of polar field, which occurs
at the time of the sunspot maximum [13], presumably takes place when sufficient field
of opposite polarity has been brought to the poles. Along with the butterfly diagram of
sunspots, figure 2 also shows the distribution of the longitude-averaged poloidal field in a
time—latitude plot. The various shades of grey indicate values of the longitude-averaged
poloidal field. While the sunspots appear at lower and lower latitudes with the progress
of the solar cycle, the poloidal field migrates poleward. The reason behind the poleward
migration of the poloidal field is a meridional circulation in the Sun which involves a flow
of gas at the surface from the equatorial region to the polar region, having an amplitude of
about 20 m s~! [14]. The poloidal field is carried poleward by this meridional circulation.

It may be noted that all the observations discussed above pertain to magnetic fields at the
Sun’s surface. We have no direct information about magnetic fields underneath the Sun’s
surface. In dynamo theory, we need to study the interactions between the magnetic fields
and velocity fields. So let us now look at the nature of the velocity fields of the Sun.

Stellar structure models suggest that the energy produced by nuclear reactions at the
centre of the Sun is transported outward by radiative transfer to a radius of about 0.7Ry
(where R is the solar radius). However, from about 0.7Rs to R, energy is transported
by convection. This region is called the convection zone, within which the plasma is in a
turbulent state with hot gas going up and cold gas coming down. The turbulent diffusivity
of the convection zone is the main source of diffusion in the dynamo problem. We have
already pointed out that there is a meridional circulation which is poleward near the solar
surface at the top of the convection zone. This meridional circulation is supposed to be
driven by the turbulent stresses in the convection zone, though our theoretical understand-
ing of this subject is rather limited at the present time. It is generally believed that the
meridional circulation at the bottom of the convection zone has to go from the polar region
to the equatorial region to conserve mass, although we do not have a direct evidence for
it yet. This meridional circulation plays a tremendously important role in current dynamo
models, as we shall see later.

We finally come to what is probably the most important part of the Sun’s velocity field
for us — the differential rotation. Unlike the Earth which rotates like a solid body, the
Sun has the angular velocity varying over it. It has been known for a long time that the
angular velocity near the Sun’s equator is faster than that at the Sun’s polar regions. In
the early years of dynamo research, theorists used to make various assumptions about the
distribution of angular velocity in the Sun’s interior. An amazing development of the last
few decades has been helioseismology — the study of the oscillations of the Sun. These
oscillations have allowed us to probe various properties of the solar interior. One of the
most extraordinary outcomes of helioseismology is that solar physicists have been able to
construct a map of angular velocity distribution in the interior of the Sun (see, for example,
[15]). A version of this map is shown in figure 5. It is seen that there is strong differential
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Figure 5. The contours of constant angular velocity inside the Sun, as obtained by
helioseismology. The contours are marked with rotation frequency in nHz. It may
be noted that frequencies of 340 nHz and 450 nHz correspond respectively to rotation
periods of 34 days and 25.7 days. Courtesy: J Christensen-Dalsgaard and M J Thomson.

rotation (i.e. a strong gradient of angular velocity) at the bottom of the solar convection
zone. This relatively thin layer of concentrated differential rotation is called the tachocline.

We have now come to the end of our discussion of what we know about the magnetic
and the velocity fields of the Sun. The aim of solar dynamo theory is the following. Given
our knowledge of the velocity fields of the Sun, we need to study the interactions between
the velocity and magnetic fields in the Sun’s interior such that all the surface observations
of magnetic fields are properly explained — a fairly daunting problem, of which the full
solution is still a distant dream.

3. Formation of sunspots

All our theoretical considerations are based on magnetohydrodynamics (MHD). An intro-
duction to its basic concepts can be found in Chs. 14-16 of [16] or Ch. 8 of [17]. Let
us begin by mentioning some concepts of MHD which we shall be using repeatedly. We
know that a magnetic field has a pressure B?/2u associated with it, along with a tension
along the field lines. The other result which is going to be of central importance to us is
the theorem due to Alfvén [18] which says that, when the magnetic Reynolds number is
sufficiently high, magnetic fields are frozen in the plasma and get carried by the velocity
fields of the plasma. Because of the high magnetic Reynolds number in the Sun, we expect
this theorem to hold — at least approximately.

