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AN ANALOGUE OF GUTZMER’S FORMULA FOR

HERMITE EXPANSIONS

BY

S. THANGAVELU

Abstract. We prove an analogue of Gutzmer’s formula for Her-

mite expansions. As a consequence we obtain a new proof of a char-

acterisation of the image of L
2(Rn) under the Hermite semigroup.

We also obtain some new orthogonality relations for complexified

Hermite functions.

1. Introduction

By Gutzmer’s formula we mean any analogue of the formula

(2π)−1

∫ 2π

0

|f(x + iy)|2dx =
∞
∑

k=−∞

|f̂(k)|2e−2ky

valid for any 2π periodic holomorphic function f in a strip in the com-

plex plane. Here f̂(k) stands for the Fourier coefficients of the restric-

tion of f to the real line. An analogue of such a formula was estab-

lished by Lassalle [9] for holomorphic functions on the complexification

of compact symmetric spaces. A similar formula for holomorphic func-

tions on the complex crowns associated to noncompact Riemannian

symmetric spaces was discovered by Faraut [3]. As can be seen from

Faraut [4] and Krötz-Olafsson-Stanton [8] such formulas are useful in

the study of Segal-Bargmann or heat kernel transforms.
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2 THANGAVELU

Recently in [15] we have proved an analogue of Gutzmer’s formula on

the Heisenberg groups and used them to study heat kernel transforms

and Paley-Wiener theorems.

In this paper we prove an analogue of Gutzmer’s formula for Hermite

expansions. Let H be the Hermite operator on Rn having the spectral

decomposition H =
∑∞

k=0(2k + n)Pk. Let Hn = Rn × Rn × R be the

Heisenberg group whose complexification is Cn × Cn × C. Let π(x, u)

be the projective representation of R
n ×R

n related to the Schrödinger

representation of Hn and denote by π(x + iy, u + iv) its extension to

Cn ×Cn. Let K = Sp(n, R)∩O(2n, R) which acts on Cn ×Cn. Denote

by ϕk(z, w) the Laguerre functions of type (n−1) extended to Cn×Cn.

Our main result is the following.

Theorem 1.1. Let F be an entire function on C
n. Denote by f its

restriction to Rn. Then for any z = x + iy, w = u + iv ∈ Cn we have
∫

Rn

∫

K

|π(σ.(z, w))F (ξ)|2dσdξ

= e(u·y−v·x)

∞
∑

k=0

k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)‖Pkf‖

2
2.

As an immediate corollary we obtain the following characterisation

of the image of L2(Rn) under the Hermite semigroup e−tH , t > 0. Let

Ut(x, y) = 2n(sinh(4t))−
n
2 etanh(2t)|x|2−coth(2t)|y|2 .

Corollary 1.2. An entire function F on Cn belongs to the image of

L2(Rn) under e−tH if and only if
∫

Rn

∫

Rn

|F (x + iy)|2Ut(x, y)dxdy < ∞.

This characterisation is not new and there are several proofs available

in the literature, see Byun [1], Karp [6] and Thangavelu [14]. In Section

4 we derive some more consequences of the Gutzmer’s fomula.

We conclude the introduction with some remarks about the meth-

ods used in proving Gutzmer formulas. As in the case of Fourier se-

ries, Lassalle [9] used Plancherel theorem for the Laurent expansions
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of holomorphic functions on the complexifications of compact symmet-

ric spaces X = K/M. The matrix coefficients associated to class one

represenations in the unitary dual of a compact Lie group K holo-

morphically extend to its complexification KC. Thus any function f

whose ’Fourier coefficients’ have exponential decay can be extended to

the complexification XC = KC/MC. Then by appealing to Plancherel

theorem and using orthogonality relations the required formula was es-

tablished. In [2] Faraut considered a general unimodular group G and

proved a proposition from which Gutzmer’s formula can be deduced for

noncompact Riemannian symmetric spaces [3] and Heisenberg groups

[15].

Thus in all the previous settings the basic functions appearing in the

Fourier series or transform are matrix coefficients of certain irreducible

unitary representations of the underlying group. Contrary to this, the

Hermite functions do not occur as matrix coefficients. However, the

Hermite functions are used to calculate the matrix coefficients associ-

ated to Schrödinger representations of Hn resulting in special Hermite

or Laguerre functions. This explains why the representation π(z, w)

occurs in our Gutzmer’s formula. The close relationship between Her-

mite and Laguerre functions are then used to derive the Gutzmer’s

formula.

