
Implications of Proxy Caching for Provisioning Networks and Servers* 

Mohammad S. Raunak, Prashant Shenoy, Pawan Goyal~and Krithi Ramamritham tt 
D e p a r t m e n t  of  C o m p u t e r  Sc ience ,  ~ E n s i m  C o r p o r a t i o n ,  

U n i v e r s i t y  of  M a s s a c h u s e t t s ,  1215 T e r r a  B e l l a  Ave ,  

A m h e r s t ,  M A  01003 M o u n t a i n  View,  C A  94043 

{ r a u n a k , s h e n o y ,  k r i t h i } @ c s . u m a s s . e d u  g o y a l @ e n s i m . c o m  

Abstract 

In this paper, we examine the potential benefits of  web proxy caches 
in improving the effective capacity of  servers and networks. Since 
networks and servers are typically provisioned based on a high per- 
centile of  the load, we focus on the effects o f  proxy caching on the 
tail of  the load distribution. We find that, unlike their substantial 
impact on the average load, proxies have a diminished impact on 
the tail of the load distribution. The exact reduction in the tail and 
the corresponding capacity savings depend on the percentile of  the 
load distribution chosen for  provisioning networks and servers-- 
the higher the percentile, the smaller the savings. In particular, 
compared to over a 50% reduction in the average load, the sav- 
ings in network and server capacity is only 20-35% for  the 99 th 
percentile of  the load distribution. We also find that while proxies 
can be somewhat useful in smoothing out some of  the burstiness 
in web workloads; the resulting workload continues, however, to 
exhibit substantial burstiness and a heavy-tailed nature. We iden- 
tify large objects with poor locality to be the limiting factor that 
diminishes the impact of  proxies on the tail of  load distribution. We 
conclude that, while proxies are immensely useful to users due to 
the reduction in the average response time, they are less effective in 
improving the capacities of  networks and servers. 

1 Introduction 

1.1 Motivation 

The past decade has seen a dramatic increase in the amount of web 
traffic in the Internet; from an insignificant fraction in 1993, web 
traffic has grown to become the largest component of the total traf- 
fic on the Internet today. Recent studies have revealed that web 
accesses tend to be non-uniform in nature, resulting in frequent 
server and network overload, and thereby significantly increasing 
the latency for information access. Proxy caches provide a way 
to alleviate this drawback. In a proxy-based architecture, clients 
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send web requests to proxies; proxies respond to these requests us- 
ing locally cached data or by fetching the requested object from the 
server. By caching frequently accessed objects and serving requests 
for these objects from the cache, proxies can yield a number of per- 
formance benefits: (i) deploying a proxy in a local area network or 
near a slow inter-continental link helps reduce client response times, 
(ii) deploying a proxy near an access link (i.e., the link that connects 
the organization to the rest of the Internet) helps organizations and 
network service providers reduce their network bandwidth usage, 
(iii) deploying a proxy close to web servers (referred to as server- 
side caching) helps reduce load on these servers, and (iv) deploying 
proxies in the network core helps reduce aggregate network load on 
backbone links. 

Thus, by absorbing a portion of the workload, proxy caches 
can improve client response times as well as increase the capac- 
ities of servers and networks, thereby enabling them to service 
a potentially larger clientele. The latter hypothesis has been the 
basis for the large-scale deployment of proxies by organizations 
and network service providers in their computing infrastructure [6]. 
Surprisingly, however, there has been no study that quantifies these 
benefits. Most performance studies to date have demonstrated the 
efficacy of proxies in reducing the average response time, network 
bandwidth usage and server load [5, 10, 16]. In contrast, servers 
and networks are typically provisioned based on a high percentile 
of the load (rather than the average load) [12]. For instance, a server 
may be provisioned such that the 95 *h percentile of the response 
time does not exceed lOOms, or a network link may be provisioned 
such that the 99 th percentile of the bandwidth requirements does 
not exceed the link capacity. Conventional wisdom has implicitly 
assumed that a certain reduction in the average load due to caching 
yields a corresponding reduction in a high percentile of the load. For 
instance, white papers on commercial proxy servers frequently ar- 
gue that a byte hit ratio of 40% yields a corresponding 40% savings 
in network capacity. In contrast, recent studies that have character- 
ized web workloads [1, 2, 7] suggest that a high percentile of the 
load (i.e., the tail of the load distribution) may behave differently as 
compared to the average load due to the following reasons: 

• Heavy-tailed nature: Web workloads tend to be heavy-tailed 
in nature. It has been shown that sizes of web requests as 
well as the resulting network bandwidth usage have a Pareto 
distribution with long tails (see Figure l(a)) [1, 7]. Whereas 
proxies have been shown to be effective in reducing the mean 
of this distribution, their effectiveness in reducing the tail of 
the distribution has not been quantified. In fact, a simple 
analysis using the Pareto distribution indicates that proxy 
caches will yield a substantially smaller reduction in the tail 
as compared to the mean. To illustrate, assume that the 
network bandwidth usage is Pareto with mean of 100 KB/s. 
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Figure 1: Heavy-tai led and  burs ty  na tu re  of web workloads. Figure (a) shows tha t  the  d is t r ibut ion  of network bandwid th  
usage is heavy tailed. Figures (b) and  (c) demons t ra te  the burs ty  na tu re  of web workloads over t ime  scales of one second and 
five minutes.  