Since energy is transported by convection in the layers below the Sun’s surface, sunspots
are basically regions of concentrated magnetic field sitting in a convecting fluid. To under-
stand why the magnetic field remains concentrated in structures like sunspots instead of
spreading out more evenly, we need to study the interaction of the magnetic field with the
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convection in the plasma. This subject is known as magnetoconvection. The linear theory
of convection in the presence of a vertical magnetic field was studied by Chandrasekhar
[19]. The nonlinear evolution of the system, however, can only be found from numerical
simulations pioneered by Weiss [20]. Since the tension of magnetic field lines opposes con-
vection, it was found that space gets separated into two kinds of regions. In certain regions,
magnetic field is excluded and vigorous convection takes place. In other regions, magnetic
field gets concentrated, and the tension of magnetic field lines suppresses convection in
those regions. Sunspots are presumably such regions where magnetic field is piled up by
surrounding convection. Since heat transport is inhibited there due to the suppression of
convection, sunspots look darker than the surrounding regions. Although we have no direct
information about the state of the magnetic field under the Sun’s surface, it is expected that
the interactions with convection would keep the magnetic field concentrated in bundles of
field lines throughout the solar convection zone. Such a concentrated bundle of magnetic
field lines is called a flux tube.

One important consequence of Alfvén’s theorem of flux freezing for the Sun is the fol-
lowing. If there is any poloidal field line going through the Sun, differential rotation will
drag it out to produce a toroidal field, as shown in figure 6. The production of the toroidal
field is expected to be strongest in the tachocline at the bottom of the convection zone
where the gradient of angular velocity is concentrated (see figure 5). Due to interactions
with convection there, the toroidal field should exist in the form of horizontal flux tubes. If
a part of such a flux tube rises up and pierces the solar surface as shown in figure 7b, then
we expect to have two sunspots with opposite polarities at the same latitude. But how can
a configuration like figure 7b arise? The answer to this question was provided by Parker
[21] through his idea of magnetic buoyancy. We need to have a pressure balance across the
surface of a flux tube. Since the pressure of magnetic field inside the flux tube is B>/2u,
the interior pressure is a sum of this pressure and the gas pressure pj,. On the other hand,
the only pressure outside is the gas pressure p,,. Hence we must have

BZ

Pout = Pin + Z (l)

DS

Figure 6. The production of a strong toroidal magnetic field underneath the Sun’s sur-
face. (a) An initial poloidal field line. (b) A sketch of the field line after it has been
stretched by the faster rotation near the equatorial region.
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(a) (b)
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Figure 7. Magnetic buoyancy of a flux tube. (a) A nearly horizontal flux tube under the
solar surface. (b) The flux tube after its upper part has risen through the solar surface.

to maintain pressure balance across the surface of a flux tube. It follows that

Pin = Pout> ()

which often, though not always, implies that the density inside the flux tube is less than
the surrounding density. If this happens in a part of the flux tube, then that part becomes
buoyant and rises against the gravitational field to produce the configuration of figure 7b
starting from figure 7a. It is seen in figure 6b that the toroidal fields in the two hemispheres
are in the opposite directions. If parts of these toroidal fields rise in the two hemispheres
to produce the bipolar sunspot pairs, we have a natural explanation as to why the sunspot
pairs should have the opposite polarity in the two hemispheres as seen in the magnetogram
map of figure 3.

It can be shown that magnetic buoyancy is particularly destabilizing in the interior of the
convection zone, where convective instability and magnetic buoyancy reinforce each other.
On the other hand, if a region is stable against convection, then magnetic buoyancy can be
partially suppressed there (see, for example, §8.8 in [22]). Since the toroidal flux tube is
produced at the bottom of the convection zone, we may expect some parts of it to come into
the convection zone and become buoyant, whereas other parts may remain underneath the
bottom of the convection zone and stay anchored there due to the suppression of magnetic
buoyancy. A part of the flux tube coming within the convection zone is expected to rise
and eventually reach the solar surface to form sunspots, as given in figure 7. To model the
formation of bipolar sunspots, we have to study the dynamics of flux tubes rising through
the convection zone due to magnetic buoyancy.

The best way to study this problem is to treat it as an initial-value problem. First, an
initial configuration with a magnetic flux ring at the bottom of the convection zone, having
a part coming inside the convection zone, is specified, and then its subsequent evolution is
studied numerically. The evolution depends on the strength of magnetic buoyancy, which is
in turn determined by the value of the magnetic field. We shall give arguments in §4 about
why most of the dynamo theorists till the early 1990s believed that the magnetic energy
density should be in equipartition with the kinetic energy density of convection, i.e.