2. Preliminaries

In this section we collect some relevant information about special

Hermite functions and prove some results that are required in the next

section. We closely follow the notations used in [12] and [13] and we

refer the reader to these monographs for more details.

Let Φα, α ∈ Nn be the Hermite functions on Rn normalised so that

their L2 norms are one. These are eigenfunctions of the Hermite op-

erator H = −∆ + |x|2 with eigenvalues (2|α| + n). On finite linear

combinations of such functions we can define certain operators π(z, w)
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where z, w ∈ Cn as follows:

π(z, w)Φα(ξ) = ei(z·ξ+ 1
2
z·w)Φα(ξ + w)

where z · ξ =
∑n

j=1 zjξj and z · w =
∑n

j=1 zjwj. Note that Φα(ξ) =

Hα(ξ)e−
1
2
|ξ|2 where Hα is a polynomial on Rn and for z ∈ Cn we define

Φα(z) to be Hα(z)e−
1
2
z2

where z2 = z ·z. The special Hermite functions

Φα,β(z, w) are then defined by

Φα,β(z, w) = (2π)−
n
2 (π(z, w)Φα, Φβ).

The restrictions of Φα,β(z, w) to Rn ×Rn are usually called the special

Hermite functions and the family {Φα,β(x, u) : α, β ∈ Nn} forms an

orthonormal basis for L2(Cn).

As we have mentioned in the introduction the operators π(z, w) are

related to the Schrödinger representation π1 of the Heisenberg group

Hn. Recall that Hn = Rn × Rn × R is equipped with the group law

(x, u, t)(x′, u′, t′) = (x+x′, u+u′, t+t′+ 1
2
(u·x′−x·u′)). For each nonzero

real number λ we have a representation of Hn realised on L2(Rn) given

by

πλ(x, u, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2
x·u)ϕ(ξ + u).

Thus π(x, u) = π1(x, u, 0) and it defines a projective representation of

R
n × R

n.

For (z, w) ∈ C2n the operators π(z, w) are not even bounded on

L2(Rn). However, they are densely defined and satisfy

π(z, w)π(z′, w′) = e
i
2
(z′·w−z·w′)π(z + z′, w + w′).

Moreover,

(π(iy, iv)Φα, Φβ) = (Φα, π(iy, iv)Φβ).

This means that π(iy, iv) are self adjoint operators. We need to calcu-

late the L2 norms of π(z, w)Φα. Let Ln−1
k be Laguerre polynomials of

type (n − 1) and define the Laguerre functions ϕk by

ϕk(x, u) = Ln−1
k (

1

2
(x2 + u2))e−

1
4
(x2+u2).
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Then it is known that

ϕk(x, u) = (2π)n/2
∑

|α|=k

Φα,α(x, u).

These functions have a natural holomorphic extension to C
n × C

n de-

noted by the same symbol:

ϕk(z, w) = (2π)n/2
∑

|α|=k

Φα,α(z, w).

Lemma 2.1. For any z = x + iy, w = u + iv ∈ Cn and α ∈ Nn we

have
∫

Rn

|π(z, w)Φα(ξ)|2dξ = (2π)
n
2 e(u·y−v·x)Φα,α(2iy, 2iv).

Proof: It is enough to prove the result in one dimension. Recall

Mehler’s formula satisfied by the Hermite functions hk on R:

∞
∑

k=0

hk(ξ)hk(η)rk = π− 1
2 e

− 1
2

1+r2

1−r2 (ξ2+η2)+ 2r

1−r2 ξη

valid for all r with |r| < 1. The formula is clearly valid even if ξ and η

are complex. A simple calculation shows that

∞
∑

k=0

rk|π(z, w)hk(ξ)|
2

= π− 1
2 (1 − r2)−

1
2 e−(uy+vx)e

1+r
1−r

v2

e−
1−r
1+r

(ξ+u)2e−2yξ.

