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String-searching algorithms are used to find the occur-
rences of a search string in a given text. The advent of 
digital computers has stimulated the development of 
string-searching algorithms for various applications. 
Here, we report the performance of all string-searching 
algorithms on widely used biological sequence data-
bases containing the building blocks of nucleotides (in 
the case of nucleic acid sequence database) and amino 
acids (in the case of protein sequence database). The 
biological sequence databases used in the present 
study are Protein Information Resource (PIR), SWISS-
PROT, and amino acid and nucleotide sequences of all 
genomes available in the genome database. The average 
time taken for different search-string lengths consid-
ered for study has been taken as an indicator of per-
formance for comparison between various methods. 
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THE problem of pattern matching or string searching is 
one of the oldest and most pervasive fields in computer 
science. Applications that require string searching can be 
found almost everywhere. However, recent years have 
witnessed immediate interest in string-searching problems, 
especially for rapidly growing sequence information in 
biology. Because of the drastic increase in incoming seque-
nce, the demand for an efficient string-searching algorithm 
is well realized.  
 The string-searching problem is to find one or more 
occurrences of the interested search string within the text 
string. Here, we denote the search string as SStr consisting 
of m characters, x1, x2, …, xm and the text string as TStr 
consisting of n characters, y1, y2, …, yn. All these charac-
ters are built over a finite alphabet set denoted by Σ, 
which has size equal to σ. Literature survey revealed that 
several algorithms exist to perform this task efficiently 
and each of them adopts its own technique and methodology. 
Most of the algorithms that do not use the theory of auto-
mata use the concept of window to find the occurrence of 
SStr within TStr. A window is defined as a portion of the 
text whose length is equal to the length (m) of the SStr, 
and it slides over the text after each attempt. The current 
position of the window in the text is denoted by Wpos 
and is first initialized to zero (left ends of TStr and the 
window are aligned). An attempt is made to match the 

characters in the window with the search string characters 
in some predefined order. After a match, Wpos is incremented 
based on the skip value generated by the algorithm, in order 
to slide the window on the text. This procedure is repeated 
until the window goes to the right end of the text. However, 
each algorithm uses its own method to calculate the skip 
value.  
 String-searching algorithms have evolved drastically. 
However, the most naïve algorithm to solve this problem 
is to take the skip value as one. This simple approach is 
known as the brute force method. After this basic approach, 
various algorithms were developed, which improved the 
efficiency and each had its own advantages and limitations.  
 The string-searching algorithms can be addressed in 
different ways. In particular, they are amenable to approaches 
that range from the extremely theoretical to practical. On 
the other hand, practical implementations of the algorithm, 
though hard to assimilate, have proved to be more benefi-
cial and useful. Hence, it is extremely difficult to identify 
a suitable and preferably fast algorithm for a given data-
base (because of the variation in the alphabet size; for 
proteins the alphabet size is 20, whereas it is 4 for nucleotide 
sequences). In addition, only a real-time practitioner can 
locate and use the most appropriate algorithm to perform 
a particular task. Given a situation with a string-searching 
problem, amateur software engineers, computational biolo-
gists, researchers or students tend to dig out information 
through search engines (for example, Google). This ap-
proach will solve the problem, but does not guarantee that 
the chosen algorithm is an efficient one. Hence, we undertook 
this work to study the behaviour or time complexities of 
various algorithms on the frequently used biological sequence 
databases.  
 Many of the string-searching algorithms are implemented 
in two phases, viz. pre-processing phase and search phase. 
During the pre-processing phase, the algorithm preproc-
esses the search string and generates the skip value that 
can be used in the search phase. The pre-processed skip 
value helps reduce the total number of character compari-
sons during the search phase, thereby reducing the overall 
execution time. Hence, the pre-processing phase aims at 
simplifying the operations in the search phase. However, 
the efficiency of an algorithm is mainly dependent on the 
methodology adopted in the search phase. The search 
phase can be improved by altering the order in which the 
characters are compared at each attempt using the most 
appropriate skip value that maximizes the shift of the 
window on the text.  
 The need for an efficient string-searching algorithm 
has been realized for the databases of amino acids and 
nucleotides, in the post-genomics era. These databases 
need to be clearly mined to obtain useful information. The 
amount of biological sequence information generated in 
the recent years has seen a dramatic increase. It has been 
roughly estimated that the amount of biological informa-
tion doubles every 20 months, and hence it is mandatory 
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to identify an efficient and appropriate string-searching 
algorithm. Next, we briefly describe various existing algo-
rithms. 
 There exists a myriad of algorithms for string searching. 
The basic approach is brute force (BF), as pointed out 
earlier. The first linear-time string-searching algorithm is 
from Morris and Pratt (MP)1, later improved by Knuth, 
Morris and Pratt (KMP)2. Subsequent improvements over 
MP were done by Colussi (COLUSSI)3, Galil Giancarlo 
(GG)4 and Apostolico Crochemore (AXAMAC)5. The 
Boyer Moore (BM)6 algorithm is considered as one of the 
most efficient string-searching algorithms. This has been 
widely recognized and used in various string-searching 
applications. Subsequently, several variants of the BM 
algorithm had appeared in the literature by introducing 
minor modifications. Turbo Boyer Moore (TBM)7 algorithm 
is based on BM and helps increase the shift after each  
attempt. Tuned Boyer Moore (TUNEDBM)8 algorithm at-
tempts to reduce the character–character comparisons by 
imposing character inspections for a specified number of 
times (usually three). Instead of taking a shift value based 
on the character in the window where the mismatch occurred 
as in BM, Horspool (HORSPOOL)9 algorithm always 
takes the last character to find the shift value. Hence, 
there is less number of instructions to execute at each attempt 
and this algorithm is more practical in approach. On the 
other hand, Quick Search (QS)10 algorithm takes (always) 
the character placed immediately after the window to 
compute the shift value after each attempt. Smith (SMITH)11 
algorithm tries to maximize the shift of the window after 
each attempt, by taking the maximum of the shift value 
gained by both HORSPOOL and QS algorithm. Berry 
Ravindran (BR)12 algorithm uses a two-dimensional array 
of the search string and works in a similar fashion like 
BM. The other variants of BM algorithm include Apostolico 
Giancarlo (AG)13, Reverse Colussi (RC)14 and Zhu Takaoka 
(ZT)15. 
 There are algorithms that work on automaton with the 
MP or BM concept used inherently in them. The very basic 
algorithm uses deterministic finite automaton (DFA). 
Simon (SIMON)16 algorithm also uses DFA, but also com-
bines the traits of MP. The Forward DAWG (Directed 
Acyclic Word Graph) matching (FDM)17 algorithm uses the 
suffix automaton of the search string. Other algorithms that 
use the suffix automaton are Reverse Factor (RF)18 and 
Turbo Reverse Factor (TRF), which are the most efficient 
in practice. A variant of RF that uses the suffix oracle in-
stead of the suffix automaton is Backward Oracle Matching 
(BOM)19. Skip Search (SKIP)20 and KMP Skip Search 
(KMPSKIP)20 algorithms use buckets to determine start-
ing positions of the search string in the text. The other 
variant of RF is Backward Nondeterministic DAWG 
matching (BNDM)21 algorithm, which uses bit parallel-
ism simulation of the suffix automaton.  
 The Karp Rabin (KR)22 algorithm uses hashing methodo-
logy for string searching. The algorithm Shift Or (SO)23 is 

