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REVIEWS

Ananalogueof theWiener Tauberian
Theoremfor theHeisenbergMotion
group

Rudra P Sarkar1 AND Sundaram Thangavelu2

Abstract | We show that the Wiener Tauberian property holds for the Heisenberg Motion

group TnB< Hn. This is a special case of the same result for a wider class of groups. However,

our exposition is almost self contained and the techniques used in the proof are relatively

simple.

1. Introduction
A locally compact group is said to have Wiener’s
property if every two sided ideal in the Banach
∗ algebra L1(G) is contained in the kernel of a
nondegenerate Banach ∗ representation of L1(G)

on a Hilbert space. It is well known from the work of
Leptin [7] that semidirect product of abelian groups
and connected nilpotent groups have the Wiener’s
property. On the other hand it was established by
M. Duflo that no semisimple Lie group has this
property [7].

If G is compact extension of a nilpotent group
then it it is of polynomial growth [4] and G has
a symmetric group algebra. These two properties
together imply that G has Wiener’s property [8]. For
the case of general locally compact motion groups
see the work of Gangolli [3].

We consider one such group G = TnB< Hn,
the semidirect product of the n-dimensional torus
Tn and 2n+1 dimensioanl Heisenberg group Hn.
The above theory points out that it has Wiener’s
property. However this far reaching general theory
related to the groups of polynomial growth involves
heavy machinary and hence not easily accessible.

We offer here a direct and independent proof
of the fact for G as above, starting from a result of
Hulanicki and Ricci [5]. We interpret the result in
[5] on Hn as a Wiener’s theorem for Tn-biinvariant
functions on G. Using elementary arguments

we extend this result to a Wiener’s theorem for
the full group G. Going towards the proof we
find the representations in Ĝ and establish the
Plancherel theorem. Then we obtain the Wiener’s
theorem explicitly in terms of the representations.
Precisely, we find the sufficient condition that an
L1-function on G generates a dense ideal in L1(G).
This condition is also necessary. We may conjecture
that this method of extending the theorem from
the biinvariant functions in L1(G) to the full L1(G)

would work for other compact extensions.
This exposition is almost self contained and

techniques are simple. Our group G is a subgroup
of the so called Heisenberg Motion group, which
is the semidirect product of the Heisenberg group
Hn and the unitary group U (n). This latter group
acts on Hn as automorphisms and the semidirect
product U (n)B< Hn turns out to be the natural
group of isometries for the Heisenberg geometry;
see the works of Koranyi [6] and Strichartz [10]. In
[9] R. Rawat has studied a Wiener’s theorem for the
action of U (n)B< Hn on Hn.

2. Notation and Preliminaries
Let Hn

= Cn
×R, with group law

(z, t)◦ (z′, t ′) =

(
z + z′, t + t ′

−
1

2
Im z′.z

)
,
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denote the (2n + 1)-dimensional Heisenberg
group. Let Tn

= S1
×···× S1 (n times) be the n-

dimensioanl Torus. The group Tn acts naturally
on Hn by automorphisms and (Hn,Tn) forms a
Gelfand pair. Let G = TnB< Hn be the semidirect
product of Hn and Tn. Let us denote the elements
of G by (σ,z,t) where σ= (eiθ1 ,. . .,eiθn )∈Tn and
(z, t) ∈ Hn. The group law of G is given by:

(σ,z, t).(τ,w, s)

=

(
στ,z +σw, t + s−

1

2
Im σw.z̄

)
.

As Tn is a subgroup of G through the identification
of σ and (σ,0,0), it acts on G from left and right
through the group law as:

(σ,0,0).(τ,w, s) = (στ,σw, s)

and

(τ,w, s).(σ,0,0) = (στ,w, s).

