
Implications of Proxy Caching for Provisioning Networks and Servers*

Mohammad S. Raunak, Prashant Shenoy, Pawan Goyal~and Krithi Ramamritham tt
D e p a r t m e n t of C o m p u t e r Sc ience , ~ E n s i m C o r p o r a t i o n ,

U n i v e r s i t y of M a s s a c h u s e t t s , 1215 T e r r a B e l l a Ave ,

A m h e r s t , M A 01003 M o u n t a i n View, C A 94043

{ r a u n a k , s h e n o y , k r i t h i } @ c s . u m a s s . e d u g o y a l @ e n s i m . c o m

Abstract

In this paper, we examine the potential benefits of web proxy caches
in improving the effective capacity of servers and networks. Since
networks and servers are typically provisioned based on a high per-
centile of the load, we focus on the effects o f proxy caching on the
tail of the load distribution. We find that, unlike their substantial
impact on the average load, proxies have a diminished impact on
the tail of the load distribution. The exact reduction in the tail and
the corresponding capacity savings depend on the percentile of the
load distribution chosen for provisioning networks and servers--
the higher the percentile, the smaller the savings. In particular,
compared to over a 50% reduction in the average load, the sav-
ings in network and server capacity is only 20-35% for the 99 th
percentile of the load distribution. We also find that while proxies
can be somewhat useful in smoothing out some of the burstiness
in web workloads; the resulting workload continues, however, to
exhibit substantial burstiness and a heavy-tailed nature. We iden-
tify large objects with poor locality to be the limiting factor that
diminishes the impact of proxies on the tail of load distribution. We
conclude that, while proxies are immensely useful to users due to
the reduction in the average response time, they are less effective in
improving the capacities of networks and servers.

1 Introduction

1.1 Motivation

The past decade has seen a dramatic increase in the amount of web
traffic in the Internet; from an insignificant fraction in 1993, web
traffic has grown to become the largest component of the total traf-
fic on the Internet today. Recent studies have revealed that web
accesses tend to be non-uniform in nature, resulting in frequent
server and network overload, and thereby significantly increasing
the latency for information access. Proxy caches provide a way
to alleviate this drawback. In a proxy-based architecture, clients

*This research was supported in par t by Intel Corporation, Na-

send web requests to proxies; proxies respond to these requests us-
ing locally cached data or by fetching the requested object from the
server. By caching frequently accessed objects and serving requests
for these objects from the cache, proxies can yield a number of per-
formance benefits: (i) deploying a proxy in a local area network or
near a slow inter-continental link helps reduce client response times,
(ii) deploying a proxy near an access link (i.e., the link that connects
the organization to the rest of the Internet) helps organizations and
network service providers reduce their network bandwidth usage,
(iii) deploying a proxy close to web servers (referred to as server-
side caching) helps reduce load on these servers, and (iv) deploying
proxies in the network core helps reduce aggregate network load on
backbone links.

Thus, by absorbing a portion of the workload, proxy caches
can improve client response times as well as increase the capac-
ities of servers and networks, thereby enabling them to service
a potentially larger clientele. The latter hypothesis has been the
basis for the large-scale deployment of proxies by organizations
and network service providers in their computing infrastructure [6].
Surprisingly, however, there has been no study that quantifies these
benefits. Most performance studies to date have demonstrated the
efficacy of proxies in reducing the average response time, network
bandwidth usage and server load [5, 10, 16]. In contrast, servers
and networks are typically provisioned based on a high percentile
of the load (rather than the average load) [12]. For instance, a server
may be provisioned such that the 95 *h percentile of the response
time does not exceed lOOms, or a network link may be provisioned
such that the 99 th percentile of the bandwidth requirements does
not exceed the link capacity. Conventional wisdom has implicitly
assumed that a certain reduction in the average load due to caching
yields a corresponding reduction in a high percentile of the load. For
instance, white papers on commercial proxy servers frequently ar-
gue that a byte hit ratio of 40% yields a corresponding 40% savings
in network capacity. In contrast, recent studies that have character-
ized web workloads [1, 2, 7] suggest that a high percentile of the
load (i.e., the tail of the load distribution) may behave differently as
compared to the average load due to the following reasons:

• Heavy-tailed nature: Web workloads tend to be heavy-tailed
in nature. It has been shown that sizes of web requests as
well as the resulting network bandwidth usage have a Pareto
distribution with long tails (see Figure l(a)) [1, 7]. Whereas
proxies have been shown to be effective in reducing the mean
of this distribution, their effectiveness in reducing the tail of
the distribution has not been quantified. In fact, a simple
analysis using the Pareto distribution indicates that proxy
caches will yield a substantially smaller reduction in the tail
as compared to the mean. To illustrate, assume that the
network bandwidth usage is Pareto with mean of 100 KB/s.

66

journals

journals

journals

journals
tional Science Foundation grants no. ANI 9977635, IRI-9619588, and
the University of Massachusetts.
tAlso affiliated with the Dept. of Computer Science and Engg,
Indian Institute of Technology, Powai, Bombay.
Permission to make digital or hard copies of all Or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS 2000 6•00 Santa Clara, California, USA
© 2000 ACM 1-58113-194-1/00/0006-.$5.00

journals
Servers*

journals
Servers*

journals
Servers*

0.6

0.5

0.4

~ 0.3

0.2

0.1

0

Probablity Density, Digital trace

Zero Cache

200 400 600 800 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
Network Bandwidth (KB/s)

(a)

Digital trace, idtervat=ls
250000

200000

i 50000

100000

50000

0
200 250 300 350 400 450 500

Time (s)

(b)

2e+08

1.8e+08

1.6e+08

i 1.4e+08
1.2e+08

l e+08

8e+07

~" 6e+07

4e+07

2e+07

0

Digital trace, intewal=5min

h = , , i * i ,
200 400 600 800 10001200140016001800

Time (min)

(c)

Figure 1: Heavy-tai led and burs ty na tu re of web workloads. Figure (a) shows tha t the d is t r ibut ion of network bandwid th
usage is heavy tailed. Figures (b) and (c) demons t ra te the burs ty na tu re of web workloads over t ime scales of one second and
five minutes.

Since the CDF for Pareto is P (X _< x) = 1 - x - ° , where
a = ~ and :~ is the mean, the 99.9 th percentile is 933
KB/s. If a byte hit ratio of 0.5 results in a 50% reduction in
the average bandwidth, then the resulting distribution has a
mean of 50 KB/s and a 99.9 th percentile of 870. Thus the
tail reduces by only 6.75%. It is not a priori evident whether
web workloads continue to be Pareto in the presence of a
proxy cache, and if so, whether their behavior conforms to
this intuitive explanation. One of the goals of this paper is to
determine if this is indeed the case.

• Impact o f burstiness on locality: Web workloads exhibit
burstiness at multiple time-scales (see Figures l(b) and (c))
[7, 11]. Periods of intense bursts in such workloads govern
the tail of the load distribution. If the locality exhibited by the
workload reduces during intense bursts, then the tail of the
distribution will be relatively unaffected even in the presence
of a proxy cache (since the reduced locality will result in a
large number of cache misses). On the other hand, if the
locality increases during intense bursts, then proxies may be
able to reduce the tail of the distribution. Whereas past stud-
ies have investigated the locality exhibited by web workloads
over relatively long intervals [2, 9], the precise dependence
of locality on burstiness at the fast time scale has not been
investigated.

• Dynamic Objects: Dynamically generated objects (e.g., cgi-
bin) are less amenable to caching since they are regenerated
on every user request. Studies reveal that the fraction of dy-
namic and uncacheable objects in web workloads is around
30% and increasing with time [10]. An increasing propor-
tion of such objects in web workloads will further reduce
the overall effectiveness of proxy caches (in particular, their
effectiveness in reducing the tail of the load distribution).