an efficient one that uses bit-wise operations for its working. 
Not So Naive (NSN)24 is a string searching algorithm, 
which is simple in implementation. Raita (RAITA)25 algo-
rithm gives importance to the order of comparison at each 
attempt and hence is efficient in practice. The first two 
linear optimal space string-searching algorithms are Galil 
Seiferas (GS)26 and Two Way (TW)27. String Matching 
on Ordered Alphabets is attained through SMOA7 algorithm. 
Optimal Mismatch (OM)10 and Maximal Shift (MS)10 algo-
rithms sort the search-string positions according to their 
character frequency and their leading shift. 
 After a careful analysis of the existing algorithms, recently 
Sheik–Sumit–Anindya–Balakrishnan–Sekar (SSABS)28 
proposed a new algorithm. The algorithm, SSABS, blends 
the advantages of QS and RAITA. In this algorithm, the order 
of character comparisons performed between the window 
and the search-string during each attempt is fixed. First, 
the rightmost characters of the window and the search 
string are compared. Secondly, the leftmost characters of 
the window and the search-string are compared, and then 
rest of the characters are compared in right to left order. 
In case of a mismatch in any one of the above-stated 
comparisons, the algorithm does not compare the remaining 
characters of the window. After either a match or a mis-
match, the algorithm computes the shift of the window by 
finding the position of the bad character (character placed 
immediately after the window) in the search string. This 
shift value for all the characters in the alphabet are com-
puted in the preprocessing phase and is used in the search 
phase. Hence, the algorithm SSABS is most efficient and 
works well in most practical situations. We now deal with 
about the various biological sequence databases used in 
the present study to identify an efficient algorithm.  
 Protein databases contain protein sequences and informa-
tion about protein motifs and features of protein structures. 
The protein sequences are present in SWISS-PROT29, 
PIR30, and Protein Data Bank (PDB)31. SWISS-PROT 
provides high level of annotation, which consists of pro-
tein function, domain, protein translational modification, 
etc. SWISS-PROT merges all these data to minimize the 
redundancy of the database. It provides integration between 
nucleic acid sequences, protein sequences and protein ter-
tiary structures. This database was developed and primarily 
maintained by Swiss Institute of Bioinformatics. 
 PIR is the most comprehensive and expertly annotated 
protein sequence database. The objective of PIR is to achieve 
comprehensiveness, timeliness, non-redundancy, quality 
annotation and complete classification. PIR data-processing 
involves four major steps: import, merging, classification 
and annotation. Once a unique protein sequence report is 
imported, it is assigned an accession number and is en-
tered into PIR. Further merging, annotation and classifi-
cation take place. Retrieval of the submitted or reported 
sequence can be performed in PIR archive. PIR is an anno-
tated database covering the entire taxonomic range. Re-
cently, PIR and its international partners, EBI and SIB 
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Table 1. Amino acids and their occurrences in various databases used in the present study 

  Amino acid 
 

Single-letter code Three-letter code Full name SWISS-PROT PIR FAA 
 

A ALA Alanine 3856544 7644886 13100890 
C CYS Cysteine 781348 1354341 1839722 
D ASP Aspartic acid 2630032 5065775 8295604 
E GLU Glutamic acid 3259738 6138803 9841468 
F PHE Phenylalanine 2011040 4034446 6335049 
G GLY Glycine 3432262 6584906 10713539 
H HIS Histidine 1129444 2079537 3349835 
I ILE Isoleucine 2930055 5807964 9562897 
K LYS Lysine 2953764 5544237 8668206 
L LEU Leucine 4766306 9397947 15356872 
M MET Methionine 1185715 2287852 3715491 
N ASN Asparagine 2115899 4154656 6697619 
P PRO Proline 2418963 4526668 6900621 
Q GLN Glutamine 1949526 3676823 5838973 
R ARG Arginine 2609373 5111181 8414478 
S SER Serine 3446430 6787410 10200603 
T THR Threonine 2730060 5301799 8319861 
V VAL Valine 3313610 6471185 10559951 
W TRP Tryptophan 586516 1179815 1837371 
Y TYR Tyrosine 1546596 3020166 4820702 