The Heisenberg group Hn can also be
identified naturally both as a subgroup of G
and as the quotient G/Tn. For an element
(σ, z, t) ∈ G, (σ, z, t)−1

= (σ−1,−σ−1z,−t) =

(σ−1,0,0)(1,−z,−t).
We use Rn

+ for R+ × ··· × R+ (n times)
where R+ is the set of positive reals. The n-
dimesional Euclidean space is denoted by Rn.
For this article ‘.’ is the usual bilinear inner
product. For 2 = (θ1, . . .θn) ∈ [0,2π)n we denote
(eiθ1 , . . . , eiθn ) ∈ Tn by ei2. A function f on
Hn is called polyradial if f (z, t) = f (ei2z, t) for
all ei2

∈ Tn, where z = (z1, . . . , zn) ∈ Cn and
ei2z = (eiθ1 z1, . . . ,eiθn zn). We consider C∞

c (G) to
be the space of compactly supported C∞-functions.
For a function f ∈ C∞

c (G) we define a function
f0 on Hn by f0(z, t) = f (1,z, t) and a polyradial
function f00 on Hn by f00(r, t) = f (1,r, t), where
r = (r1, . . . ,rn), rj ≥ 0. For µ= (µ1, . . . ,µn) ∈ Zn

the character χµ of Tn is defined by χµ(ei2) =

eµ.2
= eiµ1θ1 . ··· .eiµnθn . Suppose µ,µ′

∈ Zn. A
complex valued function f on G is called spherical
of right (resp. left) type µ (resp. µ′) if

f (xk1) = f (x)χµ(k1) ( resp. f (k2x)

= χµ′ (k2)f (x))

for all x ∈ G and k1,k2 ∈ Tn. A function of left
type µ′ and right type µ is called spherical of type
(µ′,µ). For a function f ∈ C∞

c (G)∫
Tn
χµ(k1)f (xk1)dk1 and

∫
Tn
χµ′ (k2)f (k2x)dk2

respectively are its projections on the space of right
µ and left µ′ type functions in C∞

c (G). For a
suitable function space S , by Sµ′,µ we denote
the projection of S on the subspace of left µ′

and right µ type functions of S. The polyradial
functions in L1(Hn) (denoted byA in [5]) is under
obvious identification the same as L1(G)0,0, the bi-
Tn invariant functions in L1(G). The right and left
G-translates of f for x ∈ G, are denoted respectively
by f x and x f . Precisely, f x(y) = f (yx−1) and
x f (y) = f (x−1y). By ∗ we mean convolution in
G while ∗Hn denotes the convolution in Hn. For
two elements m,n ∈ Rn, m−n is the component-
wise subtraction. By m> n we mean mj > nj for
every j = 1, . . . ,n.

We conclude this section with the following
proposition.

Proposition 2.1. Let f ,g ∈ C∞
c (G). Then,

(i) left type of f ∗ g is the left type of f and the right
type of f ∗ g is right type of g.

(ii) if moreover f and g are of right m-type and left
n-type respectively, then, f ∗ g ≡ 0 if m 6= n and
if m = n then f ∗ g(1,z, t) = f0 ∗Hn g0(z, t)

Proof of this proposition follows easily considering
the fact that every element g ∈ G can be decomposed
as g = xk = k1x1 where x,x1 ∈ Hn and k,k1 ∈ Tn.
By (i) above L1(G)µ,µ is a subalgebra of L1(G)

under convolution ∗.

3. Representations of G
We shall construct the representations of G from
that of Hn and the Euclidean motion group M(2).
For details of the representations of these two groups
we refer to [12] and [11] respectively.

For k = 0,1,2, . . . , and t ∈ R the Hermite
polynomials are defined by

Hk(t) = (−1)k

(
dk

dtk
{e−t2

}et2

)
.

The normalized Hermite functions are defined in
terms of the Hermite polynomials as

hk(t) = (2k√πk!)−
1
2 Hk(t)e−

1
2 t2

.

These Hermite functions {hk : k = 0,1,2, . . .} form
an orthonormal basis of L2(R). For any multiindex
α and x ∈ Rn we define the higher dimensional
Hermite functions 8α by taking tensor product:

8α(x) = 5n
j=0hαj (xj).
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Then the family {8α} is an orthonormal basis of
L2(Rn). For l 6= 0 we define the scaled Hermite
functions

8l
α(x) = |l|

n
4 8α

(
|l|

1
2 x
)
.

We also consider

8l

αβ(x) = (2π)−
n
2 |l|

n
2 〈πl(z,0)8l

α,8
l

β〉,

which is essentially the matrix coefficient of the
Schrödinger representation πl at (z,0) of Hn.
They are the so called special Hermite functions
and {8l

αβ : α,β∈ Nn
} is a complete orthonormal

system in L2(Cn). For each σ∈Tn, (z,t) 7→ (σz,t)
is an automorphism of Hn, because Tn preserves the
symplectic form Im(z.w). If ρ is a representation
of Hn, then using this automorphism we can define
another representation ρσ by ρσ (z, t) = ρ(σz, t)
which coincides with ρ at the center. Therefore
by Stone-von Neumann theorem ρσ is unitarily
equivalent to ρ. If we take ρ to be the Schrödinger
representation πl, then we have the unitary
intertwining operator µl(σ), i.e.