Due to the above reasons, it is not a priori evident whether proxies
yield capacity savings while provisioning servers and networks and
if so, to what degree. A systematic study that quantifies the effects
of proxy caches on the provisioning of servers and networks and
examines the factors underlying these effects is the objective of this
paper.

1.2 Research Contributions

In this paper, we examine the impact of proxy caching on the
provisioning of networks and servers by answering the following
questions:

• Do proxy caches help in reducing the tail of the network
and server loads imposed by web requests? If so, what are

the resulting savings in (a) network capacity and (b) server
capacity due to caching?

• Does deploying proxy caches in the network help smooth out
the burstiness in web traffic? That is, does a proxy cache
(which acts as a buffer in the network) make the resulting
traffic less bursty?

• What are the factors that contribute to the heavy-tailed nature
of the load distribution? In particular, how does the locality
exhibited by the workload during intense bursts affect the tail
of the distribution?

Observe that the first two question s examine what impact a proxy
has on network and servers, whereas the third question examines
why proxies have this impact.

To answer these questions, we consider trace workloads from
real proxies and servers and use simulations to evaluate the impact
of proxies on these workloads. Our experimental evaluation yields
three key results:

• We find that proxies have a diminished impact on the tail
of the load distribution (as compared to their impact on the
average load). The exact reduction in the tail of the load
distribution and the corresponding capacity savings depend
on the percentile of the distribution chosen for provisioning
networks and servers; the higher the percentile, the smaller
the capacity savings.

- Network capacity can be provisioned based either on
the bandwidth usage or on the client response times.
We find that proxies are somewhat effective in reducing
the tail of the network bandwidth usage, but have a
smaller impact on the tail of the client response time
distribution. The savings in network capacity for the
99 th percentile is 30-35% for networks provisioned on
the basis of bandwidth usage and 15-20% for networks
provisioned on the basis of response times (as compared
to a 50-60% reduction in average response time and
bandwidth usage).

Server capacity is usually provisioned on the basis of
the server response time. Again, we find that proxies
are less effective in reducing the tail of the response
time distribution as compared to the reduction in the
average response time. Specifically, the reduction in
the 99 th percentile of server response time due to proxy
caching and the resulting savings in server capacity is
15-20% (as compared to a 30-50% reduction in average
response time).

67

• Proxies that are deployed in the network do indeed smooth
out some of the burstiness in the load. However, the resulting
traffic continues to be quite bursty and heavy-tailed.

• We find that intense bursts are caused by an increase in the
request rate as well as the size of requested objects. Since
the locality exhibited by large objects is often poor, requests
for larger objects diminish the impact of caching on the tail
of the load distribution.

The rest of this paper is structured as follows. Section 2 ex-
plains our experimental methodology. We present the results of
our experimental evaluation in Section 3. In Section 4, we discuss
various tradeoffs and factors that may influence our results. Sec-
tion 5 discusses related work, and finally, Section 6 presents some
concluding remarks.

2 Experimental Methodology

Since the objective of our research is to investigate the implications
of proxy caching on provisioning networks and servers, we consider
two different simulation environments---one to study the effects of
a proxy placed near a network access link and the other to study
the effects of a proxy attached to a web server. Figure 2 depicts
these scenarios. In the rest of this section, we first describe our
simulation environments in detail (Section 2.1) and then discuss the
details of the trace workloads and performance metrics used in our
experimental evaluation (Sections 2.2 and 2.3, respectively).

