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HEAT KERNEL TRANSFORM FOR NILMANIFOLDS

ASSOCIATED TO THE HEISENBERG GROUP

BY

B. KRÖTZ, S. THANGAVELU AND Y. XU

Abstract. We study the heat kernel transform on a nilmani-

fold M of the Heisenberg group. We show that the image of

L
2(M) under this transform is a direct sum of weighted Bergman

spaces which are related to twisted Bergman and Hermite-Bergman

spaces.

1. Introduction

Let us consider a complete analytic Riemannian manifold M and let

us denote by kt(x, y) the heat kernel on it. We fix t > 0 and draw our

attention to the map

K : M → L2(M), m 7→ kt(m, ·) .

This assignment is analytic and hence K admits an analytic extension

to a holomorphic map

K∼ : MC → L2(M), z 7→ k∼
t (z, ·)

with MC a Stein tube surrrounding M . Consequently, we obtain a map

Tt : L2(M) → O(MC); Tt(f)(z) =

∫

M

f(m)k∼
t (z, m) dm

which we call the the heat kernel transform. The basic problem now

is to find appropriate tubes MC and then characterize the image of Tt.

This has been succesfully carried out for the following pairs (M, MC):

• (Rn, Cn) [2].
1
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• (U, UC) with U a compact Lie group and UC its universal com-

plexification [7].

• (U/K, UC/KC) with U/K a compact symmetric space [11].

• (H, HC) with H the Heiseberg group and HC its universal com-

plexification [8].

• (G/K, Ξ) with G/K a Riemannian symmetric space of the non-

compact type and Ξ the complex crown [9].

Let us mention that the image of Tt can be very different in nature:

a weighted Bergman space for M = R
n, U, U/K, a sum of two weighted

Bergman spaces with oscillatory weight for M = H, and, finally, for

M = G/K the image is not a Bergman space at all and needs to be

characterized with tools from integral geometry.

We observe, that in all so far understood examples M is a symmetric

space. Hence one might ask if it is also possible to characterize im Tt

for M a locally symmetric space. This paper constitutes a modest

step in that direction when we consider nilmanifolds associated to the

Heisenberg group.

To be precise, for M = Γ\H with Γ < H the standard lattice we show

that im Tt is the sum of three weighted Bergman spaces two of which

with oscillatory weight. To establish this theorem we lean on results for

H [8] as well as on deeper facts on the Hermite semigroup [4]. Finally,

let us mention that most of our methods extend to arbitrary discrete

subgroups Γ < H.

Acknowledgments

The authors wish to thank the referee for making several useful com-

ments on an earlier version of the paper.

2. Nilmanifolds associated to the Heisenberg group

and the heat kernel transform

2.1. Nilmanifolds associated to the Heisenberg group. Let us

denote by H the (2n+1)-dimensional Heisenberg group. As a manifold

H = R
n × R

n × R and the group law is given by
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(x, u, t)(x′, u′, t′) = (x + x′, u + u′, t + t′ +
1

2
(u · x′ − x · u′)) .

Throughout Γ will denote a discrete subgroup of H. With this data

we form the nilmanifold Γ\H. Sometimes we abbreviate M = Γ\H.

Here are some examples of Γ we have in mind:

Examples: (a) Let Γ = {0} × {0} × Z. Then Γ < H is a discrete

central subgroup. The quotient Hred = Γ\H is the familiar reduced

Heisenberg group.

(b) The choice Γst = Z
n × Z

n × 1
2
Z defines the standard lattice in

H.( This terminology is not standard!). The quotient Γst\H is a non-

trivial circle bundle over the 2n-torus T2n and hence compact. The

fundamental group of this compact manifold is the non-Abelian group

Γst.

(c) The prescription Γ = Zn × {0} × {0} defines an abelian discrete

subgroup which does not intersect the center of H.

For more about lattices in H, especially their classification, we refer

to [3], [5] and [13]. Write N for the smallest connected subgroup con-

taining Γ (N coincides with the Zariski-closure of Γ in the algebraic

group H (cf. [10], Ch. II, Remark 2.6). ) We notice that Γ becomes a

lattice in the nilpotent group N .

Write n for the Lie algebra of N . Then we find a subspace v ⊂ h

such that h = n + v. The prescription V = exp(v) defines a closed

submanifold of H and the multiplication mapping

N × V → H, (n, v) 7→ nv

is a polynomial homeomorphism. Consequently we obtain

(2.1) Γ\H ≃ Γ\N × v ,

where Γ\N is compact and v is a vector space.

Write dh for a Haar-measure on H which we normalize such that it

coincides with the Lebesgue measure once we identify H with R
2n+1.
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Denote by d(Γh) the unique measure on Γ\H which satisfies
∫

H

f(h) dh =

∫

Γ\H

∑

γ∈Γ

f(γh) d(Γh)

for all f ∈ Cc(H). The corresponding Lp-spaces shall be denoted by

Lp(Γ\H).

An important tool for us will be the averaging operator

A : Cc(H) → Cc(Γ\H), f 7→ A(f); A(f)(Γh) =
∑

γ∈Γ

f(γh)

which is known to be continuous and onto. Observe that A naturally

extends to a surjective contraction L1(H) → L1(Γ\H), also denoted by

A. Likewise ( 2.1 ) implies that A induces a continuous surjection of

Schwartz spaces S(H) → S(Γ\H).

2.2. Definition and basic properties of the heat kernel trans-

form on Γ\H. The universal complexification of HC of H is simply

HC = Cn × Cn × C with holomorphically extended group law

(z, w, ζ)(z′, w′, ζ ′) = (z + z′, w + w′, ζ + ζ ′′ +
1

2
(w · z′ − z · w′)) .

Here z · w =
∑n

j=1 zjwj . If a real analytic function f on H admits

holomorphic extension to HC, then f̃ shall be the notation for this so

obtained function.