πl(σz, t) =µl(σ)πl(z, t)µl(σ)∗.

The operator valued function µl can be chosen
so that it becomes a unitary representation of
the double cover of the symplectic group and is
called metaplectic representation. For a detailed
description of these representations we refer to [2].

For each l 6= 0, m ∈ Zn we consider the
representations (ρl

m,L2(Rn)) defined by

ρl
m(ei8,z, t) = e−im.8πl(z, t)µl(ei8),

where µl(ei8) is the metaplectic representation
and πl is the Schrödinger representation of Hn.
The action of µl(ei8) on the Hermite basis
{8l

α : α ∈ Nn
} is given by

µl(ei8)8l
α = eiα.88l

α .

Since ρl
m(1,z, t) = πl(z, t), these representations

are irreducible.

Theorem 3.1. Let π be any unitary representation of
G such that π(1,z,t) is irreducible as a representation
of Hn. If π(1,0, t) = eilt I with l 6= 0 then π is
unitarily equivalent to ρl

m for some m ∈ Zn.

Proof. Since π(1,z,t) is irreducible and π(1,0,t)=

eilt I by Stone-von Neumann theorem π is unitarily
equivalent to πl(z, t) on L2(Rn). IfH is the Hilbert

space on which π is realised, we have a unitary
operator Ul :H−→ L2(Rn) such that

U∗

l
πl(z, t)Ul = π(1,z, t).

Now

π(ei8,z, t) = π(1,z, t)π(ei8,0,0)

and also

π(ei8,z, t) = π((ei8,0,0)(1,e−i8z, t))

= π(ei8,0,0)π(1,e−i8z, t).

Therefore,

Ulπ(1,z, t)π(ei8,0,0)U∗

l

= Ulπ(ei8,0,0)π(1,e−i8z, t)U∗

l

and

πl(z, t)Ulπ(ei8,0,0)U∗

l

= Ulπ(ei8,0,0)U∗

l
πl(e−i8z, t).

But πl(e−i8z, t) is unitarily equivalent to
πl(z, t) via the metaplectic representation, i.e.

πl(e−i8z, t) =µl(e−i8)πl(z, t)µ(e−i8)∗.

Defining ρ(ei8) = Ulπ(ei8,0,0)U∗

l
we have

πl(z, t)ρ(ei8)

= ρ(ei8)µ(e−i8)π(z, t)µl(e−i8)∗.

Thus ρ(ei8)µ(e−i8) commutes with πl(z, t)
for all (z, t) and hence ρ(ei8)µl(e−i8) =

χ(8)I . That is ρ(ei8) = χ(8)µl(ei8). Therefore
χ(8).χ(8′) = χ(8 + 8′). Thus χ defines a
character of the group Tn. Hence, ρ(ei8) =

e−im.8µ(ei8) for some m ∈ Zn. Finally

Ulπ(ei8,z, t)U∗

l
= πl(z, t)e−im.8µ(ei8)

which proves the theorem.

We now consider the case when l = 0. That is
π(ei8,z, t) = π(ei8,z,0).

Defining ρ(z,ei8) = π(ei8,z,0) we see that

ρ(z,ei8)ρ(w,ei2) = π(ei8,z,0)π(ei2,w,0)

= π(ei(2+8),z + ei8w,0)

and hence ρ is a representation of the motion group
Cn

×Tn
= M(2)×···×M(2) where M(2) = C×

U (1).
It is well known (see [11]) that all the irreducible

unitary representations of M(2) are given by the
following two families
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(i) for a> 0, ρa realised on L2(T) and defined by

ρa(z,eiφ)g(θ) = eiRe(aze−iθ )g(θ−φ).

(ii) for m ∈ Z, the one-dimensional
representations χm realised on C and defined
by

χm(eiφ)z = eimφz.