Since the CDF for Pareto is P ( X  _< x) = 1 - x - ° ,  where 
a = ~ and :~ is the mean, the 99.9 th percentile is 933 
KB/s. If a byte hit ratio of 0.5 results in a 50% reduction in 
the average bandwidth, then the resulting distribution has a 
mean of 50 KB/s and a 99.9 th percentile of 870. Thus the 
tail reduces by only 6.75%. It is not a priori evident whether 
web workloads continue to be Pareto in the presence of a 
proxy cache, and if so, whether their behavior conforms to 
this intuitive explanation. One of the goals of this paper is to 
determine if this is indeed the case. 

• Impact o f  burstiness on locality: Web workloads exhibit 
burstiness at multiple time-scales (see Figures l(b) and (c)) 
[7, 11]. Periods of intense bursts in such workloads govern 
the tail of the load distribution. If the locality exhibited by the 
workload reduces during intense bursts, then the tail of the 
distribution will be relatively unaffected even in the presence 
of a proxy cache (since the reduced locality will result in a 
large number of cache misses). On the other hand, if the 
locality increases during intense bursts, then proxies may be 
able to reduce the tail of the distribution. Whereas past stud- 
ies have investigated the locality exhibited by web workloads 
over relatively long intervals [2, 9], the precise dependence 
of locality on burstiness at the fast time scale has not been 
investigated. 

• Dynamic Objects: Dynamically generated objects (e.g., cgi- 
bin) are less amenable to caching since they are regenerated 
on every user request. Studies reveal that the fraction of dy- 
namic and uncacheable objects in web workloads is around 
30% and increasing with time [10]. An increasing propor- 
tion of such objects in web workloads will further reduce 
the overall effectiveness of proxy caches (in particular, their 
effectiveness in reducing the tail of the load distribution). 

Due to the above reasons, it is not a priori evident whether proxies 
yield capacity savings while provisioning servers and networks and 
if so, to what degree. A systematic study that quantifies the effects 
of proxy caches on the provisioning of servers and networks and 
examines the factors underlying these effects is the objective of this 
paper. 

1.2 Research Contributions 

In this paper, we examine the impact of proxy caching on the 
provisioning of networks and servers by answering the following 
questions: 

• Do proxy caches help in reducing the tail of the network 
and server loads imposed by web requests? If so, what are 

the resulting savings in (a) network capacity and (b) server 
capacity due to caching? 

• Does deploying proxy caches in the network help smooth out 
the burstiness in web traffic? That is, does a proxy cache 
(which acts as a buffer in the network) make the resulting 
traffic less bursty? 

• What are the factors that contribute to the heavy-tailed nature 
of the load distribution? In particular, how does the locality 
exhibited by the workload during intense bursts affect the tail 
of the distribution? 

Observe that the first two question s examine what impact a proxy 
has on network and servers, whereas the third question examines 
why proxies have this impact. 

To answer these questions, we consider trace workloads from 
real proxies and servers and use simulations to evaluate the impact 
of proxies on these workloads. Our experimental evaluation yields 
three key results: 

• We find that proxies have a diminished impact on the tail 
of the load distribution (as compared to their impact on the 
average load). The exact reduction in the tail of the load 
distribution and the corresponding capacity savings depend 
on the percentile of the distribution chosen for provisioning 
networks and servers; the higher the percentile, the smaller 
the capacity savings. 

- Network capacity can be provisioned based either on 
the bandwidth usage or on the client response times. 
We find that proxies are somewhat effective in reducing 
the tail of the network bandwidth usage, but have a 
smaller impact on the tail of the client response time 
distribution. The savings in network capacity for the 
99 th percentile is 30-35% for networks provisioned on 
the basis of bandwidth usage and 15-20% for networks 
provisioned on the basis of response times (as compared 
to a 50-60% reduction in average response time and 
bandwidth usage). 

Server capacity is usually provisioned on the basis of 
the server response time. Again, we find that proxies 
are less effective in reducing the tail of the response 
time distribution as compared to the reduction in the 
average response time. Specifically, the reduction in 
the 99 th percentile of server response time due to proxy 
caching and the resulting savings in server capacity is 
15-20% (as compared to a 30-50% reduction in average 
response time). 
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• Proxies that are deployed in the network do indeed smooth 
out some of the burstiness in the load. However, the resulting 
traffic continues to be quite bursty and heavy-tailed. 

• We find that intense bursts are caused by an increase in the 
request rate as well as the size of  requested objects. Since 
the locality exhibited by large objects is often poor, requests 
for larger objects diminish the impact of caching on the tail 
of the load distribution. 

The rest of this paper is structured as follows. Section 2 ex- 
plains our experimental methodology. We present the results of 
our experimental evaluation in Section 3. In Section 4, we discuss 
various tradeoffs and factors that may influence our results. Sec- 
tion 5 discusses related work, and finally, Section 6 presents some 
concluding remarks. 

2 Experimental Methodology 

Since the objective of our research is to investigate the implications 
of proxy caching on provisioning networks and servers, we consider 
two different simulation environments---one to study the effects of 
a proxy placed near a network access link and the other to study 
the effects of a proxy attached to a web server. Figure 2 depicts 
these scenarios. In the rest of this section, we first describe our 
simulation environments in detail (Section 2.1) and then discuss the 
details of the trace workloads and performance metrics used in our 
experimental evaluation (Sections 2.2 and 2.3, respectively). 