We write ∆ for the standard left Laplacian on H (cf. [8], Sect. 2.2)

and denote by kt the corresponding heat kernel on H. Explicitly

kt(x, u, ξ) = cn

∫ ∞

−∞

e−iλξe−tλ2

(

λ

sinh(λt)

)n

e−
1

4
λ coth(λt)(x2+u2)dλ

where cn is a constant and x2 =
∑n

j=1 x2
j , u2 =

∑n
j=1 u2

j (cf. [8],

Sect. 2.2). From the above it is clear that kt can be extended to a

holomorphic function on HC, namely

(2.2)

k∼
t (z, w, ζ) = cn

∫ ∞

−∞

e−iλζe−tλ2

(

λ

sinh(λt)

)n

e−
1

4
λ coth(λt)(z2+w2)dλ .
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As before z2 =
∑n

j=1 z2
j and w2 =

∑n
j=1 w2

j . Note that k∼
t is well

behaved in the sense that its restriction to any bi-translate gHh ⊂ HC

with h, g ∈ HC is of rapid decay, i.e. H ∋ x 7→ k∼
t (gxh) is in S(H).

For t > 0 the heat kernel transform Tt on H is defined by

Tt : L2(H) → O(HC), f 7→ (f ∗ kt)
∼

and one immediately verifies that

• Tt is continuous (with O(HC) carrying the Fréchet topology of

compact convergence),

• Tt is injective,

• Tt is left-H equivariant

(see [8], Sect. 3.1).

It is not hard to see that Tt extends to a map on tempered distribu-

tions

Tt : S ′(H) → O(HC), ν 7→ (ν ∗ kt)
∼

featuring the bulleted items from above. With that we turn to the

heat kernel transform on the nil-manifold M = Γ\H. We often identify

functions on Γ\H with Γ-invariant functions on H. In this way we have

L2(Γ\H) ⊂ S ′(H) and with T Γ
t = Tt|L2(Γ\H) we obtain a continuous

injection

T Γ
t : L2(Γ\M) → O(Γ\HC) .

Remark 2.1. Recall that ∆ was defined by the use of left-invariant

vector fields on H and so factors to the Laplacian ∆Γ on the nilmanifold

Γ\H. It is easy to see that

(et∆Γ

f)∼ = T Γ
t (f)

for all f ∈ L2(Γ\H).

It is useful to have an alternative way to describe T Γ
t . Invoking the

decomposition ( 2.1 ) and the spectral resolution of k∼
t (cf. ( 2.2 )) it
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is not hard to see that series

KΓ
t (Γh, Γz) =

∑

γ∈Γ

k∼
t (h−1γw) (h ∈ H, z ∈ HC)

converges uniformly in the first and locally uniformly in the second

variable. As a result

(2.3) KΓ
t ∈ S(Γ\HC)⊗̂O(Γ\HC) .

We observe

(2.4) (T Γ
t f)(Γz) =

∫

Γ\H

f(Γh)KΓ
t (Γh, Γz) d(Γh)

and deduce the inequality:

Lemma 2.2. Let Q ⊆ HC be a compact subset. Then

C := C(Q) := sup
z∈Q

‖KΓ
t (·, Γz)‖L2(Γ\H) < ∞

and one has

sup
z∈Q

|T Γ
t (f)(Γz)| ≤ C‖f‖L2(Γ\H) .

We conclude this subsection with the averaging-equivariance.

Lemma 2.3. Let f ∈ S(Γ\H) and F ∈ S(H) such that A(F ) = f .

Then

T Γ
t (f) = A(Ht(F )) .

Proof. For all z ∈ HC we have

T Γ
t (f)(Γz) =

∫

H

f(h)kt(h
−1z) dh

=
∑

γ∈Γ

∫

H

F (γh)kt(h
−1z) dh

=
∑

γ∈Γ

∫

H

F (h)kt(h
−1γz) dh

= A(Tt(F ))(Γz) ,

as was to be shown. �
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3. Γ-invariant distribution vectors and the

Plancherel-Theorem for L2(M)

Throughout this section and the next we confine ourselves to the

standard lattice

Γ = Γst = Z
n × Z

n × 1

2
Z .

We will classify the Γ-invariant distribution vectors for the

Schrödinger representation and relate this to the Plancherel decom-

position L2(M).

We wish to point out that the material collected below is all well

known, see [6], [1], [3], [13] and especially [5] for a particularly nice

treatment. The decomposition of L2(M) into irreducible pieces is due

to Brezin [3] and we refer to [5] for an explicit exposition. In the ter-

minology of [5] the lattice Γst is isomorphic to Γl where l = (2, 2, ..., 2)

via the automorphism (x, u, t) → (x, 2u, 2t).

In our exposition we adapt the more general point of view of Gelfand

et al. which, in our opinion, clarifies the underlying structure best.

To begin with we consider a unimodular Lie group G and let Γ < G

be a co-compact lattice. Form M = Γ\G. One is interested in decom-

posing the right-regular representation R on L2(M) into irreducibles.

In this context one has a basic result (cf. [6], Ch. 1, Sect. 4.6)

(3.1) L2(M) ≃
⊕

π∈Ĝ

m(π)Hπ .

Here, as usual, Ĝ denotes the unitary dual of G and the multiplicities

m(π) are all finite. By Frobenius reciprocity one has

(3.2) m(π) = dimC(H−∞
π )Γ ,

where (H−∞
π )Γ denotes the space of Γ-invariant distribution vectors

of (π,Hπ). Let us make the unitary equivalence in ( 3.1 ) explicit by

writing down the intertwining operator. There exists an inner product
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〈, 〉π on the finite dimensional C-vectorspace Mπ = (H−∞
π )Γ such that

the map

(3.3)
∑

π∈Ĝ

Mπ ⊗H∞
π → L2(M),

∑

νπ ⊗vπ 7→ (Γg 7→
∑

π

νπ(π(g)vπ))

extends to a unitary G-equivalence
⊕

π∈Ĝ

Mπ ⊗Hπ ≃ L2(M) .

Thus for our special situation M = Γ\H we have to determine two

things: first Mπ, and secondly the inner product 〈·, ·〉π on this space.

We turn to the details.