2.1 Simulation Environment

2,1.1 Simulation Environment for a Proxy near an Access
Link

Consider a proxy deployed by an organization near its access link.
As shown in Figure 2(a), clients within the organization send web
(H'Iq'P) requests to the proxy. The proxy services these requests
using locally cached data (in the event of a cache hit), or by fetch-
ing the requested object from the server (in the event of a cache
miss). The proxy i:s assumed to employ a disk-based cache to store
frequently accessed objects. Objects in the cache are managed by
the proxy using the LRU cache replacement policy. Furthermore,
the proxy is assumed to employ a cache consistency mechanism to
ensure that the cached data is always up-to-date with that stored on
servers. Our simulations assume a strong consistency mechanism--
one where cached data is always invalidated upon modification and
the proxy never provides stale data to clients [3, 21]. In practice,
however, many proxies employ cache consistency mechanisms that
can occasionally provide stale data; however, we choose to sim-
plify our study by assuming that stale data is never present in the
cache (i.e., strong consistency). The possible impact of other cache
consistency mechanisms and cache replacement algorithms on our
results is discussed in Section 4.

In such a scenario, cache hits result in retrievals from disk and
are modeled using an empirically derived disk model [4]; the model
has been validated against a real disk in [20]. We choose the Seagate
Barracuda 4LP disk [18] to parameterize the disk model. A (small)
fixed overhead is added to the retrieval times predicted by the model
to account for OS and proxy processing overheads.

Cache misses, on the other hand, result in data retrievals over
the network. To model network retrieval times, we assume that the
access link has a certain capacity bti,~k. The rest of the Internet
is modeled as a single bit pipe of capacity bint. The rationale for
doing so is the inherent presence of a single congested link on the
path from the proxy to the server that usually governs the bandwidth
received by a connection; we model the presence of such a link by
assuming that the bandwidth received by the connection on that

link is hint. In such a scenario, if there are n active connections
on the access link, the bandwidth received by a new connection is
b = min(bn~l,bi,~t). Given the round trip time (R'Vr) and the
bandwidth b received by a new connection, the simulator can then
compute the network latency--the time required to download an ob-
ject of size s over the network. ~ Our network latency calculations
take into account effects such as TCP slow-start at the beginning of
a connection, but ignore packet losses and additional slow-start pe-
riods these would entail [10]. These approximations suffice for our
purpose since we are interested in studying the bandwidth require-
ments of web workloads, rather than the effects of various Internet
dynamics on these workloads (recent studies on the performance of
web proxies have also made similar assumptions [10]).

To ensure that our results do not depend on the idiosyncrasies
of a particular workload environment, we consider two different
scenarios--a network service provider environment consisting of
mostly dial-up (modem) clients, and a commercial organization
consisting of mostly LAN-based clients. As explained in Section
2.2, we choose trace workloads corresponding to these two sce-
narios for our experimental evaluation. Our simulations assume
bli,~k = 45 Mbps (a T3 link), bint = 256 Kbps, a proxy-server
round trip time of 250 ms and a packet size of 1500 bytes. For
LAN-based environments, we choose a client-proxy bandwidth of
2 Mbps and a round trip time of 2.5 ms; for dial-up (modem) envi-
ronments we choose a client-proxy bandwidth of 28.8 Kbps and a
round trip time of 100 ms.

2.1.2 Simulation Environment for a Server-side Proxy

Consider a web server that employs an in-memory proxy cache as
shown in Figure 2(b). All web requests to the server are inter-
cepted by the proxy; cache hits are serviced using locally cached
data, while cache misses are forwarded to the server for further
processing. Cached objects are assumed to be managed using the
LRU cache replacement policy. We assume that cached objects are
always consistent with those at the server (such strong consistency
guarantees are easy to provide for server-side proxy caches, since
these proxies are under the control of the server).

Cache hits result in retrievals from an in-memory cache and are
assumed to be infinitely fast (sinc e typical memory speeds are sev-
eral orders of magnitude faster than disk speeds, this is a reasonable
assumption for our simulations). Cache misses, on the other hand,
require the server to retrieve the requested object from disk. To
model such retrievals, we assume that web objects (files) are stored
on disk in terms of 8KB disk blocks (as is typical in most UNIX
file systems). Blocks of a file are assumed to be randomly placed
on disk. 2 Given a request for a web object, our simulator maps it
to the corresponding file on disk and then issues read requests for
all disk blocks of that file. The underlying disk is assumed to em-
ploy the SCAN disk scheduling algorithm to retrieve disk blocks;
disk retrieval times are computed using an empirically derived disk
model [4]. As with the simulation environment for the proxy near
an access link, we choose the Seagate Barracuda 4LP disk [18]
to parameterize the disk model. Also, as before, we add a small,
fixed overhead to each request (both hits and misses) to account for
proxy and server processing overheads. Finally, in the context of
server-side proxies, since we are only interested in response time at
the server, our simulations do not account for the network latency
to transmit the requested object to the client.