2.1 Simulation Environment 

2,1.1 Simulation Environment for a Proxy near an Access 
Link 

Consider a proxy deployed by an organization near its access link. 
As shown in Figure 2(a), clients within the organization send web 
(H'Iq'P) requests to the proxy. The proxy services these requests 
using locally cached data (in the event of a cache hit), or by fetch- 
ing the requested object from the server (in the event of a cache 
miss). The proxy i:s assumed to employ a disk-based cache to store 
frequently accessed objects. Objects in the cache are managed by 
the proxy using the LRU cache replacement policy. Furthermore, 
the proxy is assumed to employ a cache consistency mechanism to 
ensure that the cached data is always up-to-date with that stored on 
servers. Our simulations assume a strong consistency mechanism--  
one where cached data is always invalidated upon modification and 
the proxy never provides stale data to clients [3, 21]. In practice, 
however, many proxies employ cache consistency mechanisms that 
can occasionally provide stale data; however, we choose to sim- 
plify our study by assuming that stale data is never present in the 
cache (i.e., strong consistency). The possible impact of other cache 
consistency mechanisms and cache replacement algorithms on our 
results is discussed in Section 4. 

In such a scenario, cache hits result in retrievals from disk and 
are modeled using an empirically derived disk model [4]; the model 
has been validated against a real disk in [20]. We choose the Seagate 
Barracuda 4LP disk [18] to parameterize the disk model. A (small) 
fixed overhead is added to the retrieval times predicted by the model 
to account for OS and proxy processing overheads. 

Cache misses, on the other hand, result in data retrievals over 
the network. To model network retrieval times, we assume that the 
access link has a certain capacity bti,~k. The rest of the Internet 
is modeled as a single bit pipe of capacity bint. The rationale for 
doing so is the inherent presence of a single congested link on the 
path from the proxy to the server that usually governs the bandwidth 
received by a connection; we model the presence of such a link by 
assuming that the bandwidth received by the connection on that 

link is hint. In such a scenario, if  there are n active connections 
on the access link, the bandwidth received by a new connection is 
b = min(bn~l,bi,~t).  Given the round trip time (R'Vr) and the 
bandwidth b received by a new connection, the simulator can then 
compute the network latency--the time required to download an ob- 
ject of size s over the network. ~ Our network latency calculations 
take into account effects such as TCP slow-start at the beginning of 
a connection, but ignore packet losses and additional slow-start pe- 
riods these would entail [10]. These approximations suffice for our 
purpose since we are interested in studying the bandwidth require- 
ments of web workloads, rather than the effects of various Internet 
dynamics on these workloads (recent studies on the performance of 
web proxies have also made similar assumptions [10]). 

To ensure that our results do not depend on the idiosyncrasies 
of a particular workload environment, we consider two different 
scenarios--a network service provider environment consisting of 
mostly dial-up (modem) clients, and a commercial organization 
consisting of mostly LAN-based clients. As explained in Section 
2.2, we choose trace workloads corresponding to these two sce- 
narios for our experimental evaluation. Our simulations assume 
bli,~k = 45 Mbps (a T3 link), bint = 256 Kbps, a proxy-server 
round trip time of 250 ms and a packet size of 1500 bytes. For 
LAN-based environments, we choose a client-proxy bandwidth of  
2 Mbps and a round trip time of 2.5 ms; for dial-up (modem) envi- 
ronments we choose a client-proxy bandwidth of 28.8 Kbps and a 
round trip time of 100 ms. 

2.1.2 Simulation Environment for a Server-side Proxy 

Consider a web server that employs an in-memory proxy cache as 
shown in Figure 2(b). All web requests to the server are inter- 
cepted by the proxy; cache hits are serviced using locally cached 
data, while cache misses are forwarded to the server for further 
processing. Cached objects are assumed to be managed using the 
LRU cache replacement policy. We assume that cached objects are 
always consistent with those at the server (such strong consistency 
guarantees are easy to provide for server-side proxy caches, since 
these proxies are under the control of the server). 

Cache hits result in retrievals from an in-memory cache and are 
assumed to be infinitely fast (sinc e typical memory speeds are sev- 
eral orders of magnitude faster than disk speeds, this is a reasonable 
assumption for our simulations). Cache misses, on the other hand, 
require the server to retrieve the requested object from disk. To 
model such retrievals, we assume that web objects (files) are stored 
on disk in terms of 8KB disk blocks (as is typical in most UNIX 
file systems). Blocks of a file are assumed to be randomly placed 
on disk. 2 Given a request for a web object, our simulator maps it 
to the corresponding file on disk and then issues read requests for 
all disk blocks of that file. The underlying disk is assumed to em- 
ploy the SCAN disk scheduling algorithm to retrieve disk blocks; 
disk retrieval times are computed using an empirically derived disk 
model [4]. As with the simulation environment for the proxy near 
an access link, we choose the Seagate Barracuda 4LP disk [18] 
to parameterize the disk model. Also, as before, we add a small, 
fixed overhead to each request (both hits and misses) to account for 
proxy and server processing overheads. Finally, in the context of 
server-side proxies, since we are only interested in response time at 
the server, our simulations do not account for the network latency 
to transmit the requested object to the client. 

iNote that b may change over the lifetime of a connection if new 
requests arrive. 

2Modern file systems use opt imizat ions such as clustering to 
achieve near-contiguous al location of large files [19]. Our simulator 
supports  such optimizat ions;  in such a scenario, each cluster consists 
of several contiguous disk blocks and is randomly placed on disk. 
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Figure 2: Simulation environments for (a) a proxy near an access link and (b) a server-side proxy. 

2,2 Workload Characteristics 

To generate the workload for our experiments, we employ traces 
from real proxies and servers. We employ four different traces 
for our study--two proxy and two server traces. Together these 
traces represent environments ranging from commercial organiza- 
tions to educations institutions, and from LAN-based clients to 
dial-up (modem) clients. The characteristics of these traces are 
shown in Table 1. 