The first step in the decomposition of R is the Fourier decomposition

of f ∈ L2(M) in the last variable. Note that F (x, u, ξ) is 1
2
- periodic

in ξ and hence it has the expansion

F (x, u, ξ) =
∞

∑

k=−∞

F k(x, u)e4πikξ

where F k(x, u) are the Fourier coefficients of F (x, u, ξ). Thus L2(M)

has the orthogonal direct sum decomposition

L2(M) =
∑

k∈Z

Hk

where Hk is the set of all functions F ∈ L2(M) satisfying F (x, u, ξ) =

e4πikξF (x, u, 0). We now proceed to obtain further decomposition of Hk

for each k 6= 0.

Let πλ, λ ∈ R, λ 6= 0 be the Schrödinger representations of H realised

on L2(Rn). Explicitly,

πλ(x, u, ξ)ϕ(v) = eiλξeiλ(x·v+ 1

2
x·u)ϕ(v + u).

The subspaces Hk are invariant under R and by Stone-von Neumann

theorem R restricted to Hk decomposes into finitely many pieces each

equivalent to π4πk. For explicit decompositions of R we refer to [3], [13]

and [5]. There is no canonical way of effecting the decomposition and

here we get one such decomposition which is suitable for our purpose of
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studying the heat kernel transform. For some ’natural’ decompositions

of Hk we refer to Auslander and Brezin [1].

As we already described earlier, the standard way of constructing Γ

invariant functions on H is to start with a tempered distribution ν on

Rn which is πλ(Γ) invariant and consider F (x, u, ξ) = (ν, πλ(x, u, ξ)f)

where f is a Schwartz function on Rn. Let ν be such a distribution; that

is it verifies (ν, πλ(h)f) = (ν, f), h ∈ H. Then taking h = (0, 0, j/2) ∈
Γ, j ∈ Z we are led to πλ(h)f = eiλj/2f and (ν, eiλj/2f) = (ν, f). This

holds for all j ∈ Z if and only if λ = 4πk for some k ∈ Z. Let us assume

k 6= 0 and write ρk = π4πk.

Proposition 3.1. Set Ak = {j ∈ Zn : 0 ≤ j1, j2, ...., jn ≤ 2k − 1}.
Then every tempered distribution ν invariant under ρk(Γ) is of the

form ν =
∑

j∈Ak
cjνj with νj defined by

(νj, f) =
∑

m∈Zn

f̂(2km + j) (f ∈ S(H))

Here f̂ denotes the Fourier transform of the Schwartz class function f .

Proof. Since λ = 4kπ, eiλξ = 1 for ξ ∈ 1
2
Z. The ρk(Γ)-invariance of ν

shows that

(ν, ρk(0,n, 0)f) = (ν, f(· + n)) = (ν, f)

which means that ν is periodic. Consequently, ν has the Fourier ex-

pansion

(ν, f) =
∑

n∈Zn

cnf̂(n)

where f̂(η) =
∫

Rn f(x)e−2πix·η dx. The ρk(Γ) invariance of ν also shows

that

(ν, f) = (ν, ρk(m, 0, 0)f) = (ν, e4πkim·(·)f)

which translates into

∑

n∈Zn

cnf̂(n− 2km) =
∑

n∈Zn

cnf̂(n).
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This shows that cn is a constant on the equivalence classes in Zn/2kZn.

Thus

(ν, f) =
∑

j∈Ak

cj
∑

m∈Zn

f̂(2km + j).

Defining νj accordingly we complete the proof. �

Remark 3.2. In view of the Poisson summation formula

∑

m∈Zn

f(x + m) =
∑

m∈Zn

f̂(m)e2πim·x ,

valid for all functions f ∈ S(Rn), we have

(νj, f) = (2k)−n
∑

m∈Zn

e−
πi
k

m·jf(
1

2k
m).

Remark 3.3. Note that S(Rn) is the space of smooth vectors for the

Schrödinger representation ρk, i.e.

L2(Rn)∞ = S(Rn)

in the standard representation theory terminology. Dualizing this iden-

tity we obtain

L2(Rn)−∞ = S ′(Rn)

and with it the Gelfand-triplet

L2(Rn)∞ = S(Rn) →֒ L2(Rn) →֒ S ′(Rn) = L2(Rn)−∞ .

The above proposition then implies that

dimC(L2(Rn)−∞)Γ = (2k)n

and, moreover, provides an explicit basis for the space (L2(Rn)−∞)Γ.

At this point it might be interesting to observe that there is an alter-

native way to construct elements of (L2(Rn)−∞)Γ, namely by averaging:

Let f ∈ S(Rn). It is not difficult to show that the series

∑

γ∈Γ

ρk(γ)(f)
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converges in S ′(Rn) and defines a Γ-invariant element there. One es-

tablishes that the map

S(R)n → S ′(Rn)Γ, f 7→
∑

γ∈Γ

ρk(γ)(f)

is a continuous surjection.

At this point we determined the spectrum of L2(M), i.e. the occuring

unitary irreducible representations, as well as the multiplicity space

Mπ. In the sequel we abbreviate Mk := Mρk
. As a last step we

have to determine the unitary structure on Mk such that the map

f → (νj, ρk(·)f) becomes isometric. We already know that

Mk = span{νj | j ∈ Ak}

and in the next step we want to show that the νj are in fact orthogonal.

This is easy and follows from a little group theory. In fact, let us define

the finite group

Fk := (Z/2kZ)n .

Then the prescription

Πk(x)(ν) := ν(· + x) (ν ∈ Mk, x ∈ Fk)

defines a representation of Fk on Mk. Moreover it is clear that νj is a

basis of eigenvectors for this action; explicitly:

(3.4) Πk(x)νj = e
πi
k

x·jνj (j ∈ Ak) .

Futhermore for f, g ∈ L2(Rn) and ν, µ ∈ Mk we set Fν(x, u, ξ) =

(ν, ρk(x, u.ξ)f) and Gµ(x, u, ξ) = (µ, ρk(x, u, ξ)g). Then one immedi-

ately verifies that

(FΠk(x)ν , Gµ)L2(M) = (Fν , GΠk(−x)µ)L2(M) .