iNote that b may change over the lifetime of a connection if new
requests arrive.

2Modern file systems use opt imizat ions such as clustering to
achieve near-contiguous al location of large files [19]. Our simulator
supports such optimizat ions; in such a scenario, each cluster consists
of several contiguous disk blocks and is randomly placed on disk.

68

~ J Proxy
r e r v e r ~ l i [D i~ Cac~he ~ ~ I ~ I Server-side [1~ ~ ~ ~

A~ne SkS ~--O~goua~i~aa~°n

(a) (b)

Figure 2: Simulation environments for (a) a proxy near an access link and (b) a server-side proxy.

2,2 Workload Characteristics

To generate the workload for our experiments, we employ traces
from real proxies and servers. We employ four different traces
for our study--two proxy and two server traces. Together these
traces represent environments ranging from commercial organiza-
tions to educations institutions, and from LAN-based clients to
dial-up (modem) clients. The characteristics of these traces are
shown in Table 1.

We use two proxy traces to evaluate the impact of caching on
network bandwidth usage. The Digital trace represents a proxy
servicing LAN-based clients in a commercial organization (Digi-
tal), whereas the Berkeley trace represents the workload at a proxy
servicing dial-up clients in an educational institution (Berkeley's
HomelP dial-up service). As shown in Table 1, both traces span
multiple days and consist of approximately a million requests each;
these requests were generated by a population of several thousand
clients) Each record in the trace represents a client request and
contains information such as the arrival time of a request, the re-
quested URL, the client requesting the object, the object size, the
last modified time of the object, etc. We use the last modified
times for maintaining consistency of cached objects--an object is
invalidated from the cache upon modification.

Turning our attention to dynamic objects, our examination of
the traces indicated that only a small fraction of the requests (< 7%)
accessed objects that were either dynamically generated or marked
uncacheable (these traces were gathered in 1995 and 1996, respec-
tively). More recent trace workloads [10] have a larger fraction
of such objects (around 30%) and this fraction is reported to be
increasing (unfortunately these traces are not publicly available).
Consequently, the results reported in this paper are optimistic--a
larger fraction of dynamically generated objects will further reduce
the efficacy of proxy caching.

We use two server traces to evaluate the impact of caching on
server response times. One represents a Web server belonging to a
network service provider (ClarkNet) and another that at a govern-
ment institution (NASA). The traces were gathered over a period
of 7 and 28 days, respectively, and consist of more than a million
requests each (see Table 1). The traces provide information similar
to that provided by proxy traces. Again we use the last modified
times of an object to ensure that the object is invalidated from the
cache upon modification.

2.3 Performance Metrics

We use two different metrics to study the impact of deploying proxy
caches near access l inks--network bandwidth usage and client re-

SThe original traces are larger and span multiple weeks; due to
memory constraints on our simulation machines, we restricted our
simulations to the first few days of the original trace.

sponse time. The network bandwidth usage on the access link is
defined to be the amount of data retrieved over the link per unit
time. The client response time of a request is defined to be the total
time to service a client request (it includes the response time of the
proxy for cache hits and the network latency incurred to download
an object for cache misses).

To study the impact of caching by proxies on the load experi-
enced by a server, we use the server response time as our metric.
The server response time is defined to be the time required by the
server to retrieve the requested object from disk (it does not include
the network latency incurred to transmit the object from the server
to the client).