We use two proxy traces to evaluate the impact of caching on 
network bandwidth usage. The Digital trace represents a proxy 
servicing LAN-based clients in a commercial organization (Digi- 
tal), whereas the Berkeley trace represents the workload at a proxy 
servicing dial-up clients in an educational institution (Berkeley's 
HomelP dial-up service). As shown in Table 1, both traces span 
multiple days and consist of approximately a million requests each; 
these requests were generated by a population of several thousand 
clients) Each record in the trace represents a client request and 
contains information such as the arrival time of a request, the re- 
quested URL, the client requesting the object, the object size, the 
last modified time of the object, etc. We use the last modified 
times for maintaining consistency of cached objects--an object is 
invalidated from the cache upon modification. 

Turning our attention to dynamic objects, our examination of 
the traces indicated that only a small fraction of the requests (< 7%) 
accessed objects that were either dynamically generated or marked 
uncacheable (these traces were gathered in 1995 and 1996, respec- 
tively). More recent trace workloads [10] have a larger fraction 
of such objects (around 30%) and this fraction is reported to be 
increasing (unfortunately these traces are not publicly available). 
Consequently, the results reported in this paper are optimistic--a 
larger fraction of dynamically generated objects will further reduce 
the efficacy of proxy caching. 

We use two server traces to evaluate the impact of caching on 
server response times. One represents a Web server belonging to a 
network service provider (ClarkNet) and another that at a govern- 
ment institution (NASA). The traces were gathered over a period 
of 7 and 28 days, respectively, and consist of more than a million 
requests each (see Table 1). The traces provide information similar 
to that provided by proxy traces. Again we use the last modified 
times of an object to ensure that the object is invalidated from the 
cache upon modification. 

2.3 Performance Metrics 

We use two different metrics to study the impact of deploying proxy 
caches near access l inks--network bandwidth usage and client re- 

SThe original traces are larger and span multiple weeks; due to 
memory constraints on our simulation machines, we restricted our 
simulations to the first few days of the original trace. 

sponse time. The network bandwidth usage on the access link is 
defined to be the amount of data retrieved over the link per unit 
time. The client response time of a request is defined to be the total 
time to service a client request (it includes the response time of the 
proxy for cache hits and the network latency incurred to download 
an object for cache misses). 

To study the impact of caching by proxies on the load experi- 
enced by a server, we use the server response time as our metric. 
The server response time is defined to be the time required by the 
server to retrieve the requested object from disk (it does not include 
the network latency incurred to transmit the object from the server 
to the client). 

For each of these metrics, we first compute a distribution of the 
metric using simulations. We then compute the mean as well as 
various percentiles of these distributions and study their variation 
for different cache sizes. 

3 Experimental Evaluation 

The objective of this section is to answer the three questions posed 
in Section 1.2. We consider each question in turn. Sections 3.1 
and 3.2 examine the impact of caching on the tail of the network 
and server loads, respectively. Section 3.3.1 examines whether 
caching can help reduce burstiness in the load, while Section 3.3.2 
investigates the factors governing the tail of the load distribution. 

3.1 Implications of Proxy Caching for Network Provision- 
ing 

To determine the impact of proxy caching on the load on an access 
link, we varied the cache size from zero to infinity and computed 
the distributions of the network bandwidth usage and the client 
response time. 

3.1.1 Effect on Network Bandwidth Usage 

Figures 3(a) and (b) plots the probability density function and the 
cumulative distribution function of the network bandwidth usage. 
The figure shows that the network bandwidth usage has a heavy- 
tailed nature in the absence of a proxy cache. 4 More importantly, 
the network bandwidth usage exhibits a heavy tailed nature even in 
the presence of an infinite cache. This suggests a diminished impact 
of proxy caches in reducing the tail of the distribution. (Section 3.3 
provides a more precise characterization of the heavy-tailed nature 
and discusses the reasons for this behavior). 

4The figure shows only the initial portion of the tail; the actual tail 
is significantly longer. Note also that, due to its bursty nature, the 
workload has several silence periods where no requests arrive--these 
intervals correspond to zero bandwidth usage in the figure. 
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Table 1: Character is t ics  of t race workloads. 

Trace Type Duration 
(s) 

Digitat Proxy 101871.8 
Berkeley Proxy 154618.1 
NASA s e r v e r  2678370 

ClarkNet I server I 604717 

#Requests 

1141412 
965172 
1415318 
1500129 

#Unique #Unique l Bitrate Reques t ra te !  Avg ReqSize  
O~ects  Clients (KB/s) (req/s) (KB) 
385607 5488 120.82 11.2040 9.68 
391461 i 3845 52.7 6.2422 7.34 
13436 74149 9.78 0.5284 18.43 
32159 I 73466 23.45 2.4807 9.45 

To determine the impact of proxy caching on the tail of the dis- 
tribution, we computed the average bandwidth usage and the 99 th 
percentile of the bandwidth usage for different cache sizes. We find 
that (i) the average bandwidth usage reduces by half as we increase 
the cache size from zero to infinity, and (ii) the 99 th percentile of 
the bandwidth usage also reduces but to a smaller extent. Figure 4 
quantifies this reduction in the network bandwidth usage. As shown 
in the figure, the reduction in the 99 th percentile of the bandwidth 
usage is 30-35% (as compared to a nearly 50% reduction in av- 
erage bandwidth usage). Moreover, as shown in Figure 4(b)) the 
reduction in bandwidth usage decreases with increasing percentiles 
of the bandwidth distribution (from around 30-40% for the 95 th 

percentile to 25% for the 99.5 th percentile). 
Together Figures 3 and 4 lead us to the following conclusions. 