B> 1

2
fdPORLp 3
2 PV (3)
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This suggests B ~ 10* G on the basis of standard models of the convection zone. If
we use full MHD equations to study the evolution of the flux tube, then the calculations
become extremely complicated. However, if the radius of cross-section of the flux tube is
smaller than the various scale heights, then it is possible to derive an equation for flux tube
dynamics from the MHD equations [23,24]. Even this flux tube equation is a sufficiently
complicated nonlinear equation and has to be solved numerically. The evolution of such
magnetic flux tubes due to magnetic buoyancy (starting from the bottom of the convection
zone) was studied by Choudhuri and Gilman [25] and Choudhuri [26]. It was found that the
Coriolis force due to the Sun’s rotation plays a much more important role in this problem
than what anybody suspected before. If the initial magnetic field is taken to have a strength
of around 10* G as suggested by (3), then the flux tubes move parallel to the rotation axis
and emerge at very high latitudes rather than at latitudes where sunspots are seen. Only if
the initial magnetic field is taken as strong as 10° G, then the magnetic buoyancy is strong
enough to overpower the Coriolis force and the magnetic flux tubes can rise radially to
emerge at low latitudes.

D’Silva and Choudhuri [27] extended these calculations to look at the tilts of emerging
bipolar regions at the surface. These tilts are also produced by the action of the Coriolis
force on the rising flux tube. Figure 8 taken from [27] shows the observational tilt vs.
latitude plot of bipolar sunspots (i.e. Joy’s law) along with the theoretical plots obtained
by assuming different values of the initial magnetic field. It is clearly seen that the theory
fits observations only if the initial magnetic field is about 10° G. If the magnetic field
is much stronger, then the Coriolis force is unable to produce much tilt. On the other

0.9

08

0.7F

Sin (Y)

0.1} +
=02 + o+
T+ 10kG
+
_03 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8

Sin (A cm)

Figure 8. Plots of sin(tilt) against sin(latitude) theoretically obtained for different initial
values of magnetic field indicated in kG. The observational data indicated by the straight
line fit the theoretical curve for initial magnetic field 100 kG (i.e. 10° G) (reproduced
from D’Silva and Choudhuri [27]).
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hand, flux tubes with weaker magnetic fields are diverted to high latitudes. Apart from
providing the first quantitative explanation of Joy’s law nearly three-quarters of a century
after its discovery, D’Silva and Choudhuri [27] put the first stringent limit on the value
of the toroidal magnetic field at the bottom of the convection zone. Several other authors
[28,29] soon performed similar calculations and confirmed the result. Initially some efforts
were made to explore whether flux tubes with magnetic field given by (3) could satisfy
various observational constraints by invoking extra effects [30,31]. However, the evidence
kept mounting that the magnetic field at the bottom of the convection zone is indeed much
stronger than the equipartition value given by (3).

We already mentioned that the tilts of active regions have a large amount of scatter
around the mean given by Joy’s law. In fact, it is found that active regions often emerge
with initial tilts inconsistent with Joy’s law and then the tilts change in the next few days to
come closer to values given by Joy’s law [32]. Longcope and Choudhuri [33] have argued
that the vigorous convective turbulence in the upper layers of the convection zone exerts a
random force on the tops of the rising flux loops, causing a scatter around Joy’s law, and
then the tilt of the flux tube relaxes to the appropriate value after the emergence of the
top of the tube through the solar surface when the top is no longer kicked by convective
turbulence.

4. Modelling the cycles from flux transport dynamo

If we begin by assuming the Sun to have a poloidal field as shown in figure 6a, we saw that
various properties of sunspot pairs can be explained. The differential rotation would stretch
this poloidal field to produce the toroidal field, the interaction with convection would lead to
toroidal flux tubes and then magnetic buoyancy would make these flux tubes rise to produce
the bipolar sunspots. However, if there is no mechanism to replenish the poloidal field, then
it would decay away and ultimately the whole process outlined here would stop. We now
turn to the question as to how the poloidal field is produced. We invoke a mechanism first
proposed by Babcock [34] and Leighton [35]. The name of Leighton should be known to
most physicists as the second author of the celebrated Feynman Lectures [36].