Thus we conclude with ( 3.4 ) that νj is in fact an orthogonal basis (up

to an uniform scalar) for Mk. Furthermore it is indeed an orthonormal

basis, as the next Lemma will show.
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Lemma 3.4. Let f ∈ L2(Rn), j ∈ Ak and F ∈ L2(M) defined by the

corresponding matrix coefficient

F (x, u, ξ) = (νj, ρk(x, u, ξ)f) .

Then

‖F‖L2(M) =
√

2 · ‖f‖L2(Rn) .

Proof. The proof is a straightforward computation; we simply expand

the terms:

F (x, u, ξ) = (νj, ρk(x, u, ξ)f)

= (νj, e
4πikξe4πik(x··+ 1

2
x·u)f(· + u))

= e4πikξe2πix·u(νj, e
4πikx··f(· + u))

=
1

(2k)n
e4πikξe2πix·u

∑

m∈Zn

e−
πi
k

m·je2πix·mf

(

1

2k
m + u

)

.

In the last equation we used the characterization of νj from Remark 3.2.

As Γ\H coincides with R/1
2
Z × Rn/Zn × Rn/Zn up to set of measure

zero, we thus get

‖F‖2
L2(M) =

2

(2k)2n

∫

Rn/Zn

∫

Rn/Zn

∣

∣

∣

∣

∣

∑

m∈Zn

e−
πi
k

m·je2πix·mf

(

1

2k
m + u

)

∣

∣

∣

∣

∣

2

dx du

=
2

(2k)2n

∫

Rn/Zn

∑

m∈Zn

∣

∣

∣

∣

f

(

1

2k
m + u

)
∣

∣

∣

∣

2

du

=
2

(2k)n

∫

Rn/Zn

∑

m∈Zn

∣

∣

∣

∣

f

(

1

2k
(m + u)

)
∣

∣

∣

∣

2

du

=
2

(2k)n

∫

Rn

∣

∣

∣

∣

f

(

1

2k
u

)
∣

∣

∣

∣

2

du

= 2‖f‖2 ,

as was to be shown. �
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Finally we make some remarks to the existing literature. We show

that the matrix coefficients Fj(x, u, ξ) := (νj, ρk(x, u, ξ)f) can be ex-

pressed as Weil- Brezin (or Zak ) transforms studied in [3]. Consider

the operator Vk defined on the Schwartz class S(Rn) by

Vkf(x, u, ξ) =
∑

m∈Zn

ρk(x, u, ξ)f(m).

Written explicitly

Vkf(x, u, ξ) = e4πkiξe2πkix·u
∑

m∈Zn

e4πkim·xf(u + m).

It is easy to see that Vkf is Γ invariant. For each j ∈ Ak we also define

Vk,jf(x, u, ξ) = e2πij·xVkf(x, u, ξ).

These are called the Weil-Brezin transforms in the literature.

Proposition 3.5. (1) For each f ∈ S(Rn) we have the relation

Fj(x, u, ξ) = Vk,jgj(u,−x, ξ)

where f and gj are related by gj(x) = f̂(2kx + j).

(2) The transform Vk,j initially defined on S(Rn) extends to the

whole of L2(Rn) as an isometry into Hk.

Proof. To prove the first assertion, a simple calculation shows that

(ρk(x, u, ξ)f )̂(s) = e4πkiξe−2πkix·ue2πis·uf̂(s − 2kx).

Hence it follows that Fj(x, u, ξ) is given by

e4πkiξe−2πkix·u
∑

m∈Zn

e2πi(2km+j)·uf̂(2km + j − 2kx)(3.5)

which simplifies to

e4πkiξe−2πkix·ue2πij·u
∑

m∈Zn

e4πim·uf̂(2k(m − x) + j).

Setting gj(s) = f̂(2ks + j) and recalling the definition of Vk,j we get

Fj(x, u, ξ) = Vk,jgj(u,−x, ξ). This shows that (νj, ρk(x, u, ξ)f) can also

be defined on the whole of L2(Rn). Finally, notice that the second

assertion follows from the first one and our preceeding discussion. �
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Combining the two precceding propositions we get the following de-

composition of the spaces Hk.

Proposition 3.6. Let Hk,j be the span of functions of the form Fj =

(νj, ρk(·)f) as f varies over L2(Rn). Then Hk is the orthogonal direct

sum of the spaces Hk,j, j ∈ Ak.

Remark 3.7. From the above proposition it follows that the restriction

of R to Hk,j is unitarily equivalent to ρk. The intertwining operator is

given by

Uk,jf(x, u, ξ) = (νj, ρk(x, u, ξ)f)

which is also equal to the composition of Vk,j with the operators f(s) →
f̂(2ks + j) and F (x, u, ξ) → F (u,−x, ξ).

An orthonormal basis for Hk can be obtained using the operators

Uk,j. Let Φα, α ∈ Nn be the normalised Hermite functions on Rn. Then

the functions Uk,jΦα(x, u, ξ) form an orthogonal system in Hk,j. With

suitable normalising constants cα,j the functions cα,jUk,jΦα as α ranges

over N
n and j ∈ Ak form an orthonrmal basis for Hk.

4. The image of the heat kernel transform

In this section we determine the image of T Γ
t for Γ = Γst the standard

lattice. To simplify notation we often write Tt instead of T Γ
t and drop

the ∼ for the holomorphic extension of a function.

As L2(M) is the direct sum of Hk as k ranges over all integers, the

image of L2(M) under Tt will be the direct sum of Tt(Hk), the image

of Hk under Tt. We first settle the case k = 0. Recall that functions

f ∈ H0 are independent of ξ and hence we think of them as functions

on the 2n-torus Tn × Tn. An easy calculation (use ( 2.2 )) shows that

the function f ∗ kt is given by the ordinary convolution

f ∗ kt(z, w) = cnt
−n

∫

Rn

∫

Rn

f(x′, u′)e−
1

4t
((z−x′)2+(w−u′)2) dx′ du′.

Note that f ∗ kt is an entire function on Cn × Cn which satisfies f ∗
kt(z + m, w + n) = f ∗ kt(z, w) for all m,n ∈ Z

n. Thus the heat
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kernel transform when restricted to H0 is nothing but the heat kernel

transform on the torus Tn ×Tn and the image has been characterised.