 
Table 2. Average time (10–2 s) taken by various algorithms for protein sequence database SWISS-PROT. Value within parenthesis represents cor- 
  responding standard deviation 

Algorithm 2 4 6 8 10 12 14 16 18 20 
 

BF 255 (2) 254 (1) 255 (1) 255 (1) 254 (1) 255 (1) 255 (1) 255 (1) 255 (0) 255 (1) 
MP 75 (3) 75 (2) 77 (3) 75 (2) 75 (2) 75 (2) 76 (3) 76 (3) 76 (3) 76 (2) 
KMP 74 (3) 74 (2) 75 (4) 74 (2) 75 (3) 74 (3) 74 (3) 75 (3) 74 (2) 74 (2) 
COLUSSI 87 (6) 88 (1) 89 (7) 89 (7) 90 (10) 89 (7) 88 (7) 89 (10) 87 (6) 88 (9) 
GG 95 (18) 95 (1) 96 (10) 98 (11) 95 (3) 94 (3) 97 (12) 98 (16) 98 (16) 94 (4) 
AXAMAC 97 (3) 94 (1) 93 (2) 93 (2) 93 (2) 93 (2)  92 (1) 92 (2) 91 (1) 91 (1) 
BM 72 (7) 55 (4) 51 (4) 47 (1) 46 (2) 45 (2) 44 (2) 44 (2) 43 (1) 42 (1) 
TBM 122 (23) 81 (10) 67 (2) 63 (7) 58 (4) 56 (5) 54 (4) 52 (2) 50 (3) 50 (4) 
AG 288 (11) 167 (3) 129 (3) 110 (4) 99 (5) 91 (4) 86 (4) 83 (5) 80 (3) 77 (3) 
RC 123 (2) 82 (1) 69 (1) 62 (1) 57 (1) 55 (1) 52 (1) 51 (1) 49 (1) 48 (1) 
HORSPOOL 62 (4) 50 (2) 47 (2) 45 (2) 44 (1) 43 (1) 42 (1) 42 (1) 41 (1) 41 (2) 
TUNEDBM 70 (3) 56 (2) 52 (2) 49 (2) 48 (1) 47 (2) 46 (1) 46 (2) 45 (2) 44 (2) 
QS 118 (3) 88 (2) 76 (2) 69 (2) 64 (2) 63 (3) 59 (2) 57 (2) 56 (2) 55 (2) 
SMITH 126 (3) 93 (2) 79 (1) 71 (2) 66 (1) 62 (1) 61 (2) 58 (2) 56 (2) 55 (2) 
ZT 82 (4) 59 (1) 52 (1) 48 (1) 46 (1) 44 (1) 43 (1) 43 (1) 42 (1) 42 (1) 
BR 104 (1) 82 (1) 71 (1) 64 (1) 60 (1) 56 (1) 54 (1) 52 (0) 51 (0) 50 (1) 
AUT 317 (18) 314 (2) 318 (23) 321 (29) 317 (18) 314 (6) 316 (18) 314 (5) 317 (19) 315 (13) 
SIMON 96 (2) 96 (2) 96 (1) 96 (2) 97 (2) 96 (2) 96 (2) 96 (2) 96 (2) 95 (2) 
FDM 351 (12) 395 (43) 440 (49) 473 (46) 508 (47) 518 (35) 553 (45) 569 (42) 583 (29) 605 (30) 
RF 155 (11) 109 (9) 94 (8) 84 (6) 78 (4) 73 (4) 69 (4) 66 (2) 64 (3) 62 (3) 
TRF 175 (15) 120 (11) 102 (7) 91 (5) 86 (7) 80 (6) 76 (4) 74 (3) 70 (4) 68 (2) 
BOM 92 (15) 74 (11) 64 (2) 62 (3) 62 (3) 62 (7) 60 (5) 58 (5) 56 (2) 55 (3) 
SKIP 60 (4) 55 (3) 55 (2) 55 (4) 54 (2) 52 (3) 52 (2) 52 (2) 52 (2) 52 (2) 
KMPSKIP 53 (3)  50 (3) 48 (2) 47 (1) 47 (1) 46 (1) 46 (1) 46 (2) 46 (2) 45 (1) 
BNDM 73 (3) 58 (2) 53 (2) 50 (2) 48 (2) 47 (1) 45 (1) 44 (1) 44 (2) 43 (1) 
KR 72 (3) 69 (3) 68 (3) 67 (2) 67 (2) 67 (2) 67 (3) 67 (2) 68 (4) 66 (1) 
SO 60 (5) 59 (3) 61 (6) 60 (4) 59 (3) 60 (5) 60 (5) 59 (3) 59 (3) 63 (4) 
NSN 64 (6) 65 (5) 63 (7) 65 (5) 65 (5) 66 (6) 65 (5) 63 (4) 64 (5) 63 (5) 
RAITA 60 (4) 50 (2) 47 (2) 44 (1) 43 (1) 43 (1) 42 (1) 42 (1) 41 (2) 41 (2) 
GS 163 (4) 163 (2) 164 (2) 163 (2) 164 (3) 164 (3) 164 (2) 164 (2) 164 (3) 164 (3) 
TW 73 (6) 71 (6) 70 (4) 69 (3) 69 (3) 69 (3) 69 (3) 68 (4) 69 (4) 69 (2) 
SMOA 83 (7) 85 (7) 84 (7) 83 (8) 84 (7) 82 (7) 82 (7) 83 (8) 84 (7) 83 (8) 
OM 60 (2) 52 (2) 49 (1) 46 (1) 45 (1) 44 (1) 44 (1) 43 (1) 43 (1) 42 (1) 
MS 60 (5) 52 (4) 49 (3) 46 (1) 45 (1) 44 (1) 43 (1) 43 (2) 42 (1) 42 (1) 
SSABS 49 (3) 45 (2) 43 (1) 42 (1) 41 (1) 41 (2) 41 (2) 41 (2) 40 (1) 40 (1) 
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Table 3. Average time (10–2 s) taken by various algorithms for protein sequence database PIR. Value within parenthesis represents corresponding  
  standard deviation 