For each of these metrics, we first compute a distribution of the
metric using simulations. We then compute the mean as well as
various percentiles of these distributions and study their variation
for different cache sizes.

3 Experimental Evaluation

The objective of this section is to answer the three questions posed
in Section 1.2. We consider each question in turn. Sections 3.1
and 3.2 examine the impact of caching on the tail of the network
and server loads, respectively. Section 3.3.1 examines whether
caching can help reduce burstiness in the load, while Section 3.3.2
investigates the factors governing the tail of the load distribution.

3.1 Implications of Proxy Caching for Network Provision-
ing

To determine the impact of proxy caching on the load on an access
link, we varied the cache size from zero to infinity and computed
the distributions of the network bandwidth usage and the client
response time.

3.1.1 Effect on Network Bandwidth Usage

Figures 3(a) and (b) plots the probability density function and the
cumulative distribution function of the network bandwidth usage.
The figure shows that the network bandwidth usage has a heavy-
tailed nature in the absence of a proxy cache. 4 More importantly,
the network bandwidth usage exhibits a heavy tailed nature even in
the presence of an infinite cache. This suggests a diminished impact
of proxy caches in reducing the tail of the distribution. (Section 3.3
provides a more precise characterization of the heavy-tailed nature
and discusses the reasons for this behavior).

4The figure shows only the initial portion of the tail; the actual tail
is significantly longer. Note also that, due to its bursty nature, the
workload has several silence periods where no requests arrive--these
intervals correspond to zero bandwidth usage in the figure.

69

Table 1: Character is t ics of t race workloads.

Trace Type Duration
(s)

Digitat Proxy 101871.8
Berkeley Proxy 154618.1
NASA s e r v e r 2678370

ClarkNet I server I 604717

#Requests

1141412
965172
1415318
1500129

#Unique #Unique l Bitrate Reques t ra te ! Avg ReqSize
O~ects Clients (KB/s) (req/s) (KB)
385607 5488 120.82 11.2040 9.68
391461 i 3845 52.7 6.2422 7.34
13436 74149 9.78 0.5284 18.43
32159 I 73466 23.45 2.4807 9.45

To determine the impact of proxy caching on the tail of the dis-
tribution, we computed the average bandwidth usage and the 99 th
percentile of the bandwidth usage for different cache sizes. We find
that (i) the average bandwidth usage reduces by half as we increase
the cache size from zero to infinity, and (ii) the 99 th percentile of
the bandwidth usage also reduces but to a smaller extent. Figure 4
quantifies this reduction in the network bandwidth usage. As shown
in the figure, the reduction in the 99 th percentile of the bandwidth
usage is 30-35% (as compared to a nearly 50% reduction in av-
erage bandwidth usage). Moreover, as shown in Figure 4(b)) the
reduction in bandwidth usage decreases with increasing percentiles
of the bandwidth distribution (from around 30-40% for the 95 th

percentile to 25% for the 99.5 th percentile).
Together Figures 3 and 4 lead us to the following conclusions.

R e s u l t 1 Proxy caches can help reduce the tail of the net-
work bandwidth usage and thereby increase overall network
capacity (or equivalently, yield capacity savings for a given
workload). However, the magnitude of the capacity savings
that can be achieved is smaller than the reduction in the av-
erage bandwidth usage. Moreove1", these savings depend on
the percentile of the bandwidth distribution chosen for pro-
visioning the network--the higher the percentile, the smaller
the savings.

3.1.2 Effect on Client Response Times

Since a network may be provisioned on the basis of the response
time (rather than bandwidth usage), in what follows, we examine
the impact of proxy caching on the client response times. To do
so, as before, we 'varied the cache size from zero to infinity and
computed the distribution of the client response time for different
cache sizes. Figure 5(a) depicts the distribution of the response time
obtained for an infinite cache. The figure shows that the response
time distribution is bimodal and has a long tail. Since the response
time in the event of a cache hit is significantly smaller than that
for a miss, the two peaks in this bimodal distribution represents
hits and misses, respectively. Figure 5(b) depicts the variation in
average response time and the 99 th percentile of the response time
for different cache sizes. The figure shows that the average response
time decreases due to an improvement in cache hit ratio for larger
caches. The 99 th percentile of the response time also decreases but
to a smaller extent. To understand the reasons for this behavior,
we observe that, due to their large network retrieval times, cache
misses dominate the set of requests that govern a high percentile
of the response time. Consequently, we investigate the impact of
cache misses on the network latency (which constitutes the response
time of miss requests).