Theorem 4.1. An entire function F (z, w) of 2n complex variables

belongs to Tt(H0) if and only if F (z + m, w + n) = F (z, w) for all

m,n ∈ Zn and

‖F‖2 =

∫

R2n

∫

[0,1)2n

|F (z, w)|2e− 1

2t
(y2+v2) dx du dy dv < ∞.

Moreover ‖Tt(f)‖ = ‖f‖ for all f ∈ H0.

Thus the members of Tt(H0) are precisely the functions from the

classical weighted Bergman space associated to the standard Laplacian

on R2n that are periodic in the real parts of the variables.

We now consider the image of Hk for k 6= 0. For the description of

Tt(Hk) we need to recall several facts about Hermite-Bergman spaces

and twisted Bergman spaces. Given a nonzero λ ∈ R consider the

kernel

pλ
t (x, u) = cnλ

n(sinh(λt))−ne−
1

4
λ coth(λt)(x2+u2).

This kernel is related to kt via

kλ
t (x, u) = e−tλ2

pλ
t (x, u)

where for a function f(x, u, ξ) on the Heisenberg group we use the

notation

fλ(x, u) =

∫ ∞

−∞

f(x, u, ξ)eiλξ dξ.

Given a function f ∈ L2(R2n) the λ-twisted convolution

f ∗λ pλ
t (x, u) =

∫

R2n

f(x′, u′)pλ
t (x − x′, u − u′)e−i λ

2
(u·x′−x·u′) dx′ du′

extends to C2n as an entire function. This transform is called the

twisted heat kernel transform and in [7] we have studied the image of

L2(R2n) under this transform.

The image turns out to be the twisted Bergman space Bλ
t which is

defined as follows. An entire function F (z, w) on C
2n belongs to Bλ

t if
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and only if
∫

Cn

∫

Cn

|F (z, w)|2W λ
t (z, w) dz dw < ∞

where

W λ
t (x + iy, u + iv) = eλ(u·y−v·x)pλ

2t(2y, 2v).

In [7] it has been shown that the image of L2(R2n) under the twisted

heat kernel transform is precisely Bλ
t .

The connection between the twisted heat kernel trasnform and the

heat kernel transform on the nilmanifold M is the following. If F ∈ Hk

then an easy calculation shows that

F ∗ kt(x, u, ξ) = e−t(4πk)2e4πikξG ∗−4πk p−4πk
t (x, u)(4.1)

where G(x, u) = F (x, u, 0). Thus we are led to consider λ-twisted con-

volution with pλ
t . Observe that when F ∈ Hk the function G(x, u) =

F (x, u, 0) satisfies

G(x + m, u + n) = e2πik(u·m−x·n)G(x, u).

Thus the entire extension of G ∗−4πk p−4πk
t also inherits the same prop-

erty and we expect the image of Hk under the heat kernel transform

to consist of entire functions of the form

(4.2) F (z, w, ζ) = e4πikζG(z, w) ,

where G has the above transformation property under translation by

Zn ×Zn. We define B4πk
t,Γ to be the space of all entire functions G(z, w)

having the transformation property

G(z + m, w + n) = e2πik(w·m−z·n)G(z, w)

which are square integrable with respect to W−4πk
t , i.e.

∫

R2n

∫

[0,1)2n

|G(z, w)|2W−4πk
t (z, w) dx du dy dv < ∞ .
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4.1. Diagonalization of B4πk
t,Γ . In this subsection we show that B4πk

t,Γ

admits a natural symmetry of the finite group Fk. To begin with we

note that the prescription

(4.3)

(Π̃k(x)G)(z, w) = e−iπx·wG
(

z +
x

2k
, w

)

(x ∈ Fk, G ∈ B4πk
t,Γ )

defines an action of Fk on B4πk
t,Γ . Moreover,

Lemma 4.2. The representation (Π̃k,B4πk
t,Γ ) of Fk is unitary.

Proof. We have to show that

‖Π̃k(s)G‖2 = ‖G‖2

for all G ∈ B4πk
t,Γ and s ∈ Fk. The verification is a straightforward

computation:

‖Π̃k(s)G‖2 =

∫

R2n

∫

[0,1)2n

∣

∣

∣
(Π̃k(s)G)(x + iy, u + iv)

∣

∣

∣

2

·

W−4πk
t (x + iy, u + iv) dx du dy dv

=

∫

R2n

∫

[0,1)2n

∣

∣

∣
(Π̃k(s)G)(x + iy, u + iv)

∣

∣

∣

2

·

e−4πk(u·y−v·x)p−4πk
2t (2y, 2v) dx du dy dv

=

∫

R2n

∫

[0,1)2n

|G(x + s/2k + iy, u + iv)|2 ·

e2πs·ve−4πk(u·y−v·x)p−4πk
2t (2y, 2v) dx du dy dv

=

∫

R2n

∫

[0,1)2n

|G(x + iy, u + iv)|2 ·

e2πs·ve−4πk(u·y−v·(x−s/2k))p−4πk
2t (2y, 2v) dx du dy dv

=

∫

R2n

∫

[0,1)2n

|G(x + iy, u + iv)|2 ·

e−4πk(u·y−v·x)p−4πk
2t (2y, 2v) dx du dy dv

= ‖G‖2 .

�
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In the sequel we often abbreviate and write λ for 4πk. Define for

each j ∈ Ak a subspace of Bλ
t,j of Bλ

t,Γ as follows: G ∈ Bλ
t,Γ belongs to

Bλ
t,j if and only if

G(z +
1

2k
m, w) = eπim·(w+ 1

k
j)G(z, w) .

The previous lemma then implies:

Corollary 4.3. Bλ
t,Γ is the orthogonal direct sum of Bλ

t,j, j ∈ Ak.

4.2. Characterization of Bλ
t,Γ. The aim of this subsection is to prove

that Tt maps Hk onto Bλ
t,Γ (with Bλ

t,Γ interpreted as a subspace of

O(Γ\HC) via ( 4.2 )). Let us begin with the easy half, the isometry of

the map. For that we have to introduce a useful technical tool, namely

twisted averages.