Let us now explain what this Babcock—Leighton mechanism is. We pointed out in §2 that
bipolar sunspots have tilts increasing with latitude, in accordance with Joy’s law. Then we
discussed in §3 how this law was explained by D’Silva and Choudhuri [27] by considering
the action of the Coriolis force on rising flux tubes. Now, a typical sunspot lives for a few
days and the magnetic field of the sunspot diffuses in the surrounding region by turbulent
diffusion after its decay. When a tilted bipolar sunspot pair with the right spot nearer the
equator and the left spot at a higher latitude decays, the polarity of the right sunspot gets
more diffused in the lower latitudes and the polarity of the left sunspot gets more diffused
in the higher latitudes. Take a look at figure 3 to visualize this process. This process
essentially gives rise to a poloidal field at the solar surface. Since sunspots form from
the toroidal field due to magnetic buoyancy, a tilted bipolar sunspot pair can be viewed as
a conduit through which a part of the toroidal field ultimately gets transformed into the
poloidal field. The tilted sunspot pair forms from the toroidal and we get the poloidal field
after its decay. This is the basic idea of poloidal field generation proposed by Babcock [34]
and Leighton [35].
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It may be noted that this Babcock-Leighton mechanism is somewhat different from
the original proposal of Parker [4], which was elaborated further by Steenbeck et al [37].
According to this original proposal, the turbulence in the convection zone would involve
helical motions due to the Coriolis force and the toroidal field would be twisted by this
helical turbulence to produce the poloidal field. However, this process, often known as the
a-effect, can occur only if the maximum value of the toroidal magnetic field is such that the
magnetic energy density does not exceed the kinetic energy of turbulence, as indicated by
(3). As we already pointed out, flux tube simulations for modelling sunspot formation sug-
gest that the toroidal field is about one order of magnitude stronger (about 103 G) compared
to what we get from (3) (about 10* G). If the toroidal field is so strong, then the a-effect
as originally envisaged by Parker [4] cannot work and the Babcock-Leighton mechanism
seems to be the likely mechanism by which the poloidal field is produced.

Figure 9 is a cartoon encapsulating how the solar dynamo operates. If you understand
this cartoon, then you would have got the central point of this paper! The toroidal field
is produced in the tachocline by the differential rotation stretching out the poloidal field.
Then this toroidal field rises due to magnetic buoyancy to produce bipolar sunspots at the
solar surface, where the poloidal field is generated by the Babcock—Leighton mechanism
from these bipolar sunspots. The poloidal field so generated is carried by the meridional
circulation first to the polar region and then underneath the surface to the tachocline to be
stretched by the differential rotation, thus completing the cycle. The likely streamlines of
meridional circulation are indicated in figure 9. This type of dynamo model in which the
meridional circulation plays a crucial role is called a flux transport dynamo.

Most of the present day dynamo theorists believe that the solar dynamo operates in this
way. Wang et al [38] proposed the idea of the flux transport dynamo. Choudhuri et al [39]
and Durney [40] were the first to construct two-dimensional models of the flux transport

++ Strong Differential Rotation
..... Babcock-Leighton Process
- \lagnetic Buoyancy

—> Meridional Circulation

Figure 9. A cartoon explaining how the solar dynamo works within the convection
zone.
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dynamo to demonstrate that such a dynamo really does work. Initially it was thought
that this type of dynamo model would not work due to a technical reason. There is a
rule, known as the Parker—Yoshimura sign rule [4,41], which suggests that the type of
dynamo outlined in figure 9 would produce a poleward dynamo wave. In other words,
it was feared that such a theoretical model would suggest that sunspots should appear at
higher and higher latitudes with the progress of the sunspot cycle rather than at lower and
lower latitudes. Choudhuri et al [39] solved this puzzle by demonstrating that a sufficiently
strong meridional circulation can override the Parker—Yoshimura sign rule and make the
dynamo wave propagate equatorward. This paved the way for the subsequent growth of the
flux transport dynamo model.