Integrating both sides with respect to ξ we obtain

∞
∑

k=0

rk

∫

R

|π(z, w)hk(ξ)|
2dξ

= (1 − r)−1e(uy−vx)e
1+r
1−r

(y2+v2).

We now recall that the generating function for the Laguerre functions

ϕk(x, u) when n = 1 reads as

∞
∑

k=0

rkϕk(x, u) = (1 − r)−1e−
1
4
(x2+u2).
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A comparison with this shows that
∫

R

|π(z, w)hk(ξ)|
2dξ = e(uy−vx)ϕk(2iy, 2iv).

Since Φk,k(x, u) = (2π)−
1
2 ϕk(x, u) this proves the Lemma.

In the above lemma we have calculated the L2 norm of π(z, w)Φα by

integrating the generating function. We can also calculate the norm

by expanding π(z, w)Φα in terms of the Hermite basis and appealing

to the Plancherel theorem for Hermite expansions. This leads to the

following identity which is crucial for our main result.

Lemma 2.2. For any α ∈ Nn, z = x + iy, w = u + iv ∈ Cn we have
∑

β∈Nn

|Φα,β(z, w)|2 = (2π)
−n
2 e(u·y−v·x)Φα,α(2iy, 2iv).

Proof: We just have to recall that (π(z, w)Φα, Φβ) = (2π)
n
2 Φα,β .

We also need some estimates on the holomorphically extended Her-

mite functions on Cn. Let us define Φk(x, u) =
∑

|α|=k Φα(x)Φα(u)

which is the kernel of the projection Pk. Note that Φk extends to

C
n × C

n as an entire function. Using Mehler’s formula for Hermite

functions and the generating function for Laguerre functions we can

get the following representation of Φk in terms of Laguerre functions

of type (n/2 − 1).

Lemma 2.3.

Φk(z, w) = π−n
2

k
∑

j=0

(−1)jL
n/2−1
j (

1

2
(z+w)2)L

n/2−1
k−j (

1

2
(z−w)2)e−

1
2
(z2+w2)

where z2 =
∑n

j=1 z2
j and w2 =

∑n
j=1 w2

j .

Proof: The Laguerre functions of type (n/2 − 1) are given by the

generating function
∑

k=0

rkL
n/2−1
k (

1

2
z2)e−

1
4
z2

= (1 − r)−n/2e−
1
4

1+r
1−r

z2

.

A simple calculation shows that

(1 − r)−n/2e−
1
4

1+r
1−r

(z+w)2(1 + r)−n/2e−
1
4

1−r
1+r

(z−w)2



GUTZMER’S FORMULA 7

= (1 − r2)−n/2e
− 1

2
1+r2

1−r2 (z2+w2)+ 2r

1−r2 zw
.

Comparing this with Mehler’s formula and rewriting the left hand side

as a power series in r and then equating coefficients of rk we obtain the

lemma.

The above lemma has been already used by us in the study of

Bochner-Riesz means for multiple Hermite expansions. Here we need

the above in order to get the following estimate on Φk(z, w).

Lemma 2.4. For all z = x + iy ∈ Cn and k = 1, 2, ... we have

|Φk(z, z̄)| ≤ C(y)k
3
4
(n−1)e2(k)

1
2 |y|

where C(y) is locally bounded.

Proof: From the previous lemma we have

Φk(z, z̄) = π−n
2

k
∑

j=0

(−1)jL
n/2−1
j (2|x|2)e−|x|2L

n/2−1
k−j (−2|y|2)e|y|

2

.

We now make use of the following estimates on Laguerre functions.

First of all we know that

|L
n/2−1
j (2|x|2)e−|x|2| ≤ Cjn/2−1

uniformly in x. On the other hand Perron’s formula for Laguerre poly-

nomials in the complex domain (see Theorem 8.22.3 in Szego [11] )

gives us

L
n/2−1
j (−2|y|2)e|y|

2

≤ C(y)j
(n−3)

4 e2(j)
1
2 |y|

valid for all |y| ≥ 1. Since L
n/2−1
j (−2|y|2) ≤ L

n/2−1
j (−2) we have the

same estimate for all values of y. These two estimates give the required

bound on Φk(z, z̄).

We conclude the preliminaries with establishing some more notation.