Recall that H∞
k is the space of all functions F in S(Γ\H) which satisy

(4.4) F (x, u, ξ) = e−iλξF (x, u, 0) .

Often it is convenient to identify functions f on R2n with functions F

on H which transform as ( 4.4 ) via

(4.5) f ↔ F, F (x, u, ξ) = e−iλξf(x, u) .

With this terminology we record for F ∈ Hk

(4.6) Tt(F )(z, w, ζ) = eiλζ(f ∗λ pλ
t )(z, w) .

For f ∈ S(R2n) we define its twisted average by

Aλf(x, u) = eiλξ
∑

γ∈Γ

F (γ(x, u, ξ)).

More explicitly,

Aλf(x, u) =
∑

(a,b,0)∈Γ

ei λ
2
(u·a−x·b)f(x + a, u + b).(4.7)

We note that Aλ maps S(R2n) onto H∞
k (modulo the identification

( 4.5 )). Further we note that
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(4.8) (Aλf) ∗λ pλ
t = Aλ(f ∗λ pλ

t )

Proposition 4.4. For all f ∈ S(R2n) one has

‖Tt(Aλ(f))‖2
Bλ

t,Γ

= ‖Aλ(f)‖2
L2(M) .

In particular, the map

Tt : Hk → Bλ
t,Γ, F 7→ f ∗λ pλ

t

is isometric.

Proof. Let f ∈ S(R2n). Then, by ( 4.8 ),

(Aλf) ∗λ pλ
t (z, w) =

∑

(a,b,0)∈Γ

ei λ
2
(w·a−z·b)f ∗λ pλ

t (z + a, w + b).

We can obtain pointwise estimates for the function f ∗λ pλ
t (z+a, w+b)

which shows that the above series actually converges. Therefore,

‖Tt(Aλ(f))‖2 =

∫

R2n

∫

R2n/Z2n

|(Aλf) ∗λ pλ
t (z, w)|2W λ

t (z, w) dz dw

=

∫

C2n

f ∗λ pλ
t (z, w)(Aλf) ∗λ pλ

t (z, w)W λ
t (z, w) dz dw

and we used the transformation property of the weight function W λ
t .

Further expansion yields

‖Tt(Aλ(f))‖2 =
∑

(a,b,0)∈Γ

∫

C2n

f ∗λ pλ
t (z, w)·

e−i λ
2
(w·a−z·b)f ∗λ pλ

t (z + a, w + b)W λ
t (z, w) dz dw .

We recall that W λ
t is the weight function for the twisted Bergman space

Bλ
t (see [8]) and obtain further
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‖Tt(Aλ(f))‖2 =
∑

(a,b,0)∈Γ

∫

R2n

f(x, u)e−i λ
2
(u·a−x·b)f(x + a, u + b) dx du

=

∫

R2n/Z2n

|Aλf(x, u)|2 dx du

= ‖Aλf‖2 ,

which completes the proof. �

We turn to the more difficult part, namely that Tt maps Hk onto

Bλ
t,Γ. This will be proved by establishing a connection between twisted

Bergman spaces and Hermite-Bergman spaces which we proceed to de-

scribe now. For each nonzero λ ∈ R let us consider the scaled Hermite

operator H(λ) = −∆+λ2|x|2 on Rn whose eigenfunctions are provided

by the Hermite functions

Φλ
α(x) = |λ|n

4 Φα(
√

|λ|x), x ∈ R
n, α ∈ N

n.

The operator H(λ) generates the Hermite semigroup e−tH(λ) whose

kernel is explicitly given by

Kλ
t (x, u) =

∑

α∈Nn

e−(2|α|+n)|λ|tΦλ
α(x)Φλ

α(u).

Using Mehler’s formula (see [12]) the above series can be summed to

get

Kλ
t (x, u) = cn(sinh(λt))−

n
2 (cosh(λt))−

n
2(4.9)

×e−
λ
4

tanh(λt)(x+u)2e−
λ
4

coth(λt)(x−u)2 .

The image of L2(Rn) under the Hermite semigroup has been studied

by Byun [4] . His result is stated as follows.

Let Hλ
t be the Hermite-Bergman space defined to be the space of all

entire functions on Cn for which
∫

R2n

|F (x + iy)|2Uλ
t (x, y)dxdy < ∞

where the weight function Ut is given by

Ut(x, y) = cn(sinh(4λt))−
n
2 eλ tanh(2λt)x2

e−λ coth(2λt)y2

.
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Theorem 4.5. The image of L2(Rn) under the Hermite semigroup is

precisely the space Hλ
t and e−tH(λ) is a constant multiple of an isometry

between these two spaces.

The relation between the heat kernel transform on Γ\H and the

Hermite semigroup is given in the following proposition.

Proposition 4.6. Let f ∈ L2(Rn) and F = Vk,j(f) for j ∈ Ak. Then

F∗kt(x, u, ξ) = cλe
−tλ2+iλξeiλ(a·x+ 1

2
x·u)

∑

m∈Zn

eiλx·mτ−a

(

e−tH(λ)τaf
)

(u+m)

where λ = 4πk, a = 1
2k

j, τaf(x) = f(x − a) and cλ is a constant de-

pending only on λ and n.

Proof. It follows from the definition of Vk,j and the calculation (3.1)

that e−iλξ+tλ2

F ∗ kt(x, u, ξ) is given by

∫

R2n

Vkf(x′, u′, 0)eiλa·xei λ
2
(u·x′−x·u′)pλ

t (x − x′, u − u′)dx′du′

=
∑

m∈Zn

∫

R2n

f(u′ + m)eiλx′·(m+ 1

2
(u+u′+2a))·

· e−i λ
2
x·u′

pλ
t (x − x′, u − u′) dx′ du′ .

Using the explicit formula for pλ
t (x − x′, u − u′) the integral with

respect to dx′ can be seen to be
∫

R2n

eiλx′·(m+ 1

2
(u+u′+2a))e−

λ
4

coth(λt)(x−x′)2 dx′

= eiλx·(m+ 1

2
(u+u′+2a))

∫

R2n

e−iλx′·(m+ 1

2
(u+u′+2a))e−

λ
4

coth(λt)x′2

dx′

= cλ(tanh(λt))
n
2 eiλx·(m+ 1

2
(u+u′+2a))e−λ tanh(λt)(m+ 1

2
(u+u′+2a))2 .