Algorithm 2 4 6 8 10 12 14 16 18 20 
 

BF 507 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 503 (1) 
MP 157 (3) 159 (5) 158 (5) 158 (4) 159 (5) 158 (4) 158 (4) 158 (3) 158 (4) 155 (5) 
KMP 157 (3) 157 (5) 158 (6) 156 (5) 157 (4) 157 (5) 157 (5) 157 (4) 156 (5) 154 (5) 
COLUSSI 186 (18) 187 (14) 185 (13) 183 (1) 183 (1) 184 (14) 185 (19) 188 (26) 182 (13) 176 (2) 
GG 192 (22) 196 (2) 195 (5) 197 (15) 196 (15) 197 (19) 196 (19) 198 (26) 193 (14) 192 (19) 
AXAMAC 204 (6) 195 (3) 195 (5) 195 (5) 194 (5) 193 (4) 192 (3) 190 (2) 190 (2) 188 (5) 
BM 150 (9) 122 (9) 112 (6) 105 (3) 102 (3) 101 (5) 100 (5) 98 (4) 98 (5) 93 (3) 
TBM 240 (19) 168 (13) 144 (12) 130 (3) 124 (6) 121 (10) 118 (8) 114 (6) 112 (7) 107 (8) 
AG 568 (5) 337 (6) 263 (10) 225 (5) 205 (9) 189 (5) 180 (6) 175 (8) 168 (7) 161 (6) 
RC 253 (5) 172 (3) 145 (2) 132 (1) 124 (1) 118 (1) 115 (1) 112 (1) 109 (1) 104 (2) 
HORSPOOL 131 (6) 110 (4) 103 (4) 99 (2) 98 (4) 95 (2) 94 (3) 94 (4) 94 (4) 89 (2) 
TUNEDBM 152 (9) 121 (4) 113 (4) 107 (3) 105 (2) 104 (4) 101 (2) 101 (3) 101 (3) 96 (5) 
QS 242 (4) 184 (4) 159 (3) 146 (4) 137 (3) 130 (3) 126 (2) 125 (5) 122 (5) 116 (4) 
SMITH 258 (4) 192 (3) 165 (3) 150 (3) 140 (2) 133 (3) 128 (2) 125 (3) 122 (3) 116 (4) 
ZT 170 (2) 127 (1) 114 (3) 106 (1) 102 (2) 99 (1) 97 (1) 95 (1) 94 (1) 91 (2) 
BR 215 (3) 171 (2) 150 (1) 137 (1) 129 (1) 122 (1) 117 (1) 114 (1) 111 (1) 106 (1) 
AUT 622 (3) 632 (47) 624 (14) 623 (14) 625 (33) 627 (34) 642 (63) 634 (47) 631 (46) 621 (18) 
SIMON 200 (6) 200 (4) 200 (3) 199 (3) 200 (5) 200 (5) 200 (4) 199 (3) 200 (4) 195 (4) 
FDM 708 (53) 781 (69) 853 (74) 921 (72) 990 (83) 1012 (70) 1089 (103) 1114 (80) 1158 (92) 1198 (77) 
RF 317 (24) 222 (14) 192 (11) 175 (11) 164 (9) 153 (8) 146 (5) 141 (5) 136 (3) 128 (3) 
TRF 361 (62) 243 (16) 212 (16) 191 (12) 180 (12) 167 (9) 160 (8) 154 (7) 149 (6) 140 (5) 
BOM 188 (16) 155 (18) 142 (23) 135 (6) 134 (11) 131 (5) 127 (2) 126 (11) 124 (10) 117 (8) 
SKIP 130 (8) 121 (8) 122 (6) 116 (4) 117 (4) 115 (6) 115 (5) 113 (4) 113 (4) 109 (4) 
KMPSKIP 116 (6) 111 (7) 107 (3) 105 (2) 104 (2) 103 (3) 104 (4) 102 (3) 102 (3) 98 (2) 
BNDM 156 (6) 126 (5) 115 (3) 110 (3) 105 (2) 103 (3) 101 (3) 99 (4) 98 (2) 93 (4) 
KR 151 (3) 145 (3) 142 (3) 143 (4) 141 (1) 141 (2) 141 (3) 141 (3) 141 (2) 137 (3) 
SO 128 (2) 127 (1) 127 (1) 127 (1) 127 (1) 126 (1) 126 (1) 127 (6) 126 (1) 125 (7) 
NSN 137 (12) 138 (10) 135 (14) 140 (10) 139 (10) 140 (12) 138 (10) 134 (8) 136 (10) 132 (10) 
RAITA 131 (4) 109 (3) 102 (3) 99 (3) 97 (3) 95 (1) 94 (2) 95 (4) 94 (4) 89 (4) 
GS 331 (4) 330 (4) 332 (5) 330 (5) 332 (6) 331 (5) 332 (5) 333 (5) 334 (6) 329 (5) 
TW 157 (12) 150 (12) 148 (8) 146 (6) 146 (7) 146 (5) 146 (6) 145 (7) 147 (8) 143 (4) 
SMOA 174 (13) 177 (14) 177 (14) 173 (15) 175 (14) 171 (14) 171 (15) 173 (15) 174 (14) 170 (15) 
OM 131 (3) 113 (3) 107 (2) 102 (1) 101 (2) 99 (1) 97 (1) 97 (1) 96 (1) 92 (2) 
MS 129 (3) 113 (6) 106 (1) 102 (3) 100 (3) 98 (3) 96 (1)  96 (1) 95 (1) 91 (2) 
SSABS 109 (5) 100 (4) 96 (4) 94 (4) 94 (4) 93 (5) 93 (5) 92 (3) 91 (2) 87 (2) 