From this we build the representations of M(2)×

···×M(2) as:

(I) for a = (a1, . . . an) ∈ Rn
+, ρa realised on

L2(Tn) is given by

ρa(z,ei8)g(ei2) = 5n
j=1eiRe(aj zj e

−iθj )

×g(ei(2−8)),

where z = (z1, . . .zn) ∈ Cn, ei2
∈ Tn.

(II) for m ∈ Zn, χm realised on C is given by

χm(ei8)w = eim.8w.

Hence we have,

Theorem 3.2. If π is a unitary representation of G
such that π(1,0, t) = I and π(1,z, t) is irreducible
then π is unitarily equivalent to either ρa for some
a ∈ Rn

+ or χm for some m ∈ Zn.

We now show that the representations ρl
m are

enough for the Plancherel theorem. Given f ∈ L1
∩

L2(G) consider the group Fourier transform

f̂ (l,m) =

∫
f (ei8,z, t)ρl

m(ei8,z, t)d8dzdt

=

∫
f l(ei8,z)e−im.8πl(z,0)µl(ei8)

×d8dz

where f l(ei8, z) =
∫

eilt f (ei8, z, t)dt . We can
calculate the Hilbert–Schmidt operator norm of
f̂ (l,m) by using the Hermite basis {8l

α}:

f̂ (l,m)8l
α =

∫
f l(ei8,z)e−im.8eiα.8πl

×(z,0)8l
αd8dz

=

∫
f̃ l(m−α,z)πl(z,0)8l

αdz

where

f̃ l(z,m) =

∫
f l(z,ei8)e−im.8d8.

Thus

(̂f (l,m)8l
α,8

l

β)

= (2π)
n
2 |l|−

n
2

∫
f̃ l(z,m−α)8l

αβ(z)dz

so that

‖̂f (l,m)8l
α‖

2
2

= (2π)n
|l|−n

∑
β

|

∫
f̃ l(z,m−α)8l

αβ(z)dz|2

and

‖̂f (l,m)‖2
HS = (2π)n

|l|−n

×

∑
α

∑
β

∣∣∫ f̃ l × (z,m−α)8l

αβ(z)dz
∣∣2.

This shows that∑
m

‖̂f (l,m)‖2
HS = (2π)n

|l|−n

×

∑
m

∑
α

∑
β

∣∣∫ f̃ l(z,m−α)8l

αβ(z)dz|2.

Making a change of variable in the summation
over m and noting that {8l

αβ : α,β ∈ Nn
} is an

orthonormal basis for L2(Cn) we obtain∑
m

‖̂f (l,m)‖2
HS

= (2π)n
|l|−n

∑
m

∫
|f̃ l(z,m)|2dz

= (2π)2n
|l|−n

∫ ∫
|f l(ei8,z)|2d8dz.

Therefore,∫ (∑
m

‖̂f (l,m)‖2
HS

)
|l|ndl

= (2π)2n
∫ ∫ ∫

|f l(ei8,z)|2d8dz

= (2π)2n+1
∫

|f (ei8,z, t)|2d8dzdt .

Theorem 3.3. (Plancherel) For f ∈ L1
∩L2(G)∫

|f (ei8,z, t)|2d8dzdt

= (2π)−2n−1
∫

∞

−∞

(∑
m

‖̂f (l,m)‖2

)
|l|ndl.
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Remark 3.4. Note that if f (ei8z, t) is right Tn-
invariant then (̂f (l,m)8l

α,8
l

β) = 0 unless m =

α≥ 0. Thus f̂ (l,m) = 0 for mj < 0 for some j and
for m ≥ 0

‖̂f (l,m)‖2
HS

= (2π)n
|l|−n

∑
β∈Zn

∣∣∣(̂f (l,m)8l
m,8l

β

)∣∣∣2 .

We also use the notation ρl
m(f ) for f̂ (l,m).

4. Wiener’s Theorem
We begin with a theorem of Hulanicki and Ricci [5]

Theorem 4.1. Let J be a proper closed ideal
of L1(Hn/Tn). Suppose for every non-zero
multiplicative functional 3ψ of L1(Hn/Tn), given
by the bounded spherical function ψ, there is a
function f ∈ J such that

3ψ(f ) =

∫
f (z, t)ψ(z, t)dzdt 6= 0.

Then J = L1(Hn/Tn).