So far in this paper I have avoided getting into equations. For those who wish to see
the equations, I now show the central equations of the flux transport dynamo theory. In
spherical coordinates, we write the magnetic field as

B =B 0)e; +V x [A(r,0)ey], “)

where B(r, 6) is the toroidal component and A(r, ) gives the poloidal component. We can
write the velocity field as v + 7 sin6 Q(r, 6)es, where Q(r, 0) is the angular velocity in
the interior of the Sun and v is the velocity of meridional circulation having components
in r and 6 directions. Then the main equations telling us how the poloidal and the toroidal
fields evolve with time are

9A 1 , 1
— 4+ -(vV-VY$A) =Ar V' — = )A+aB, ®))
at s 52

B 12 oy + L)
— 4+ | —(rv, — (v
T 90 0

1 1dir
=i (VP—=|B B, V)Q+ -— —(B), 6
T( S2> +sB,-V) o ar(r ) (6)

where s = r sinf and At is the turbulent diffusivity inside the convection zone. We should
point out that eqs (5) and (6) are the mean field equations obtained by averaging over the
turbulence in the convection zone and describe the mean behaviour of the average magnetic
field. Since eqs (5) and (6) are coupled partial differential equations, nothing much can be
done analytically. Our research group in IISc Bangalore has developed a numerical code
Surya for studying the flux transport dynamo problem by solving eqs (5) and (6). I can
send the code Surya and a detailed guide for using it to anybody who sends a request to my
e-mail address arnab @ physics.iisc.ernet.in.

Some of the first results obtained with Surya were presented by Nandy and Choudhuri
[42] and Chatterjee et al [43]. I may mention that a modified version of Surya has even been
used to study the evolution of magnetic fields in neutron stars [44,45]. Figure 10 shows a
theoretical butterfly diagram of sunspots, superposed on contours in the time—latitude plot
of the poloidal field on the solar surface. This theoretical figure obtained by the code Surya
has to be compared with the corresponding observational figure given in figure 2. Given
the fact that this was one of the first efforts of reproducing this observational figure from
a theoretical model, hopefully most readers will agree that the match between theory and
observations is not too bad.
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Figure 10. A theoretical butterfly diagram of sunspots superposed on contours of con-
stant B, at the solar surface in a time—latitude plot. This figure is taken from Chatterjee
et al [43].

The original flux transport dynamo model of Choudhuri, Schiissler and Dikpati [39] was
developed at a time when Mausumi Dikpati was my PhD student. Afterwards she went to
work in HAO Boulder and the parent model led to two offsprings: a high-diffusivity model
and a low-diffusivity model. The diffusion times across the convection zone in these two
models are of the order of 5 years and 200 years respectively. The high-diffusivity model
has been developed in IISc Bangalore by me and my successive PhD students (Choudhuri,
Nandy, Chatterjee, Jiang, Karak), whereas the low-diffusivity model has been developed by
Dikpati and her co-workers in HAO (Dikpati, Charbonneau, Gilman, de Toma). The differ-
ences between these models have been systematically studied by Jiang et al [46] and Yeates
et al [47]. Both these models are capable of producing oscillatory solutions resembling
solar cycles. However, when we try to study the variabilities of the cycles, the two models
give completely different results. We need to introduce fluctuations to cause variabilities in
the cycles. In the high-diffusivity model, fluctuations spread all over the convection zone
in about five years. On the other hand, in the low-diffusivity model, fluctuations essentially
remain frozen during the cycle period. Thus the behaviours of the two models are totally
different on introducing fluctuations. It may be mentioned that simple mixing length argu-
ments suggest a reasonably high turbulent diffusivity (see p. 629 of [22]) consistent with
what is used in the high-diffusivity model of the IISc Bangalore group.

5. Irregularities of solar cycles and prospects for predicting future cycles

Before coming to the question of what causes the irregularities of solar cycles, we take
another look at the plot of polar fields in figure 4. The polar field at the end of cycle 22
was weaker than the polar field in the previous sunspot minimum. We see that this weaker
polar field was followed by the cycle 23 which was weaker than the previous cycle. Does
this mean that there is a correlation between the polar field during a sunspot minimum and
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Figure 11. (a) shows a plot of the strength of cycle n + 1 against the polar field at
the end of cycle n. (b) shows a plot of the polar field at the end of cycle n against the
strength of the cycle n (from Choudhuri [49]).

the next sunspot cycle? In figure 11a, we plot the polar field in the sunspot minimum along
the horizontal axis and the strength of the next cycle along the vertical axis. Although there
are only three data points so far, they lie so close to a straight line that one is tempted
to conclude that there is a real correlation. There is a joke that astrophysicists often do
statistics with one data point, whereas here we have three! On the other hand, figure 11b,
which has the cycle strength along the horizontal axis and the polar field at the end of that
cycle along the vertical axis, has points which are scattered around. Choudhuri et al [48]
proposed the following to explain these observations. While an oscillation between toroidal
and poloidal components takes place, the system gets random kicks at the epochs indicated
in figure 12. Then the poloidal field and the next toroidal field should be correlated, as
suggested by figure 11a. On the other hand, the random kick ensures that the toroidal field
is not strongly correlated with the poloidal field coming after it, as seen in figure 11b.