 
 
were awarded the NIH grant to produce a single worldwide 
database of protein sequence and function.  
 Information available in FAA (FASTA Amino Acid) 
and FNA (FASTA Nucleic Acid) corresponds to the amino 
acid and nucleotide sequences of various genomes (A. 
thaliana, C. elegans, mitochondria, P. falciparum, S. cer-
evisiae, bacteria, S. pombe and Anopheles gambiae) 
available in the genome database. These databases (FAA 
and FNA) have been downloaded from the National Centre of 
Biotechnology Information (NCBI) anonymous ftp site 
(ftp://ftp.ncbi.nih.gov/genbank/genomes/*).  
 The databases used in the present study are SWISS-PROT, 
PIR,  FAA and FNA. 
 The first three databases contain amino acid sequences 
(alphabet size σ = 20) and the last database has only nucleo-
tide sequences (alphabet size σ = 4). These databases differ 
substantially in size. For example, the number of protein 
sequences is 135,493, 283,347 and 453,861 for SWISS-
PROT, PIR and FAA respectively. The number occurrences 
of each amino acid available in various databases is given 
in Table 1. It is interesting to note that none of the above 

databases is static and they are subject to increase as and 
when new sequences are available. 
 A total number of 837 gene sequences (comprising nucleo-
tides; 826.31 MB size) have been deployed in the present 
study. This dataset contains four alphabets (nucleotides), 
viz. A (adenine, 239490165), C (cytosine, 183940124), G 
(guanine, 183818044) and T (thymine, 239419854) and 
hence the alphabet size is equal to four (σ = 4). Numbers 
within parenthesis denote the corresponding occurrences 
in the entire database. 
 All the algorithms have been executed and tested using 
a 3.06 GHz processor, 1 GB of RD-RAM with 512 KB of 
cache memory in RedHat Linux (version 8.0). Source 
codes were compiled using the ‘cc’ compiler without any 
optimization. The source code for the algorithms used for 
comparison is taken from the literature32. All the programs 
have been executed on a single user mode to make sure 
that the results are more reliable.  
 In order to study the efficiency of the algorithms over a 
particular database, we have chosen databases containing 
amino acid and nucleotide sequences. These databases range 
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Table 4. Average time (10–2 s) taken by various algorithms for genome database (amino acids) FAA. Value within parenthesis represents corre- 
  sponding standard deviation 