Therefore,
∫

R2n

f(u′ + m)eiλx′·(m+ 1

2
(u+u′+2a))e−i λ

2
x·u′

pλ
t (x − x′, u − u′) dx′ du′

= cλ(sinh(2λt))−
n
2

∫

R2n

f(u′ + m)eiλx·(m+ 1

2
(u+u′+2a))e−i λ

2
x·u′

× e−λ tanh(λt)(m+ 1

2
(u+u′+2a))2e−

λ
4

coth(λt)(u−u′)2 du′ .
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We change variables u′ → u′ − a − m, use the expression for Kλ
t

given in ( 4.9 ) and the integral above becomes

cλe
iλx·meiλx·aei λ

2
x·u

∫

Rn

f(u′ − a)Kλ
t (u + a + m, u′) du′

= cλe
iλx·meiλx·aei λ

2
x·u

(

e−tH(λ)τaf
)

(u + a + m) .

This completes the proof of the proposition. �

We are ready for the main result in this article.

Theorem 4.7. The map

Tt : Hk → Bλ
t,Γ, F 7→ f ∗λ pλ

t

is an isometric isomorphism.

To prove the Theorem we will establish the following slightly more

precise result.

Theorem 4.8. An entire function F (z, w) belongs to B4πk
t,j if and only

if F (z, w) = et(4πk)2(Vk,jf) ∗ kt(z, w, 0) for some f ∈ L2(Rn).

Proof. First note that the map is isometric by Proposition 4.4 and

Corollary 4.3. It remains to verify surjectivity.

For that let F ∈ Bλ
t,j with λ = 4πk. We have to show that there

exists f ∈ L2(Rn) such that Vk,jf ∗kt(z, w, 0) = e−tλ2

F (z, w). To prove

this we consider the function

G(z, w) = e−iλa·ze−i λ
2
z·wF (z, w).

In view of the transformation properties of F , the function G becomes
1
2k

-periodic in the x-variables. Therefore, it admits an expansion of the

form

G(z, w) =
∑

m∈Zn

Cm(w)eiλm·z

where Cm are the Fourier coefficients:

Cm(w) =

∫

[0, 1

2k
)n

G(x, w)e−iλm·x dx.
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The transformation properties of F lead to G(x, w−m) = G(x, w)eiλm·x

and hence Cm(w − m) = C0(w). Thus, we obtain

F (z, w) = eiλa·zei λ
2
z·w

∑

m∈Zn

C0(w + m)eiλm·z.

We now show that C0 belongs to the Hermite-Bergman space Hλ
t .

For that we consider the finite integral:

‖F‖2 =

∫

C2n/Z2n

|F (z, w)|2W−λ
t (z, w) dx du dy dv

=

∫

C2n/Z2n

∣

∣e2iλa·zeiλz·w
∣

∣ ·
∣

∣

∣

∣

∣

∑

m∈Zn

C0(w + m)eiλm·z

∣

∣

∣

∣

∣

2

·

· e−λ(u·y−v·x)pλ
2t(2y, 2v) dx du dy dv

=
∑

m∈Zn

∫

Cn/Zn

∫

Rn

e−2λy·(a+u+m) |C0(w + m)|2

· pλ
2t(2y, 2v) du dy dv

We recall the explicit formula for pλ
t and use the fact

∫

Rn

e−2λy·ue−λ coth(2λt)y2

dy = cλ(tanh(2λt))
n
2 eλ tanh(2λt)u2

.

As a result

‖F‖2 =

∫

R2n

|C0(w − a)|2Uλ
t (u, v) du dv < ∞.

In view of Theorem 4.5, there exists g ∈ L2(Rn) such that C0(w) =

e−tH(λ)g(w + a). Let f = τ−ag. Then Proposition 4.6 implies

F (z, w) = etλ2

Vk,jf ∗ kt(z, w, 0)

and this proves the theorem. �

Remark 4.9. Our proof of the fact that the map Tt

∣

∣

∣

Hk

is isometric

(Proposition 4.4) is rather robust and generalizes to all discrete sub-

groups Γ < H. However this is not the case for our argument for the

onto-ness.
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Remark 4.10. Recall the finite group Fk and their two representations

Πk and Π̃k. Then Tt

∣

∣

∣

Hk

intertwines Πk and Π̃k.

Remark 4.11. The Weil-Brezin transforms Vk,j defined on L2(Rn)

has a natural extension to the Hermite-Bergman spaces Hλ
t , λ = 4πk.

Indeed, consider the operator Ṽk,j defined on Hλ
t as follows. For F ∈ Hλ

t

we let

Ṽk,jF (z, w, ζ) = eiλζeiλa·zei λ
2
z·w

∑

m∈Zn

eiλz·mF (w + m).

Let us verify that the above series converges so that Ṽk,jF is well defined.

As F ∈ Hλ
t we have

F (z) =

∫

Cn

F (w)Kλ
t (z, w̄)Uλ

t (z)dz

since Kλ
t (z, w̄) is the reproducing kernel. From the above we get the

estimate

|F (z)| ≤ CKλ
t (z, z̄) ≤ Ce−λ tanh(2λt)x2

eλ coth(2λt)y2

.

Therefore, the series defining Ṽk,jF (z, w, ζ) converges uniformly over

compact subsets and defines an entire function. Moreover, we can check

that Ṽk,jF (z, w, 0) belongs to Bλ
t,j. Thus Ṽk,j intertwines between the heat

kernel transform associated to the Hermite operator and the heat kernel

transform on the nilmanifold. More precisely, we have the following

commutative diagram:

L2(Rn)
Vk,j−→ Hk

↓ ↓
τ−ae

−tH(λ)τa Tt

↓ ↓
Hλ

t

Ṽk,j−→ B4πk
t,j

Let B0
t,Γ be the Bergman space described in Theorem 4.1. Combining

Theorems 4.1 and 4.7 we obtain the following.
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Theorem 4.12. The image of L2(Γ\H) under Tt is the direct sum of

all B4πk
t,Γ , k ∈ Z. More precisely,

Tt(L
2(Γ\H)) =

∞
∑

k=−∞

e2t(4πk)2B4πk
t,Γ .