The actual Theorem of Hulanicki and Ricci is little
stronger than this as it says that L1(Hn) ∗Hn J is
dense in L1(Hn). We have quoted the part which
we are going to use. A detailed proof of this can be
found in [1]. Note that in our notation L1(Hn/Tn)

is L1(G)0,0. In the language of representations this
theorem can be restated as: for J as above, suppose

(i) for every (l, m) ∈ R \ {0} × Zn there is a
function fl,m ∈ J such that ρl

m(fl,m) 6= 0
(ii) for every a = (a1, . . . ,an) with ai > 0 there is

a fa ∈ J such that ρa(fa) 6= 0
(iii) there is f ∈ J such that

∫
Hn f dzdt 6= 0.

Then J = L1(G)0,0. For z = (z1, . . . , zn) ∈ Cn we
consider its multi-polar decomposition

z = ei2
‖z‖ = (r1eiθ1 , . . . ,rneiθn ),

where ei2
∈ Tn, ‖z‖ = (r1, . . . , rn) and zj = rje

iθj

for j = 1, . . . ,n. Notice that condition (ii) is then
equivalent to this: the Euclidean Fourier transform
of fa at a ∈ Rn

+ is not equal to zero. That is

f̂a(., t)(a) 6= 0.

Proposition 4.2. Let f ∈ L1(G). If right (resp. left)
type of f is µ (resp. µ′) then f̂ (l,m) ≡ 0 if mj < µj

(resp. mj′ < µj′) for some j, j′. For f ∈ L1(G)

of type (µ′,µ), 〈ρl
m(f )8l

α,8
l

β〉 6= 0 only when

µj = mj −αj and µ′

j = mj −βj for all j.

Proof.

〈ρl
m(f )8l

α,8
l

β〉

=

∫
G

f (ei2,z, t)〈8l
α,ρ

l
m

×(ei2,z, t)−18l

β〉d2dzdt

=

∫
G

f (ei2,z, t)〈8l
α,ρ

l
m

×(e−i2,−e−i2z,−t)8l

β〉d2dzdt

=

∫
G

f (ei2,ei2e−i2z, t)〈8l
α,e−i(β−m)2πl

×(−e−i2z,−t)8l

β〉d2dzdt

=

∫
G

eiµ′ .2 f (1,e−i2z, t)ei(β−m)2

×〈8l
α,πl(−e−i2z,−t)8l

β〉d2dzdt .

Therefore, 〈ρl
m(f )8l

α,8
l

β〉=0 unless µ′
= m−

β in which case,

〈ρl
m(f )8l

α,8
l

β〉

=

∫
Hn

f (1,z, t)〈8l
α,πl(−z,−t)8l

β〉dzdt .

The other result will follow similarly.

Lemma 4.3. Suppose for f ∈ L1(G), f̂ (l,m) 6= 0 for
some l ∈ R\ {0}, m ∈ Zn and ρa(f ) 6= 0 for some
a ∈ Rn

+. Assume also that µ ∈ Zn satisfies µ≤ m.
Then there exist functions g and g ′ of type (µ,µ) in
the closure of span of (left and right) G-translates of
f such that ĝ(l,m) 6= 0 and ρa(g ′) 6= 0.

Proof. Let ν= m−µ. As the operator f̂ (l,m) 6= 0
there exist α and β such that 〈̂f (l,m)8l

α,8
l

β〉 6= 0.
Since ρl

m is irreducible, for every ε > 0 there exist
ci ∈C and xi ∈ G, i = 1,2, . . . ,s for some s such that

∥∥ s∑
i=1

ciρ
l
m(xi)8

l
ν−8l

α

∥∥< ε.

This implies

∥∥ s∑
i=1

ciρ
l
m(f )ρl

m(xi)8
l
ν−ρ

l
m(f )8l

α

∥∥< ε‖ρl
m(f )‖

and hence∥∥ρl
m(g1)8

l
ν−ρ

l
m(f )8l

α

∥∥< ε‖ρl
m(f )‖

where g1 =
∑s

i=1 ci f xi .
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As ρl
m(f )8l

α 6= 0 and ‖ρl
m(f )‖ < ∞,

ρl
m(g1)8l

ν 6= 0. By the above proposition this
also shows that g1 has right µ component. Let
g2 be the right µ-th projection of g1. Then
ρl

m(g1)8l
ν = ρl

m(g2)8l
ν 6= 0, because Fourier

transforms of other right projections of g1 will kill
8l
ν. There exists γ such that 〈ρl

m(g2)8l
ν,8

l
γ〉 6= 0.