Algorithm 2 4 6 8 10 12 14 16 18 20 
 

BF 814 (8) 825 (83) 825 (84) 816 (11) 826 (84) 815 (12) 826 (84) 815 (8) 837 (117) 812 (1) 
MP 267 (71) 265 (51) 266 (51) 265 (52) 263 (47) 256 (4) 256 (5) 263 (48) 256 (4) 254 (5) 
KMP 255 (11) 254 (5) 256 (11) 254 (4) 257 (9) 254 (4) 257 (14) 254 (4) 255 (4) 253 (5) 
COLUSSI 291 (19) 296 (3) 299 (25) 303 (38) 301 (29) 295 (10) 299 (30) 297 (29) 298 (36) 290 (10) 
GG 306 (33) 316 (3) 314 (3) 331 (75) 329 (73) 327 (71) 311 (2) 317 (51) 317 (51) 307 (3) 
AXAMAC 318 (14) 332 (97) 344 (140) 343 (126) 324 (73) 352 (134) 320 (49) 329 (113) 307 (17) 304 (20) 
BM 237 (4) 189 (4) 176 (12) 167 (8) 161 (7) 159 (6) 155 (2) 153 (2) 151 (1) 152 (4) 
TBM 380 (13) 302 (19) 262 (18) 236 (8) 221 (9) 208 (4) 204 (15) 198 (9) 191 (5) 178 (6) 
AG 908 (8) 543 (12) 424 (12) 364 (11) 330 (11) 306 (11) 289 (9) 280 (11) 269 (9) 262 (10) 
RC 403 (8) 276 (4) 233 (4) 213 (3) 199 (3) 190 (3) 184 (3) 180 (3) 175 (2) 170 (2) 
HORSPOOL 211 (19) 177 (16) 166 (9) 158 (7) 155 (5) 151 (2) 150 (3) 150 (4) 148 (3) 147 (2) 
TUNEDBM 236 (11) 191 (6) 178 (4) 169 (4) 166 (4) 164 (5) 160 (3) 160 (5) 159 (5) 159 (7) 
QS 384 (5) 293 (5) 256 (4) 234 (4) 221 (5) 210 (4) 204 (5) 200 (5) 195 (4) 190 (5) 
SMITH 412 (6) 310 (12) 269 (12) 242 (7) 227 (8) 214 (5) 206 (5) 200 (4) 195 (4) 190 (4) 
ZT 279 (40) 205 (5) 182 (4) 174 (13) 166 (11) 159 (1) 158 (10) 154 (5) 152 (5) 150 (3) 
BR 347 (5) 279 (4) 245 (2) 223 (2) 210 (3) 200 (2) 192 (2) 187 (3) 182 (3) 177 (3) 
AUT 1002 (24) 1003 (28) 998 (21) 1003 (50) 992 (4) 993 (2) 997 (17) 994 (3) 1019 (85) 1028 (85) 
SIMON 377 (126) 339 (65) 335 (46) 340 (75) 343 (73) 342 (82) 335 (58) 358 (106) 327 (6) 342 (74) 
FDM 1119 (60) 1251 (100) 1373 (94) 1478 (112) 1576 (130) 1638 (119) 1724 (125) 1787 (126) 1844 (116) 1920 (137) 
RF 508 (42) 363 (38) 312 (20) 282 (17) 261 (11) 248 (11) 236 (8) 227 (8) 220 (8) 211 (3) 
TRF 555 (39) 390 (27) 338 (21) 306 (16) 284 (14) 267 (12) 257 (11) 248 (10) 239 (7) 232 (7) 
BOM 309 (49) 247 (30) 225 (21) 216 (16) 217 (17) 208 (8) 204 (6) 198 (8) 194 (6) 189 (6) 
SKIP 208 (14) 193 (11) 192 (8) 187 (6) 187 (6) 184 (6) 182 (5) 181 (4) 182 (4) 179 (5) 
KMPSKIP 189 (10) 178 (7) 175 (6) 172 (4) 171 (5) 169 (4) 167 (3) 167 (3) 166 (3) 163 (4) 
BNDM 250 (18) 200 (6) 187 (9) 178 (6) 171 (4) 167 (3) 164 (3) 161 (2) 158 (2) 156 (3) 
KR 252 (38) 237 (29) 235 (28) 233 (28) 237 (40) 232 (27) 227 (1) 228 (1) 228 (1) 233 (34) 
SO 208 (31) 209 (31) 201 (2) 206 (24) 206 (23) 207 (25) 201 (1) 207 (25) 205 (23) 202 (7) 
NSN 227 (27) 226 (21) 227 (47) 234 (44) 228 (21) 243 (59) 226 (18) 224 (45) 232 (59) 220 (22) 
RAITA 207 (4) 174 (3) 165 (3) 159 (3) 156 (2) 154 (3) 152 (2) 151 (3) 150 (2) 148 (2) 
GS 512 (9) 510 (8) 514 (9) 518 (9) 519 (11) 521 (9) 521 (9) 525 (8) 524 (8) 524 (9) 
TW 256 (19) 269 (101) 263 (68) 246 (27) 259 (66) 241 (9) 241 (10) 243 (27) 249 (36) 261 (63) 
SMOA 284 (32) 285 (23) 292 (42) 283 (37) 282 (24) 278 (32) 276 (26) 283 (35) 281 (24) 281 (33) 
OM 206 (6) 179 (4) 171 (14) 164 (13) 160 (11) 156 (3) 154 (2) 154 (7) 151 (2) 152 (5) 
MS 208 (5) 183 (8) 175 (6) 167 (3) 164 (5) 160 (4) 157 (2) 157 (3) 156 (3) 152 (2) 
SSABS 171 (8) 159 (5) 155 (5) 151 (4) 149 (4) 147 (3) 147 (3) 146 (2) 145 (2) 144 (3) 

 

 

 
from alphabet sizes that are small (in the case of nucleo-
tides) to those that are large (in the case of amino acids). 
SWISS-PROT, PIR and genome database of FAA contain 
amino acid sequences (hence ∑ = (A, C, D, E, F, G, H, I, 
K, L, M, N, P, Q, R, S, T, V, W, Y) and σ = 20) and FNA 
genome database contains nucleotide sequences (hence 
∑ = (A, C, G, T) and σ = 4). No prior pre-processing has 
been done on the databases used in the present analysis. 
We have tested each of the algorithms against several 
search-string lengths (2, 4, 6, 8, 10, 12, 14, 16, 18 and 20). In 
addition, for each search-string length, 50 randomly se-
lected search strings were used. The above-mentioned 
procedure is repeated for all the databases deployed in the 
present study. Tables 2–5 show the average time taken by 
various algorithms on the databases SWISS-PROT, PIR, 
FAA genome database and FNA genome database. The 
reported average time is 10–2 s. The following points have 
been derived after careful examination of the time taken 
by various algorithms reported in Tables 2–5.  