R e s u l t  1 Proxy caches can help reduce the tail of the net- 
work bandwidth usage and thereby increase overall network 
capacity (or equivalently, yield capacity savings for a given 
workload). However, the magnitude of the capacity savings 
that can be achieved is smaller than the reduction in the av- 
erage bandwidth usage. Moreove1", these savings depend on 
the percentile of the bandwidth distribution chosen for pro- 
visioning the network--the higher the percentile, the smaller 
the savings. 

3.1.2 Effect on Client Response Times 

Since a network may be provisioned on the basis of the response 
time (rather than bandwidth usage), in what follows, we examine 
the impact of proxy caching on the client response times. To do 
so, as before, we 'varied the cache size from zero to infinity and 
computed the distribution of the client response time for different 
cache sizes. Figure 5(a) depicts the distribution of the response time 
obtained for an infinite cache. The figure shows that the response 
time distribution is bimodal and has a long tail. Since the response 
time in the event of a cache hit is significantly smaller than that 
for a miss, the two peaks in this bimodal distribution represents 
hits and misses, respectively. Figure 5(b) depicts the variation in 
average response time and the 99 th percentile of the response time 
for different cache sizes. The figure shows that the average response 
time decreases due to an improvement in cache hit ratio for larger 
caches. The 99 th percentile of the response time also decreases but 
to a smaller extent. To understand the reasons for this behavior, 
we observe that, due to their large network retrieval times, cache 
misses dominate the set of requests that govern a high percentile 
of the response time. Consequently, we investigate the impact of 
cache misses on the network latency (which constitutes the response 
time of miss requests). 

Figure 6(a) plots the probability density function of the net- 
work latency; as expected, the distribution consists of a single peak 
(which corresponds to the peak due to cache misses in the bimodal 
response time distribution). Figure 6(b) plots the variation in the 

tn 99 percentile of the network latency for different cache sizes. In- 
th terestingly, the figure shows that the 99 percentile of the latency 

increases with increasing cache sizes. To understand the reasons for 

this increase, observe that network latency depends on two factors: 
(i) the size of the requested object, (ii) the bandwidth available to 
download the object. We consider the effect of each factor on the 
tail of the network latency. 

• Size of the requested object: Studies have shown that small 
objects are more likely to be reaccessed as compared to large 
objects [2]. Moreover the average size of a requested object 
in our workloads is small (<  10 KB). It follows that a cache 
hit is more likely to access a small object over a large object. 
Increasing the cache size increases the number of cache hits, 
causing the cache to absorb a larger fraction of requests for 
small objects. Put another way, as the cache size increases, an 
increasing fraction of the cache misses are for large objects. 
This causes the tail of the request size distribution for cache 
misses to increase with the cache size, and hence, the tail of 
the network latency shows a corresponding increase. 

• Bandwidth available for a web request: By absorbing a frac- 
tion of the workload, a proxy cache reduces the load on the 
access link and increases the average bandwidth available for 
each network retrieval. An increase in available bandwidth 
results in faster downloads and a reduction in network latency. 
However, the bandwidth requirements of our trace workloads 
are significantly smaller than the capacity of the 45 Mbps 
T3 link assumed in our simulations. This causes the link to 
be lightly loaded and hence, the improvement in bandwidth 
availability due to caching is negligible. 

Since the decrease in network latency due to improved bandwidth 
availability is more than offset by increase in latency due to large 
objects, the 99 th of the network latency shows an overall increase. 5 
Due to their inability to reduce the tail of  the network latency, proxy 
caches yield only a small decrease in the tail of the response time 
distribution (despite the increase in the tail of the latency, the tail of 
the response time shows a net decrease due to the improvement in 
hit ratios for larger caches). Figure 7(a) quantifies the reduction in 
the average response time and the 99 th percentile of the response 
time due to caching. The figure shows that the 99 th percentile of 
the response shows a 15-20% reduction due to caching (in contrast 
to over a 50% reduction in the average response time). Moreover, 
as shown in Figure 7(b), the percentage reduction in response times 
falls with increasing percentiles of the response time distribution 
(from around 40% for the 95 th percentile to only 15% for the 
99.5 th percentile). 

Thus we have the following result: 

R e s u l t  2 Networks that are provisioned on the basis of the 
response time (rather than the bandwidth usage) see a small 
(15-20~o) improvement in capacity due to proxy caching (as 
compared to over a 50~o improvement in the average re- 
sponse time). This is because the tail of the network latency 

nWe verified this hypothesis by simulating a low bandwidth link of 
capacity 128KB/s. In this case, the increase in available bandwidth 
per request is more significant than the increase in request sizes, caus- 
ing the tail of the latency to show an overall decrease. 
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Figure 7: Reduction in response time due to caching 

increases with increasing cache sizes and counters some of 
the improvements in response times due to increasing cache 
hit ratios. 

3.2 Implications of Proxy Caching for Server Provisioning 

To study the impact of a server-side proxy cache on the server load, 
we varied the cache size and computed the distribution of the server 
response time for various cache sizes. 