For ε > 0, there are c′

j ∈ C and yj ∈ G, j = 1,2, . . . s′

for some s′ such that

∥∥ s′∑
j=1

c′

jρ
l
m(y−1

j )8l
ν−8l

γ

∥∥< ε.

Applying ρl
m(g2)

∗ on both sides and using that ρl
m

is unitary we get,

∥∥ s′∑
j=1

c′

jρ
l
m(g2)

∗ρl
m(yj)

∗8l
ν

−ρl
m(g2)

∗8l
γ

∥∥< ε‖ρl
m(g2)

∗
‖.

That implies

∥∥ s′∑
j=1

c′

jρ
l
m(yj g2)

∗8l
ν−ρ

l
m(g2)

∗8l
γ

∥∥< ε‖ρl
m(g2)

∗
‖.

Let g3 =
∑s′

j=1 c′

j
yj g2. Then we have

‖ρl
m(g3)

∗8l
ν−ρ

l
m(g2)

∗8l
γ‖ < ε‖ρl

m(g2)
∗
‖.

As ρl
m(g2)

∗8l
γ 6= 0, ρl

m(g3)
∗8l

ν 6= 0. Since g3 is
a finite linear combination of the left G-translates
of g2, right type of g3 continues to be µ. Hence
〈8l

ν,ρ
l
m(g3)

∗8l
ν〉= 〈ρl

m(g3)8l
ν,8

l
ν〉 6= 0. Let g be

the left µ-th projection of g3. Then g is of type
(µ,µ) and 〈ρl

m(g3)8l
ν,8

l
ν〉 6= 0.

By similar method we can show that there is
a g ′ of type (µ,µ) in the closure of the span of
G-translates of f such that ρa(g ′) 6= 0.

Suppose f is a function in L1(G)µ,µ. Let
z = ei2

‖z‖ where ‖z‖= (r1, . . . ,rn) and ei2
∈ Tn.

Then

f (ei8,z, t) = f (ei8,ei2
‖z‖, t)

= eiµ.8 f (1,ei2
‖z‖, t).

Since (1,ei2
‖z‖, t) = (ei2,0,0)(e−i2,‖z‖, t) we

also have

f (1,ei2
‖z‖, t) = eiµ.2 f (e−i2,‖z‖, t)

= f (1,‖z‖, t).

Thus we have

f (ei8,z, t) = eiµ8 f00(‖z‖, t).

By the above proposition for f ∈ L1(G)µ,µ,
ρl

m(f ) = 0 whenever mj < µj for some j. If m ≥µ

then

ρl
m(f ) =

∫
G

f (ei8,z, t)ρl
m(ei8,z, t)d8dzdt

=

∫
G

f00(‖z‖, t)eiµ.8e−im.8πl(z, t)µl

×(ei8)d8dzdt

=

∫
G

f00(‖z‖, t)ρl
m−µ(ei8,z, t)d8dzdt .

This shows that ρl
m(f ) = ρl

m−µ(f00).

Now suppose for some f ∈ L1(G)

χm(f ) =

∫
G

f (ei8,z, t)e−im.8dzdtd8 6= 0.

Let fµ is the right µ-th projection of f . That is

fµ(ei8,z, t) =

∫
G

f (ei(2+8),z, t)e−iµ.2d2

= eiµ.8

∫
G

f (ei2,z, t)e−iµ2d2.

Then

χm(fµ) = δm,µ

∫
G

f (ei2,z, t)e−iµ.2d2dzdt

= δm,µχµ(f )

where δm,µ is the Kronecker δ and hence if
µ= m then χµ(fµ) 6= 0. Similarly we can show
that if µ f is the left µ-th projection of f , then
χm(µ f ) = δm,µχµ(f ). Therefore if χm(f ) 6= 0 for
all m ∈ Zn, then χµ(g) 6= 0 where g is the (µ,µ)-
the projection f . By the above computation that
means

∫
Hn g0,0(‖z‖, t)dzdt 6= 0.

Proposition 4.4. Let S ⊂ L1(G)µ,µ Suppose

(1) for every l∈R\{0} and m ≥µ, there is fl,m ∈ S
such that ρl

m(fl,m) 6= 0,
(2) for all a ∈ Rn

+, ρa(fa) 6= 0 for some function
fa ∈ S and

(3) χµ(f ) 6= 0 for some function f ∈ S.