 First, in the case of SWISS-PROT, the algorithm SSABS, 
performs better for search strings of varying lengths. 
HORSPOOL and RAITA show better timings as also ZT, 
KMPSKIP and MS in a few instances. Secondly, in the 
case of the PIR database, SSABS shows better timings over 
other algorithms followed by HORSPOOL and RAITA. 
Thirdly, in the case of huge protein sequence database de-
rived from all available genomes, SSABS works consis-
tently better for varying lengths of search string, followed 
by HORSPOOL and RAITA. At the outset, SSABS, 
HORSPOOL and RAITA work well in the case of the 
protein sequence databases (σ = 20). However, in the case 
of a nucleotide sequence database (σ = 4), SSABS works 
well for search-string length up to six. It is interesting to 
note that for longer search strings (m ≥ 6), the ZT performs 
better, followed by BNDM.  
 To conclude, the algorithm SSABS performs well on 
protein sequences (σ = 20), irrespective of the size of the 
database and the length of the search string. The algorithm ZT 
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Table 5. Average time (10–2 s) taken by various algorithms for genome database (nucleotides) FNA. Value within parenthesis represents corre- 
  sponding standard deviation 

Algorithm 2 4 6 8 10 12 14 16 18 20 
 

BF 4554 (53) 4484 (23) 4494 (49) 4494 (36) 4488 (29) 4497 (39) 4492 (39) 4494 (31) 4487 (34) 4487 (38) 
MP 1620 (49) 1627 (150) 1608 (98) 1616 (100) 1621 (150) 1602 (96) 1631 (97) 1598 (50) 1588 (49) 1603 (86) 
KMP 1751 (508) 1677 (325) 1585 (185) 1644 (212) 1652 (313) 1614 (181) 1695 (343) 1586 (69) 1573 (133) 1602 (119) 
COLUSSI 1712 (154) 1650 (70) 1631 (153) 1681 (89) 1659 (142) 1677 (136) 1652 (144) 1632 (91) 1638 (136) 1655 (104) 
GG 1704 (302) 1746 (74) 1709 (141) 1775 (87) 1728 (109) 1769 (132) 1724 (114) 1735 (109) 1727 (138) 1746 (90) 
AXAMAC 1972 (73) 1808 (266) 1729 (221) 1752 (76) 1726 (136) 1825 (324) 1733 (119) 1723 (111) 1737 (240) 1760 (213) 
BM 1643 (282) 1305 (215) 1180 (170) 1104 (109) 1093 (106) 1080 (86) 1029 (70) 1060 (70) 1042 (63) 1010 (79) 
TBM 2530 (416) 2155 (314) 1817 (157) 1800 (469) 1737 (452) 1697 (286) 1573 (207) 1694 (315) 1602 (211) 1438 (183) 
AG 5771 (354) 3919 (358) 3139 (341) 2890 (361) 2825 (398) 2837 (484) 2601 (436) 2789 (388) 2684 (391) 2512 (313) 
RC 2210 (51) 1608 (46) 1372 (45) 1249 (45) 1182 (35) 1129 (28) 1096 (33) 1053 (34) 1033 (38) 1007 (32) 
HORSPOOL 1809 (136) 1372 (172) 1226 (102) 1194 (123) 1213 (196) 1229 (187) 1194 (174) 1224 (149) 1213 (177) 1174 (110) 
TUNEDBM 1967 (280) 1458 (103) 1328 (137) 1283 (125) 1275 (155) 1305 (165) 1245 (158) 1291 (135) 1281 (164) 1252 (129) 
QS 2477 (100) 2064 (177) 1893 (223) 1803 (204) 1838 (248) 1845 (259) 1716 (251) 1858 (279) 1859 (225) 1724 (235) 
SMITH 2720 (107) 2113 (147) 1872 (203) 1756 (194) 1766 (272) 1798 (292) 1699 (255) 1804 (278) 1760 (236) 1565 (451) 
ZT 1728 (42) 1233 (40) 1061 (26) 985 (26) 951 (47) 916 (25) 896 (25) 873 (26) 868 (24) 855 (27) 
BR 2272 (81) 1764 (105) 1568 (102) 1429 (88) 1352 (87) 1297 (61) 1236 (66) 1206 (76) 1203 (62) 1169 (69) 
AUT 5553 (53) 5436 (22) 5430 (52) 5444 (85) 5439 (71) 5437 (57) 5447 (89) 5429 (27) 5423 (26) 5418 (17) 
SIMON 2195 (502) 2094 (316) 2081 (316) 2076 (266) 2079 (290) 2030 (63) 2090 (274) 2107 (314) 2075 (233) 2077 (184) 
FDM 8620 (861) 10449 (923) 11432 (996) 12191 (972) 12955 (638) 13233 (722) 13465 (466) 13595 (702) 13711 (151) 13865 (115) 
RF 5418 (532) 3624 (244) 2886 (193) 2488 (165) 2255 (93) 2064 (94) 1913 (73) 1811 (70) 1714 (47) 1640 (42) 
TRF 5905 (803) 4347 (380) 3499 (295) 3013 (231) 2718 (120) 2461 (131) 2278 (107) 2147 (99) 2024 (70) 1953 (59) 
BOM 2363 (399) 1715 (123) 1459 (63) 1326 (65) 1239 (43) 1197 (54) 1136 (47) 1124 (94) 1081 (66) 1054 (52) 
SKIP 2168 (221) 1866 (93) 1814 (66) 1771 (84) 1765 (71) 1735 (61) 1740 (66) 1728 (73) 1736 (74) 1719 (50) 
KMPSKIP 1677 (192) 1518 (82) 1430 (51) 1408 (84) 1380 (93) 1357 (68) 1348 (40) 1346 (56) 1325 (40) 1325 (70) 
BNDM 1890 (268) 1401 (94) 1201 (73) 1076 (51) 1008 (36) 970 (35) 932 (42) 908 (38) 880 (31) 862 (34) 
KR 1532 (109) 1233 (29) 1210 (20) 1195 (23) 1188 (23) 1194 (23) 1199 (24) 1195 (25) 1190 (25) 1195 (22) 
SO 1182 (121) 1078 (102) 1075 (104) 1065 (28) 1064 (25) 1092 (133) 1071 (107) 1075 (102) 1094 (130) 1078 (111) 
NSN 1800 (183) 1782 (138) 1741 (189) 1768 (148) 1743 (148) 1788 (155) 1750 (133) 1770 (180) 1743 (189) 1788 (138) 
RAITA 1612 (177) 1200 (106) 1097 (102) 1058 (96) 1033 (77) 1051 (101) 1043 (109) 1056 (99) 1046 (118) 1021 (81) 
GS 3448 (101) 3369 (102) 3370 (95) 3384 (98) 3359 (94) 3374 (95) 3413 (85) 3396 (107) 3364 (94) 3381 (100) 
TW 1664 (204) 1479 (154) 1414 (174) 1364 (106) 1382 (149) 1387 (87) 1404 (134) 1416 (102) 1396 (129) 1403 (154) 
SMOA 2383 (320) 2497 (301) 2402 (294) 2488 (368) 2445 (298) 2419 (263) 2498 (473) 2540 (426) 2497 (331) 2545 (403) 
OM 1464 (101) 1256 (79) 1143 (71) 1088 (76) 1074 (68) 1068 (68) 1016 (59) 1026 (62) 1022 (67) 999 (51) 
MS 1457 (172) 1240 (137) 1104 (76) 1061 (92) 1020 (42) 1008 (64) 957 (41) 985 (84) 957 (47) 940 (66) 
SSABS 1135 (43) 1063 (60) 1020 (93) 994 (95) 1005 (96) 1026 (137) 984 (98) 996 (72) 1026 (140) 987 (103) 