Let Sp(n, R) stand for the symplectic group consisting of 2n× 2n real

matrices that preserve the symplectic form [(x, u), (y, v)] = (u ·y−v ·x)

on R2n and have determinant one. Let O(2n, R) be the orthogonal

group and we define K = Sp(n, R) ∩ O(2n, R). Then there is a one

to one correspondence between K and the unitary group U(n). Let
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σ = a + ib be an n × n complex matrix with real and imaginary parts

a and b. Then σ is unitary if and only if the matrix A =

(

a −b

b a

)

is

in K. For these facts we refer to Folland [4]. By σ.(x, u) we denote the

action of the correspoding matrix A on (x, u). This action has a natural

extension to Cn × Cn denoted by σ.(z, w) and is given by σ.(z, w) =

(a.z − b.w, a.w + b.z) where σ = a + ib. For example, when n = 1 and

σ = eiθ we see that the corresponding matrix A is

(

cos θ − sin θ

sin θ cos θ.

)

Given θ = (θ1, ...., θn) ∈ Rn we denote by k(θ) the diagonal matrix in

U(n) with entries eiθj . We denote by dσ the normalised Haar measure

on K and by dθ the Lebesgue measure dθ1dθ2....dθn.

3. The main results

Having set up notation and collected relevant results on special Her-

mite functions we are now ready to prove our main results. We begin

with

Theorem 3.1. Let f ∈ L2(Rn) be such that ‖Pkf‖2 ≤ Cte
−2k

1
2 t for all

t > 0 and k ∈ N. Then f has a holomorphic extension F to Cn and we

have the following formula for any z = x + iy, w = u + iv ∈ Cn:
∫

Rn

∫

K

|π(σ.(z, w))F (ξ)|2dσdξ

= e(u·y−v·x)

∞
∑

k=0

k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)‖Pkf‖

2
2.

Proof: Consider the Hermite expansion of the function f given by

f(x) =

∞
∑

k=0

∑

|α|=k

(f, Φα)Φα(x).

By Cauchy-Schwarz inequality

|
∑

|α|=k

(f, Φα)Φα(x + iy)|2 ≤ Φk(x + iy, x− iy)‖Pkf‖
2
2.
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In view of Lemma 2.4 the hypothesis on f allows us to conclude that

the series
∞
∑

k=0

∑

|α|=k

(f, Φα)Φα(x + iy)

converges uniformly over compact subsets of C
n and hence f extends

to an entire function F on Cn.

Let D be the subgroup of K consisting of 2n×2n matrices associated

to the elements k(θ) ∈ U(n). We claim that it is enough to prove

(2π)−n

∫

Rn

∫

D

|π(k(θ).(z, w))F (ξ)|2dθdξ

= (2π)n/2e(u·y−v·x)
∑

α∈Nn

Φα,α(2iy, 2iv)|(f, Φα)|2.

To see the claim, suppose we have the above formula. Then writing
∫

Rn

∫

K

|π(σ.(z, w))F (ξ)|2dσdξ

= (2π)−n

∫

Rn

∫

D

∫

K

|π(k(θ)σ.(z, w))F (ξ)|2dσdθdξ

we get
∫

Rn

∫

K

|π(σ.(z, w))F (ξ)|2dσdξ

= (2π)n/2e(u′·y′−v′·x′)
∑

α∈Nn

Φα,α(2iy′, 2iv′)|(f, Φα)|2

where (z′, w′) = σ.(z, w). Since the action of σ preserves the symplectic

form we have e(u·y−v·x) = e(u′·y′−v′·x′). Thus we are left with proving

(2π)n/2

∫

K

Φα,α(σ.(2iy, 2iv))dσ =
k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)

whenever |α| = k. But this is a well known fact. A representation

theoretic proof of this can be found in Ratnakumar et al [10].

(Another way to see this is the following. The functions Φα,α(x, u)

are eigenfunctions of the special Hermite operator L with eigenvalue

(2|α|+n). And hence the function
∫

K
Φα,α(σ.(x, u))dσ is a radial eigen-

function of the same operator. But any bounded radial eigenfunction
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with eigenvalue (2k +n) is a constant multiple of ϕk(x, u). This proves

that

(2π)n/2

∫

K

Φα,α(σ.(x, u))dσ =
k!(n − 1)!