Figure 8 depicts the distribution of the server response time in 
the presence and absence of a proxy cache. The figure shows that 
the response time distribution has a heavy-tailed nature even in the 
presence of an infinite cache (again indicating a reduced impact of 
caching on the tail of the response time distribution). We computed 
variation in the average response time and the 99 th percentile of the 
response time for different cache sizes. Again we found that both 
the average and the 99 th percentile of the response time decrease 
with increasing cache sizes, but the percentage reduction in the 99 th 
percentile is smaller than that in the average response time. Figure 
9 quantifies this reduction. It shows that, as in the case of network 
bandwidth, the average response time reduces by 35-50% as we 
increase the cache size from zero to infinity, but the reduction in 

the 99 th percentile of the response time is only 20%. Moreover, 
this reduction decreases with increasing percentiles of the response 
time distribution; the percentage reduction varies from 25-40% for 
the 95 th percentile to 15% for the 99.5 tth percentile (see Figure 
9(b)). (Observe that Figures 8 and 9 are the server response time 
counterparts of Figures 3 and 4 for network bandwidth usage.) 

Thus, we have the following result: 

R e s u l t  3 Server-side proxy caches can be somewhat effec- 
tive for  provisioning servers. The increase in capacity of a 
server (or the savings in capacity/or a particular workload) 
depends on the percentile of  the response time distribution 
chosen for provisioning the server. For our trace workloads, 
these gains varied from 25=~0~ fo r  the 95 th percentile to 
only 15~  for the 99.5 th percentile. The savings in capac- 
ity may be further limited by constraints on the size of  an 
in-memory cache (our results provide upper bounds on the 
response time reduction by assuming an infinite cache). 

3.3 Impact  of Caching on Burstiness and Locality 

Our experiments thus far have examined the impact of proxy caches 
on the capacity of servers and networks. In this section, we examine 
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why proxies have such an effect on the web workloads. Specifically, 
we examine (a) whether proxies can help smooth out the burstiness 
in web workloads, and (b) the relationship between locality and the 
burstiness of web workloads. 

3.3.1 Effect of Caching on B u r s t i n e s s  

Past studies have shown that web workloads exhibit burstiness at 
multiple time scales [7, 11]; the workloads employed in our study 
are no different (see Figures l(b) and (c)). In this section, we 
determine whether a proxy cache can help smooth out the burstiness 
in web workloads, or whether the resulting workload becomes more 
bursty. A better understanding of these issues will help network 
designers determine if proxies should be deployed to smooth out 
the aggregate web traffic in a network 8 and the implications of 
doing so (a more bursty workload yields statistical multiplexing 
gains, but also increases the probability of transient congestion in 
the network). 

We use two different metrics to quantify the burstiness of a 
workload: (i) the Hurst Parameter H,  which is a measure of the 
self-similarity (i.e., burstiness) exhibited by a workload [7]; and (ii) 

S D o i n g  so  r e q u i r e s  L a y e r  4 s w i t c h i n g  a l g o r i t h m s  in  t h e  r e u t e r s  
to  i n t e r c e p t  w e b  r e q u e s t s  a n d  f o r w a r d  t h e m  to  a p r o x y .  W e  do  n o t  
c o n s i d e r  t h e  c o s t s  o f  L a y e r  4 s w i t c h i n g  a l g o r i t h m s  in  t h i s  p a p e r ,  a n d  
f o c u s  o n l y  on  t h e  p e r f o r m a n c e  b e n e f i t s  o f  d e p l o y i n g  p r o x y  c a c h e s  n e a r  
n e t w o r k  r e u t e r s .  

the heavy-tailed nature of the workload as defined by the Pareto 
distribution: P ( X  > x) ~ x - s ,  as x ~ oo, 0 < a < 2. 

To determine the impact of caching on burstiness, we compare 
the original workload to that generated in the presence of an infinite 
cache. To do so, we first compute the bit rate of the workload 
over one second intervals (assuming no proxy is present). Next, 
we filter out cache hits from the workload assuming the presence 
of an infinite cache and repeat this process. We then compute the 
Hurst parameter H and the parameter c~ of the Pareto distribution 
for these two workloads as follows. 

To compute the Hurst parameter, we assume that the bit rate 
of the workload over one second intervals represents a time series 
X = ( X t ; t  = 1,2 ,3 , . . . ) .  We then compute the m-aggregated 
series X (m) = (X~m); k = .  1, 2, 3...) by summing the original 
series X over non-overlapping blocks of size m. The variance of 
X (m) is then plotted against m on a log-log plot, yielding the so- 
called variance-time plot [7, 11, 15]. A straight line with slope - /3  
is indicative of self-similarity and the Hurst parameter H is given 
by 

H = I - ~ ;  0 < / 3 < 2  

The workload is said to self-similar if 0.5 < H < 1, with larger 
values of H indicating an increase in burstiness. (see [7, 11, 15] for 
a more detailed treatment of self-similarity). Figure l0 illustrates 
this process by: (i) depictiffg the variance-time plot for the Digital 
trace, and (ii) computing a linear fit through these data points using 

73 



o 

12 

10 

8 

6 

4 

2 

0 

Digital trace, no cache 

...... . .......... y = - 0 . 5 7 * x + i l . 1 6  ' 
12 

10 

8 

Digital trace, infinite cache 

~, =-0 .6~*  x + ¢0.70 ' 

i i i i i i 0 i i I i i h 

0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 

Iogl0(m) Iogl0(m) 
(a) No cache (b) Infinite cache 

3.5 

Figure  10: De te rmina t ion  of the  Hurs t  pa rame te r  using var iance- t ime plots 