Figure 6(a) plots the probability density function of the net-
work latency; as expected, the distribution consists of a single peak
(which corresponds to the peak due to cache misses in the bimodal
response time distribution). Figure 6(b) plots the variation in the

tn 99 percentile of the network latency for different cache sizes. In-
th terestingly, the figure shows that the 99 percentile of the latency

increases with increasing cache sizes. To understand the reasons for

this increase, observe that network latency depends on two factors:
(i) the size of the requested object, (ii) the bandwidth available to
download the object. We consider the effect of each factor on the
tail of the network latency.

• Size of the requested object: Studies have shown that small
objects are more likely to be reaccessed as compared to large
objects [2]. Moreover the average size of a requested object
in our workloads is small (< 10 KB). It follows that a cache
hit is more likely to access a small object over a large object.
Increasing the cache size increases the number of cache hits,
causing the cache to absorb a larger fraction of requests for
small objects. Put another way, as the cache size increases, an
increasing fraction of the cache misses are for large objects.
This causes the tail of the request size distribution for cache
misses to increase with the cache size, and hence, the tail of
the network latency shows a corresponding increase.

• Bandwidth available for a web request: By absorbing a frac-
tion of the workload, a proxy cache reduces the load on the
access link and increases the average bandwidth available for
each network retrieval. An increase in available bandwidth
results in faster downloads and a reduction in network latency.
However, the bandwidth requirements of our trace workloads
are significantly smaller than the capacity of the 45 Mbps
T3 link assumed in our simulations. This causes the link to
be lightly loaded and hence, the improvement in bandwidth
availability due to caching is negligible.

Since the decrease in network latency due to improved bandwidth
availability is more than offset by increase in latency due to large
objects, the 99 th of the network latency shows an overall increase. 5
Due to their inability to reduce the tail of the network latency, proxy
caches yield only a small decrease in the tail of the response time
distribution (despite the increase in the tail of the latency, the tail of
the response time shows a net decrease due to the improvement in
hit ratios for larger caches). Figure 7(a) quantifies the reduction in
the average response time and the 99 th percentile of the response
time due to caching. The figure shows that the 99 th percentile of
the response shows a 15-20% reduction due to caching (in contrast
to over a 50% reduction in the average response time). Moreover,
as shown in Figure 7(b), the percentage reduction in response times
falls with increasing percentiles of the response time distribution
(from around 40% for the 95 th percentile to only 15% for the
99.5 th percentile).

Thus we have the following result:

R e s u l t 2 Networks that are provisioned on the basis of the
response time (rather than the bandwidth usage) see a small
(15-20~o) improvement in capacity due to proxy caching (as
compared to over a 50~o improvement in the average re-
sponse time). This is because the tail of the network latency

nWe verified this hypothesis by simulating a low bandwidth link of
capacity 128KB/s. In this case, the increase in available bandwidth
per request is more significant than the increase in request sizes, caus-
ing the tail of the latency to show an overall decrease.

7 0

Probablity Density, Digital trace
1

0.8

.~" 0.6

0.4

0.2

Zero Cache
Infinite Cache - - o - -

200 400 600 800 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
Network Bandwidth (KB/s)

(a) Probability density function

O.

o. !o
0 O.