(k + n − 1)!
ϕk(x, u)

and hence they are same on Cn × Cn as well.)

We now turn our attention to prove the formula for the action of D.

The idea is to expand the operator valued function π(k(θ).(z, w)) into

a Fourier series. Defining

πm(z, w)F (ξ) = (2π)−n

∫

D

π(k(θ).(z, w))F (ξ)e−im·θdθ

we have the expansion

π(k(θ).(z, w))F (ξ) =
∑

m∈Zn

πm(z, w)F (ξ)eim·θ.

By the orthogonality of the Fourier series we obtain

(2π)−n

∫

Rn

∫

D

|π(k(θ).(z, w))F (ξ)|2dθdξ

=
∑

m∈Zn

∫

Rn

|πm(z, w)F (ξ)|2dξ.

In calculating the L2 norm of πm(z, w)F we make use of another prop-

erty of special Hermite functions, namely that Φα,β(x, u) is (β − α)−

homogeneous. By this we mean

Φα,β(k(θ).(x, u)) = ei(β−α)·θΦα,β(x, u).

A proof of this can be found in [12] (see Proposition 1.4.2).

Expanding f in terms of the Hermite basis we see that

πm(z, w)F =
∑

α,β

(f, Φα)(πm(z, w)Φα, Φβ)Φβ .

But

(πm(x, u)Φα, Φβ) = (2π)−n/2

∫

D

Φα,β(k(θ).(x, u))e−im·θdθ = 0

unless β = α + m due to the homogeneity properties of the special

Hermite functions. Therefore, the expansion of πm(z, w)F reduces to

πm(z, w)F = (2π)n/2
∑

α∈Nn

(f, Φα)Φα,α+m(z, w)Φα+m.
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This leads us to

‖πm(z, w)F‖2
2 = (2π)n

∑

α∈Nn

|(f, Φα)|2|Φα,α+m(z, w)|2.

Thus we have proved

(2π)−n

∫

Rn

∫

D

|π(k(θ).(z, w))F (ξ)|2dθdξ

= (2π)n
∑

m∈Zn

∑

α∈Nn

|(f, Φα)|2|Φα,α+m(z, w)|2.

This proves our claim since the sum over m ∈ Zn is precisely

(2π)−n/2e(u·y−v·x)Φα,α(2iy, 2iv) in view of Lemma 2.2. Hence the proof

of the theorem is complete.

The above theorem has a natural converse which we state and prove

now. Together they prove Theorem 1.1 stated in the introduction. In

the proof of the above theorem the hypothesis on the Hermite projec-

tions of f are used twice. First we used the estimates to conclude that

f has an entire extension to Cn. Then we used them to show that the

sum and the integral appearing in the above theorem are finite. In the

next theorem we begin with an entire function for which the integral

is finite and obtain the estimates on the projections.

Theorem 3.2. Let F be an entire function on Rn for which the integral
∫

Rn

∫

K

|π(σ.(z, w))F (ξ)|2dσdξ

is finite for all z, w ∈ Cn. Then ‖Pkf‖2 ≤ Cte
−2k

1
2 t for all t > 0.

Proof: We proceed as in the proof of the previous theorem. Since

F is holomorphic π(z, w)F makes sense. As before, for almost every

σ ∈ U(n) we have
∫

Rn

∫

D

|π(k(θ)σ.(z, w))F (ξ)|2dθdξ < ∞.

Expanding the operator π(k(θ).(z, w)) into Fourier series and proceed-

ing exactly as in the previous theorem and noting that at each stage
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the resulting sums are finite we get the Gutzmer’s formula, namely the

integral in the theorem is equal to

e(u·y−v·x)
∞
∑

k=0

k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)‖Pkf‖

2
2

and hence the sum is finite. Now Perron’s formula for Laguerre func-

tions on the negative real axis also gives lower bounds. That is to say,

the Laguerre functions ϕk(2iy, 2iv) behave like e2(k)
1
2 (|y|2+|v|2)

1
2 . In view

of this we immediately get the decay estimates on the projections Pkf.

4. Some consequences

In this section we deduce some interesting consequences of our

Gutzmer’s formula. First we obtain the characterisation of the im-

age of L2(Rn) under the Hermite semigroup mentioned in Corollary

1.2. As we have pointed out earlier the result is not new but we give a

different proof.