Table  2: Effect of caching on burst iness  

Mean bit rate (KB/s) 
Hurst parameter and 95% CI 

Pareto and 95% CI 

Digital 
/l~lll'-&'gd m IIl~11'll/-~ff.T4 ~ 
120.82 75.97 

0.71 ± 0.06 0.68 ± 0.05 
1.32 ± 0.009 1.33 :::E 0.013 

Berkeley 
No cache Infinite cache 

52.7 35.2 
0.75 ± 0.06 0.68 ± 0.05 
1.5 ± 0.03 1.62 ± 0.04 

a simple linear regression model (least-squares method). The figure 
yields fl = 0.57 and ~ = 0.64 for cache sizes of zero and infinity, 
respectively, and corresponding Hurst parameters of H = 0.71 and 
H = 0.68, respectively. Table 2 summarizes the Hurst parameter 
and the 95% confidence intervals obtained for our workloads. The 
table shows that H reduces in the presence of a proxy cache for 
both the Digital and Berkeley workloads, suggesting that a proxy 

7 can indeed reduce the burstiness in web workloads. However, the 
Hurst parameter of the resulting workload continues to be in the 
range 0.5 < H < 1, indicating that the workload continues to be 
self-similar with significant burstiness. 

Next, we determine if the asymptotic shape of the bit rate dis- 
tribution has a heavy-tailed nature (i.e., if  it conforms to the Pareto 
distribution). To do so, we use log-log complementary distribution 
(LLCD) plots [7]. These are plots of the complementary cumulative 
distribution F(x )  = 1 - F (x )  = P ( X  > x) on the log-log axes. 
If the LLCD plot is approximately linear over a significant range 
in the tail, then the distribution is heavy tailed, and the slope - a  
of the linear portion yields the corresponding Pareto distribution. 
A decrease in a indicates that an increasing portion of the mass is 
present in the tail, making the distribution more heavy-tailed (see 
[7] for a more detailed description). Figure 11 shows the LLCD 
plots for the Digital trace as well as a linear fit through the tail of 
the distribution using the least squares method. The slopes of the 
linear fit as well as the 95% confidence intervals are summarized 
in Table 2. Together, Figure 11 and Table 2 show that: (i) the 
original workload and that in the presence of an proxy cache are 
heavy-tailed and conform to the Pareto distribution, (ii) c~ increases 
in the presence of a cache, indicating that a proxy is somewhat suc- 
cessful in reducing the tail of the distribution (however, the increase 

7Since  t h e  95% c o n f i d e n c e  i n t e r v a l s  o f  t h e  two  w o r k l o a d s  o v e r l a p ,  
we can  n o t  d r a w  any  d e f i n i t e  c o n c l u s i o n s  a b o u t  a r e d u c t i o n  in  b u r s t i -  
ness  d u e  t o  cach ing .  

in a is small (<  8%) and the resulting workload continues to be 
heavy-tailed). 

Thus, we have the following result: 
( 

R e s u l t  4 Deploying proxies in the network not only reduces 
the average volume of tra2~ic due to web requests (as shown 
in Section 3.1), but also produces a reduction, albeit small, 
in the burstiness in the workload. The resulting workload 
continues, however, to exhibit significant burstiness (self- 
similarity) and a heavy-tailed nature. 

3,3.2 Effect of Burstiness on Locality 

To understand the effect of burstiness on locality, let B~ and B~o 
denote the bit rate of the trace in the interval [t, t + 1) when no 
proxy is present and in the presence of  a proxy with an infinite 
cache, respectively. Let '7 denote the average byte hit ratio of the 
workload over the entire trace. Observe that, ifB~o < 7 .B~thenthe 
workload exhibits better than average locality within that interval. 
On the other hand, if  B ~  > '7 " Bo t then the trace exhibits worse 
than average locality in that interval. Figure 12(a) plots (Bo t, B~o) 
pairs for each one second interval in the Digital trace. The figure 
shows that, for high bit rates, it is more likely that the trace exhibits 
worse than average locality. In fact, for some intense bursts, the 
figure shows that B~o ~ B~, indicating that most requests in that 
interval were cache misses. 

To understand the reasons for such poor locality, we computed 
the fraction of the intervals in which the trace exhibited worse than 
average locality for various burst sizes. Figure 12(b) plots these 
values. As shown in the figure, the probability that the locality ex- 
hibited by the trace is worse than average increases with increasing 
burst sizes (i.e., bit rates). To further understand this behavior, we 
computed the average requests sizes and the number of requests/s 
for different burst sizes. Figures 13(a) and (b) plot these values. 
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Figure  12: Effect of burst iness on the  locality. 

The figure shows that both the request rate and the average size of 
a requested object increases with burst size. Since the increase in 
request size is significantly larger than that in request rate, we con- 
jecture that requests for large objects with poor locality contribute 
to the reduction in overall locality during intense bursts, s We are 
currently conducting a more extensive study using recent traces to 
examine the validity of this hypothesis, and to gain further insights 
into the characteristics of large objects. 

Thus, we have the following result: 

R e s u l t  5 Intense bursts result in an increase in the request 
rate as well as a sharp increase in the average request size. 
Since large objects are more likely to exhibit poor locality 
as compared to small objects, an increase in the request size 
causes the overall locality of the workload to reduce during in- 
tense bursts (and consequently, reduce the impact of caching 
on the tail of the load distribution). 

SA prior study ha~ found a weak correlation between the object 
size and its access frequency--larger objects are less likely to be re- 
quested again as compared to smaller objects [2]. Our study seems to 
indicate that even a weak correlation can have significant performance 
implications, especially on the tail of the distribution. 

4 Addit ional  Considerations and Directions for Future Work 

In this section, we consider the possible effects of the assumptions 
made in our simulation study on our results and discuss possible 
directions for future work. 