This is the analogue of Theorem 5.1 in [8] for the heat kernel trans-

form on the full Heisenberg group. As in the case of the full Heisen-

berg group, the image can be written as a direct sum of three weighted

Bergman spaces if we allow the weight functions to take both positive

and negative values.

Let L2
+(Γ\H) = ⊕∞

k=1H−k and L2
−(Γ\H) = ⊕∞

k=1Hk. Similarly define

L2
+(T) and L2

−(T) where T = R/(1
2
Z) is the one dimesional torus.

We let B+
t (C) (resp. B−

t (C)) stand for the image of L2
+(T) (resp.

L2
−(T)) under the heat kernel transform associated to the Laplacian on

T. These are weighted Bergman spaces that correspond to the weight

e−
1

2t
y2

which are 1/2 periodic in the x− variable. We define B+
t (Γ\HC)

and B−
t (Γ\HC) as follows. Let W+

t and W−
t be the weight functions

that appeared in [7]. They are charactersied by the conditions
∫

R

W+
t (z, w, iη)e2λη dη = e2tλ2

W λ
t (z, w)

for all λ > 0 and
∫

R

W−
t (z, w, iη)e2λη dη = e2tλ2

W λ
t (z, w)

for all λ < 0.

We consider an exhaustion of Γ\H defiend as follows. For each pos-

itive integer m let Em = {z = x + iy ∈ Cn : x ∈ [0, 1)n, |y| ≤ m} and

E = [0, 1)×R. We define Km = Em ×Em ×E so that the union of all

Km as m varies over all positive integers is just Γ\H. We let V+(Γ\HC)

stand for the space all entire functions F on Cn × Cn × C such that

F ∈ L2(Km, |W+
t |dg) for all m;

lim
m→∞

∫

Km

|F (g)|2W+
t (g) dg < ∞;
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and F (z, w, ·) ∈ B+
t (C) for all z, w ∈ Cn. We equip V+(Γ\HC) with the

sesquilinear product

(F, G)+ = lim
m→∞

∫

Km

F (g)Ḡ(g)W+
t (g) dg.

We similarly define V−(Γ\HC). As in [8], Lemma 6.4, one shows that

the above bracket is positive definite and we define B+
t (Γ\HC) and

B−
t (Γ\HC) as the completions of V+(Γ\HC) and V−(Γ\HC). We also

define B0
t (Γ\HC) to be the space described in Theorem 4.1. With these

definitions we have the following result.

Theorem 4.13.

Tt(L
2(Γ\H)) = B−

t (Γ\HC) ⊕ B0
t (Γ\HC) ⊕ B+

t (Γ\HC).

Proof. The proof is similar to the case of the full Heisenberg group.

So we will be very sketchy. We refer to [7] for details (see Lemma 6.4

and Theorem 6.4). First we check that the above sesquilinear product

defines a pre-Hilbert space structure. The condition F (z, w, ·) ∈ B+
t (C)

shows that there exists a function G(z, w, ·) ∈ L2
+(T) such that

F (z, w, ζ) =

∫

R

G(z, w, s)qt(ζ − s) ds

where qt is the Euclidean heat kernel. Therefore, upto a multiplicative

constant
∫

[0,1/2)

F (z, w, ξ + iη)e−4πikξ dξ = e−4πkηe−t(4πk)2G−4πk(z, w).

Since W+
t is independent of ξ we have

∫

Km

|F (g)|2W+
t (g) dg

=

∫

Em×Em

∫

R

−1
∑

k=−∞

|G−4πk(z, w)|2e−2(4πk)ηe−2t(4πk)2W+
t (z, w, iη) dz dw dη.

In view of the defining property of W+
t the above reduces to

∫

Em×Em

−1
∑

k=−∞

|G−4πk(z, w)|2W−4πk
t (z, w) dz dw.

This shows that the sesquilinear form is positive definite.
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Consider the subspace L2
+,0(Γ\H) consisting of functions in L2

+(Γ\H)

with only finitely many nonzero Fourier coefficients. Then it is dense

in L2
+(Γ\H). The proof will be complete if we can show that

Tt(L
2
+,0(Γ\H)) ⊂ V+(Γ\HC) ⊂ Tt(L

2
+(Γ\H))

and the inclusions are isometric. Suppose F = f ∗ kt with f ∈
L2

+,0(Γ\H). Then f =
∑−1

j=−N fj , fj ∈ Hj for some N . Since

fj ∗ kt(z, w, ζ) = e−t(4πj)2e4πijζgj ∗−4πj p−4πj
t (z, w)

where gj(x, u) = fj(x, u, 0) a simple calculation shows that

lim
m→∞

∫

Km

|F (g)|2W+
t (g) dg

=

−1
∑

j=−N

∫

[0,1)2n

∫

R2n

|gj ∗−4πj p−4πj
t (z, w)|2W−4πj

t (z, w)dzdw

= C

−1
∑

j=−N

∫

[0,1)2n

|gj(x, u)|2 dx du = C

∫

Γ\H

|f(h)|2 dh.

This proves that Tt(L
2
+,0(Γ\H)) is isometrically embedded into

V+(Γ\HC).

To prove the inclusion V+(Γ\HC) ⊂ Tt(L
2
+(Γ\H)) let us take F ∈

V+(Γ\HC) and consider the representation

F (z, w, ζ) =

∫

R

G(z, w, s)qt(ζ − s) ds.

The argument used to prove the positive definiteness of the inner prod-

uct on V+(Γ\HC) shows that G−4πk(z, w) ∈ B−4πk
t,Γ for −∞ < k ≤ −1.

We can write G−4πk(z, w) = g−4πk ∗−4πk p−4πk
t (z, w) for some functions

g−4πk. If we define

f(x, u, ξ) =
−1
∑

−∞

e4πikξg−4πk(x, u)

then it follows that f ∗ kt(z, w, ζ) = F (z, w, ζ) as desired. This com-

pletes the proof. �
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