Consider the heat kernel pt(y, v) associated to the special Hermite

operator which is explicitly given by

pt(y, v) = (2π)−n(sinh(t))−ne−
1
4

coth(t)(|y|2+|v|2).

We now look at the integral
∫

Rn

(
∫

R2n

|π(iy, iv)f(ξ)|2p2t(2y, 2v)dydv

)

dξ.

Since the function pt(y, v) and the Lebesgue measure dydv are both

invariant under the action of the group K we can rewrite the above

integral as
∫

R2n

(
∫

Rn

∫

K

|π(σ.(iy, iv))f(ξ)|2dσdξ

)

p2t(2y, 2v)dydv.

In view of Gutzmer’s formula the above reduces to
∞
∑

k=0

k!(n − 1)!

(k + n − 1)!

(
∫

R2n

ϕk(2iy, 2iv)p2t(2y, 2v)dydv

)

‖Pkf‖
2
2.

We now make use of the fact that

k!(n − 1)!

(k + n − 1)!

∫

R2n

ϕk(2iy, 2iv)p2t(2y, 2v)dydv = e2(2k+n)t
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which we have established in [15] (see Lemma 6.3).

Therefore, replacing f by e−tHf we have established
∫

R2n

(
∫

Rn

|π(iy, iv)e−tHf(ξ)|2dξ

)

p2t(2y, 2v)dydv

=
∞
∑

k=0

‖Pkf‖
2
2 =

∫

Rn

|f(ξ)|2dξ.

Writing F for e−tHf a simple calculation shows that the above integral

is equal to

(2π sinh(2t))−n

∫

R2n

(
∫

Rn

|F (ξ + iv)|2e−2y·ξe− coth(2t)(|y|2+|v|2)dy

)

dξdv.

Performing the integration with respect to y we see that the above is

nothing but
∫

R2n

|F (ξ + iv)|2Ut(ξ, v)dξdv.

This completes the proof of Corollary 1.2.

We remark that if we have only assumed the estimate ‖Pkf‖2 ≤

Ce−2k
1
2 t for some t > 0 ( not for all t as in Theorem 3.1) then the

proof of Theorem 3.1 shows that f can be extended as a holomorphic

function to cetain tube domain Ωt = {z ∈ Cn : |y| < t} and still we

have Gutzmer’s formula as long as |y|2 + |v|2 < t2. We may think of

Gutzmer’s formula as a characterisation of the image of L2(Rn) under

the Hermite-Poisson semigroup e−tH
1
2 . Compare this with the results

of Janssen and Eijndhoven [5] on the growth of Hermite coefficients.

Another interesting consequence of the Gutzmer’s formula is the fol-

lowing orthogonality relations for Hermite functions on Cn. Polarising

Gutzmer we obtain
∫

Rn

∫

K

π(σ.(z, w))F (ξ)π(σ.(z, w))G(ξ)dσdξ

= e(u·y−v·x)
∞
∑

k=0

k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)(Pkf, Pkg).

Specialising to Hermite functions we get the following result which, to

our knowledge, seems to be new.
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Corollary 4.1. For any z, w ∈ Cn and α, β ∈ Nn we have
∫

Rn

∫

K

π(σ.(z, w))Φα(ξ)π(σ.(z, w))Φβ(ξ)dσdξ

= e(u·y−v·x) k!(n − 1)!

(k + n − 1)!
ϕk(2iy, 2iv)δα,β.

The above shows that in the one dimensional case the Hermite func-

tions hk satisfy the following relations. The choice z = iη, w = 0 gives
∫

R

∫ 2π

0

e−2ξη cos θhk(ξ + iη sin θ)hj(ξ + iη sin θ)dθdξ

= (2π)L0
k(−2η2)eη2

δk,j.

The choice z = η, w = iη leads to
∫

R

∫ 2π

0

e2ξη sin θ−η2 cos(2θ)hk(ξ + iηe−iθ)hj(ξ + iηe−iθ)dθdξ

= (2π)L0
k(−2η2)δk,j.

Other interesting relations in higher dimensional cases can be obtained

by suitable choices of z, w and also by choosing various subgroups of

K.
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