If there is really a correlation between the polar field at the sunspot minimum and the next
cycle, then one can use the polar field to predict the strength of the next cycle [50]. Since the
polar field in the just concluded minimum has been rather weak (as seen in figure 4), several
authors [51,52] suggested that the coming cycle 24 will be rather weak. Very surprisingly,
the first theoretical prediction based on a dynamo model made by Dikpati and Gilman [53]
is that the cycle 24 will be very strong. Dikpati and Gilman [53] assumed the generation
of the poloidal field from the toroidal field to be deterministic, which is not supported by
observational data shown in figure 11b. Tobias er al [54] make the following comment
on this work: “Any predictions made with such models should be treated with extreme
caution (or perhaps disregarded), as they lack solid physical underpinnings.” While we also

—)@ Poloidal @ —> Poloidal N Toroidal —

Random kick Random kick

Figure 12. A schematic cartoon of the oscillation between toroidal and poloidal
components, indicating the epochs when the system is subjected to random kicks.
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consider many aspects of the Dikpati—Gilman work wrong which will become apparent to
the reader soon, we cannot also accept the opposite extreme viewpoint of Tobias et al [54],
who suggested that the solar dynamo is a nonlinear chaotic system and predictions are
impossible or useless. If that were the case, then we are left with no explanation for the
correlation seen in figure 11a.

Let us now finally come to the theoretical question as to what produces the variabilities
of cycles and whether we can predict the strength of a cycle before its advent. Some
processes in nature can be predicted and some not. We can easily calculate the trajectory of
a projectile by using elementary mechanics. On the other hand, when a dice is thrown, we
cannot predict which side of the dice will face upward when it falls. Is the solar dynamo
more like the trajectory of a projectile or more like the throw of a dice? Our point of view
is that the solar dynamo is not a simple unified process, but a complex combination of
several processes, some of which are predictable and the others are not. Let us look at the
processes which make up the solar dynamo.

The flux transport dynamo model combines three basic processes. (i) The strong toroidal
field is produced by the stretching of the poloidal field by differential rotation in the
tachocline. (ii) The toroidal field generated in the tachocline gives rise to sunspots due to
magnetic buoyancy and then the decay of tilted bipolar sunspots produces the poloidal field
by the Babcock-Leighton mechanism. (iii) The poloidal field is advected by the meridional
circulation first to high latitudes and then down to the tachocline, while diffusing as well.
We believe that the processes (i) and (iii) are reasonably ordered and deterministic. In con-
trast, the process (ii) involves an element of randomness due to the following reason. The
poloidal field produced from the decay of a tilted bipolar region by the Babcock—Leighton
process depends on the tilt. While the average tilt of bipolar regions at a certain latitude
is given by Joy’s law, we observationally find quite a large scatter around this average. As
we already pointed out, the action of the Coriolis force on the rising flux tubes gives rise to
Joy’s law [27], whereas convective buffeting of the rising flux tubes in the upper layers of
the convection zone causes the scatter of the tilt angles [33]. This scatter in the tilt angles
certainly introduces a randomness in the generation process of the poloidal field from the
toroidal field. Choudhuri et al [48] identified it as the main source of irregularity in the
dynamo process, which is in agreement with figure 12. It may be noted that Choudhuri
[55] was the first to suggest several years ago that the randomness in the poloidal field
generation process is the source of fluctuations in the dynamo.