 

 
performs well in the case of nucleotide sequences (σ = 4), 
when the search-string length is more than six. However, 
SSABS provides reasonable competition over other algo-
rithms for search-string lengths less than or equal to six. 
To gain further understanding, our future interest is to ana-
lyse the performance of various algorithms in the English 
language, where the alphabet size is more than 26.  
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Computational analysis of seven bacterial genomes re-
vealed that both the DNA strands in a genome exhibit 
compositional symmetry in terms of the abundance of 
a non-palindromic oligonucleotide (di, tri, tetra, penta, 
hexa, hepta and octa). This symmetry in DNA duplex 
suggests that both strands in the duplex possess similar 
compositional characteristics, though the nucleotide 
sequences in the DNA strands are different (comple-
mentary). This compositional symmetry between DNA 
strands in genomes may be due to the abundance of 

coding sequences in both the strands and to ensure the 
synchronous completion of replication of the two 
strands. 
 
Keywords: Genome, DNA duplex, non-palindromic 
sequence, oligonucleotide composition, coding sequen-
ces, DNA replication. 
 
A chromosome is made up of a DNA duplex in which the two 
DNA strands are antiparallel and complementary to each 
other: adenine (A) of one strand pairs with thymine (T) of 
the other strand, and guanine (G) of one strand pairs with 
cytosine (C) of the other strand1. Thus sequences of both 
the strands are different, except at the palindromic regions 
(symmetrical DNA sequence). In the case of a palindromic 
oligonucleotide, its abundance in both the DNA strands in 
a genome is identical. However, in the case of a non-palindro-
mic oligonucleotide (non-symmetrical DNA sequence), its 
abundance in both the DNA strands in a genome might be 
different. In this study we have analysed seven bacterial 
genomes (Bacillus subtilis2, Escherichia coli3, Haemophilus 
influenzae4, Pseudomonas aeruginosa5, Pseudomonas syrin-
gae6, Ralstonia solanacearum7 (mega plasmid and chro-
mosome) and Xanthomonas campestris pv. campestris8 
(Xcc)) for abundance of non-palindromic oligonucleotides 
in both the DNA strands. We present evidence that abundance 
of a non-palindromic oligonucleotide in both the DNA 
strands in a genome is similar. This compositional symmetry 
of the DNA duplex in genomes is interesting and suggests 
that there is a tendency in the genome to maintain 
similarity between both the DNA strands, though 
functionally the two strands have different attributes. 
 Complete genome sequences of B. subtilis, E. coli, H. 
influenzae, P. aeruginosa, P. syringae, R. solanacearum 
and Xcc were downloaded from the ‘genome information 
broker site’ (www.gib.genes.nig.ac.jp). These sequences were 
analysed for the occurrence of non-palindromic oligonucleo-
tide sequences (di, tri, tetra, penta, hexa, hepta and octa 
nucleotides; Table 1) in both DNA strands using a com-
puter program ‘seqsearch’ (developed by the authors). Since 
DNA strands are complementary to each other, by studying 
nucleotide composition of one of the strands, composition of 
the other strand can be determined, e.g. the number of As 
present in one of the strands is equal to the number of Ts 
present in the other strand, and the number of Gs present 
in one strand is equal to the number of Cs present in the 
other strand. Similar logic can also be applied for studying 
oligonucleotide composition as well, e.g. total number of TG 
dinucleotides present in one of the strands of a genome is 
same as the total number of CA dinucleotides present in the 
other strand of the genome. Thus if we count the total number 
of TG and CA in one of the strands of the genome, then 
we would be able to compare between the number of TGs 
present in both the DNA strands. In this study, we have 
analysed one of the DNA strands in the genomes for 
comparing the abundance of nucleotides/oligonucleotides 