Then the span of the ideal (under convolution ∗)

generated by elements of S in L1(G)µ,µ is dense in
L1(G)µ,µ.

Proof. Let S0,0 ={f0,0 : f ∈ S}. If f ∈ L1(G)µ,µ , then
ρl

m(f ) 6= 0 for some m ≥µ implies ρl
m−µ(f0,0) 6= 0.

Also ρa(f ) 6= 0 implies the Euclidean Fourier
transform f̂0,0(., t)(a) 6= 0. Notice also that
χµ(f ) 6= 0 implies

∫
Hn f0,0(‖z‖, t)dzdt 6= 0.
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Therefore by Theorem 4.1 span of the ideal
generated by the elements of S0,0 in L1(G)0,0

is dense in L1(G)0,0. Let us take an arbitrary
h ∈ L1(G)µ,µ. For ε > 0, there exist cj ∈ C, f j

∈ S
and g j

∈ L1(G)0,0, j = 1,2, . . . s for some s such that∥∥∑
j

cj f
j

0,0 ∗Hn g j
−h0,0

∥∥
L1(Hn)

< ε. (4.1)

Let us define g̃ j(ei2,z,t)= g j(‖z‖,t)eiµ.2. Clearly

g̃ j ∈ L1(G)µ,µ. Then,∥∥∑cj f
j
∗ g̃ j −h

∥∥
L1(G)

=

∫
G

∣∣∑cj f
j
∗ g̃ j(ei2,z, t)−h(ei2,z, t)

∣∣
×d2dzdt .

Since f j
∗ g̃ j and h are functions of type (µ,µ), the

above expression equals to∫
G

∣∣∑cj(f j
∗ g̃ j))0,0(‖z‖, t)eiµ.2

−h0,0(‖z‖, t)eiµ.θ
|d2dzdt

=

∫
Hn

∣∣∑cj(f j
∗ g̃ j))0,0(‖z‖, t)

−h0,0(‖z‖, t)|dzdt .

Again using the fact that f j
∗ g̃ j and h are (µ,µ)-

functions we have

(f j
∗ g̃ j)0,0(‖z‖, t) = f j

∗ g̃ j(1,z, t)

= (f
j

0 ∗Hn g̃ j
0)(‖z‖, t)

by Proposition 2.1. Also,

g̃ j
0(z, t) = g̃ j(1,z, t) = g j(‖z‖, t) = g j(z, t)

and

f
j

0 (z, t) = f j(1,z, t) = f
j

0,0(‖z‖, t) = f
j

0,0(z, t).

Therefore,

(f j
∗ g̃ j)0,0(‖z‖, t) = f

j
0,0 ∗Hn g j(z, t).

Hence ∥∥∑cj f
j
∗ g̃ j −h

∥∥
L1(G)

=

∫
Hn

∣∣∑cj(f
j

0,0 ∗Hn g̃ j)(‖z‖, t)

−h0,0(‖z‖, t)|dzdt .

The proposition follows now from (4.1).

We now state and prove a Wiener Tauberian
theorem for the action of G on itself.

Theorem 4.5. If for a function f ∈ L1(G), f̂ (l,m)

6= 0 for all l 6= 0, m ∈ Zn, f̂ (a) 6= 0 for all a ∈ Rn
+

and χm(f ) 6= 0 for all m ∈ Zn then the span of the
(left and right) G-translates of f is dense in L1(Gx).

Proof. Fix µ ∈ Zn. From lemma 4.3 and the
subsequent computations we see that using the given
nonvanishing condition on f , we can find functions
of type (µ,µ) in the closure of G-translates of f
such that they satisfy the hypothesis of proposition
4.4. Hence they can generate L1(G)µ,µ. The proof
now follows from the fact that any ideal I in L1(G)

which contains L1(G)µ,µ for all µ ∈ Zn is L1(G)

itself.

Note that instead of a single function f we can
also take a subset S ⊂ L1(G) such that Fourier
transforms of the elements of S have no common
zero in the set of above representations parametrized
by R∗

× Zn
∪ Rn

+ ∪ Zn, where R∗ is the set of
nonzero reals.

Received 18 September 2007; revised 03 December 2007.
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