The poloidal field gets built up during the declining phase of the cycle and becomes
concentrated near the poles during the sunspot minimum. The polar field at the sunspot
minimum produced in a theoretical mean field dynamo model is some kind of ‘average’
polar field during a typical sunspot minimum. The observed polar field during a particu-
lar sunspot minimum may be stronger or weaker than this average field. The theoretical
dynamo model has to be updated by feeding the information of the observed polar field
in an appropriate way, in order to model actual cycles. Choudhuri et al [48] proposed to
model this in the following way. They ran the dynamo code from a minimum to the next
minimum in the usual way. After stopping the code at the minimum, the poloidal field of
the theoretical model was multiplied by a constant factor everywhere above 0.8 R, to bring
it in agreement with the observed poloidal field. Since some of the poloidal field at the
bottom of the convection zone may have been produced in the still earlier cycles, it is left
unchanged by not doing any updating below 0.8 Rs. Only the poloidal field produced in
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the last cycle which is concentrated in the upper layers gets updated. After this updating
which takes care of the random kick shown in figure 12, we run the code till the next min-
imum, when the code is again stopped and the same procedure is repeated. Our solutions
are now no longer self-generated solutions from a theoretical model alone, but are solu-
tions in which the random aspect of the dynamo process has been corrected by feeding the
observational data of polar fields into the theoretical model.

Before presenting the results obtained with this procedure, we come to the question as
to how the correlation between the polar field at the sunspot minimum and the strength of
the next cycle as seen in figure 11a may arise. This was first explained by Jiang ef al [46].
The Babcock-Leighton process would first produce the poloidal field around the region C
in figure 13. Then this poloidal field will be advected to the polar region P by meridional
circulation and will also diffuse to the tachocline T. In the high-diffusivity model, this
diffusion will take only about five years and the toroidal field of the next cycle will be
produced from the poloidal field that has diffused to T. If the poloidal field produced at C
is strong, then both the polar field at P at the end of the cycle and the toroidal field at T for
the next cycle will be strong (and vice versa). We thus see that the polar field at the end of
a cycle and the strength of the next cycle will be correlated in the high-diffusivity model.
But this will not happen in the low-diffusivity model where it will take more than 100 years
for the poloidal field to diffuse from C to T and the poloidal field reaches the tachocline
only due to the advection by meridional circulation taking a time of about 20 years. If we
believe that the three data points in figure 11a indicate a real correlation, then we have to
accept the high-diffusivity model!

Finally the solid line in figure 14 shows the sunspot number calculated from our high-
diffusivity model [48]. Since systematic polar field measurements are available only from
the mid-1970s, the procedure outlined above could be applied only from that time. It is seen
from figure 14 that our model matches the last three cycles (dashed line) reasonably well

Figure 13. A sketch indicating how the poloidal field produced at C during a maximum
gives rise to the polar field at P during the following sunspot minimum and the toroidal
field at T during the next sunspot maximum (from [46]).
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Figure 14. The theoretical monthly sunspot number (solid line) for the last few years
as well as the upcoming next cycle, plotted along with the observational data (dashed
line) for the last few years (from Choudhuri et al [48]).

and predicts a weak cycle 24. It should be stressed that this is an inevitable consequence
of the high-diffusivity model in which the strength of the cycle is correlated with the polar
field in the previous sunspot minimum and we have fed the information in our calculation
that the polar field in the just-concluded minimum was weak. We now wait for the Sun-
god to give a verdict on this prediction within a couple of years. It may be mentioned
that over the last few years several authors [43,46,56-59] have given several independent
arguments in support of the high-diffusivity model. If the next cycle 24 turns out to be
weak (for which there are already enough indications), then that will further support the
high-diffusivity model.

One important related question is whether our dynamo model can explain occurrences
of extreme events like the Maunder minimum in the seventeenth century. Choudhuri and
Karak [60] showed that the flux transport dynamo model can reproduce the Maunder min-
imum if we introduce a set of assumptions in the theoretical model. Whether this set
of assumptions necessary for producing the Maunder minimum is justified on statistical
grounds is an important question which needs to be investigated.

While the fluctuations in the Babcock-Leighton process seem to be the main source of
irregularities in the sunspot cycle, the meridional circulation also has fluctuations and it has
become apparent in the last few years that the fluctuations in meridional circulation also
introduces irregularities in sunspot cycles [61]. Since this topic has started being studied
systematically only recently [62—64], it would be premature to provide its summary here.
It seems that the nonlinear aspects of the equations can also play important roles and there
are some indications that the solar dynamo may be close to a point of chaotic bifurcation
[65,66]. We are certainly far from a full theoretical understanding of the irregularities of
the sunspot cycle.
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