Effect of hierarchies/cooperating caches: Our study assumed 
a single proxy cache that is deployed near an access link or 
a web server. Many large organizations make use of a set of 
cooperating caches that are often organized in a hierarchical 
manner. Cooperating caches can improve hit ratios by sharing 
cached data across a larger set of clients. However, for an 
indentical clientele, a set of cooperating caches will be unable 
to achieve a larger degree of sharing than the infinitely large 
proxy cache assumed in our study. Consequently, even in 
the presence of multiple cooperating caches, the network 
bandwidth usage on the access link will be similar to that for a 
single infinite proxy cache. The response times, however, will 
be different since cache hits in former could be either local 
hits or remote hits. Moreover, a set of cooperating caches will 
always outperform a set of non-cooperating proxies, each of 
which services only a subset of the total clientele. 
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Figure 13: Variation in the average requests size and the request rate with increasing burst  size. 

• Effect of  cache replacement algorithms: Our study assumed 
that proxies manage their caches using the LRU cache re- 
placement policy (since LRU is the algorithm of choice in 
most proxies). Recent studies indicate that cache replace- 
ment policies that take into account locality, size, and access 
costs of web objects yield better hit ratios than LRU. Whether 
these improvements in hit ratios have a significant impact on 
the tail of the load distribution is a question that we plan to 
address as part of future work. We conjecture that the impact 
on the tail is likely to be marginal, at best, since even an 
improvement in hit ratios is unlikely to have an impact on 
the poor locality exhibited by large objects (the locality of an 
object is a characteristic of the clients access patterns and not 
the cache replacement algorithm). 

• Effect of  cache consistency mechanisms: For simplicity, our 
study assumed a strong consistency mechanism that ensured 
the stale data is never present in the cache. In practice, many 
proxies provide weaker consistency guarantees and can occa- 
sionally supply stale data to clients. By delaying the fetching 
of updates from the server and servicing interim requests us- 
ing stale data, weak consistency mechanisms can yield higher 
hit ratios and result in lower bandwidth requirements. In spite 
of these differences, we conjecture that, like strong consis- 
tency, weak consistency mechanisms will have a negligible 
impact on the tail of the load distribution. This is because the 
poor locality of large objects that governs the tail of the load 
distribution is unaffected by the cache consistency mecha- 
nism. 

• Effect of  dynamic objects: Since the traces used in our study 
were gathered in 1995-96, they contain only a small fraction 
(< 7%) of dynamic and uncacheable objects. The fraction of 
such objects in more recent web workloads is reported to be 
at least 30% [10]. We believe that an increase in the fraction 
of dynamic and uncacheable objects is likely to exacerbate 
the heavy-tailed behavior of web loads and further reduce the 
effectiveness of proxy caching. We plan to validate this hy- 
pothesis when more recent trace workloads become publicly 
available. 

• Effect ofintelligentprefetching: It is well known that prefetch- 
ing can be an effective technique for reducing client response 
times and improving hit ratios [14]. Consequently, one possi- 
ble avenue for future research is to design intelligent prefetch- 

ing schemes that counter the heavy-tailed nature of web work- 
loads by prefetching large objects. However, the gains due 
to such a prefetching policy may be offset by the bandwidth 
costs of prefetching large objects that exhibit poor locality. 
Hence, it is not a priori evident if such policies can be effective 
in reducing the tail of the load distribution. 

5 Re la ted  W o r k  

Due to the growing popularity of the world wide web, research on 
optimizing web performance has received increasing attention. Sev- 
eral research groups have focused on characterizing web workloads 
so as to gain a better understanding of these workloads [1,2, 7, 8, 9]. 
These studies have shown that web workloads exhibit significant 
short-term burstiness (self-similarity) and are heavy-tailed. The 
performance benefits of web proxies in reducing the average re- 
sponse time, network bandwidth usage and server load has been 
shown in [10, 6, 16, 17]. Most of these studies focus on the average 
load, or on issues such as the impact of low bandwidth connections 
and uncacheable objects (in contrast to our study which investigates 
the tail of the load distribution). Finally, other issues such as strong 
and weak consistency mechanisms [3, 21 ], cache replacement algo- 
rithms [13], hierarchical proxy caching [22] and prefetching tech- 
niques [14] have also received significant research attention; these 
efforts are complementary to our current study. 

i 
6 Conc lud ing  Remarks  

In this paper, we examined the potential benefits of web proxy 
caches in improving the effective capacity of servers and networks. 
Since servers and networks are provisioned on the basis of a high 
percentile of the load, we focused on the effects of proxy caching 
on the tail of the load distribution. We found that, unlike their 
substantial impact on the average load, proxies have a diminished 
impact on the tail of the load distribution. The exact reduction 
in the tail and the corresponding capacity savings depend on the 
percentile of the load distribution chosen for provisioning networks 
and servers--the higher the percentile, the smaller the savings. In 
particular, compared to over a 50% reduction in the average load, 
the savings in network and server capacity is only 20-35% for 
the 99 *h percentile of the load distribution. We also found that 
while proxies can be somewhat useful in smoothing out some of 
the burstiness in web workloads, the resulting workload continues 
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to exhibit substantial burstiness and a heavy-tailed nature. We 
identified large objects with poor locality to be the limiting factor 
that diminishes the impact of proxies on the tail of load distribution. 
We conclude that, while there are good reasons to deploy proxies 
to enhance user performance (due to the effectiveness in reduces 
the average response times), they are less effective in improving 
the capacities of networks and servers. This somewhat negative 
result calls for a rethinking of the cost-benefit tradeoffs of deploying 
proxies for capacity improvements in servers and networks and also 
for more research into techniques such as intelligent prefetching that 
can possibly counter these effects. 
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