Cumulat ive Distdbution, Digital trace

Zero Cache
. Infinite Cache .~

200 400 600 800 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
Network Bandwidth [KB/s]

(b) Cumulative Distribution function

Percentiles of Network Bandwidth, Digital trace

2000 Zero Cache'
Infinte Cache - ~ - -

" 4
50 55 60 65 70 75 80 85 90 95 100

Percentiles (%)

(c) Percentiles of bandwidth usage

1500

looo

Figure 3: Distribution of network bandwidth usage in the presence and absence of caching

70

~ 5o
50

-E
o 40

.E 30

g
~ 20

~ lO

0
o

% Reduction for Various Cache Sizes

' ' Average (Digital) - '
99th percentile (Digital)

Average (Berkeley)
99th percentile (Berkeley)

.............. 22_ .

100

80

60

40

20

0

Percentage Reduction, Infinite Cache

' Digital
Berkeley *

, i i i i i i i i i i i i i

2500 5000 7500 10000 12500 15000 60 65 70 75 80 85 90 95
Cache Size (MB) Percentile of Network Bandwidth

(a) Reduction for different cache sizes (b) Reduction for different percentiles

Figure 4: Reduction in network bandwidth usage due to caching

2

0.7

0.6

0.5

0.4

0.3

0.2

0.f

0
0

Digital Trace, Infinite Cache

' Infir~ite Cache' ,,'

:::
50 100 150 200 250 300 350 400 450 500

Response Time (ms)

(a) Probability density function

3000

2500

.E 2000
E
I~ 1500

o

~- 1000

500

Response Time, Digital Trace

' Average
99th Percentile *

i ~ . . . ~ . ~ .

i i i i i i

2500 5000' 7500 10000 12500 15000
Cache Size (MB)

(b) Response times for different cache sizes

Figure 5: Impact of caching on response times. Figure (a) plots the probability density function of the response time while
figure (b) shows the variation in the average and 99 ~h percentile of the response time with increasing cache sizes.

71

0.25

0.2 r-
I

o .15 -

~.. o.1 -

Digital Trace, Infinite Cache

'Infinite ~ache

Network Latency, Digital Trace

. i e . ~ .

5000

4500

4000

,~, 3500

3000

2500'

2000
1500

Z
lOOO

500

o
o

0.05 -

99th Percentile
0 : . ~ . i I I I i f i i i

0 500 1000 1500 2000 2500 3000 2500 5000 7500 10000 12500 15000
Network Latency (ms) Cache Size (MB)

(a) Probability density function (b) Network latency for different cache sizes

Figure 6: Impact of caching on the network latency incurred by cache misses

W-

D :

70

60

50

40

30

20

10

0

% Reduction for Various Cache Sizes

' ' Average (Digit~ll) ~ '
99th Percentde (Digital) ----*----

Avera~.e (Berkeley)o....-
99th percenttle (Berkeley)

i = t i = i

2500 5000 7500 10000 12500 15000

Cache Size (MB)

(a) Reduction for difference cache sizes

100

80

• -~ 60

a: 40
o~

20

Percentage Reduction, Infinite Cache

Digital •
Berkeley °

......... .m...~

0 i J ~ i

75 80 85 90 95

Percentile of Response Time

(b) Reduction for different percentiles

Figure 7: Reduction in response time due to caching

increases with increasing cache sizes and counters some of
the improvements in response times due to increasing cache
hit ratios.

3.2 Implications of Proxy Caching for Server Provisioning

To study the impact of a server-side proxy cache on the server load,
we varied the cache size and computed the distribution of the server
response time for various cache sizes.

Figure 8 depicts the distribution of the server response time in
the presence and absence of a proxy cache. The figure shows that
the response time distribution has a heavy-tailed nature even in the
presence of an infinite cache (again indicating a reduced impact of
caching on the tail of the response time distribution). We computed
variation in the average response time and the 99 th percentile of the
response time for different cache sizes. Again we found that both
the average and the 99 th percentile of the response time decrease
with increasing cache sizes, but the percentage reduction in the 99 th
percentile is smaller than that in the average response time. Figure
9 quantifies this reduction. It shows that, as in the case of network
bandwidth, the average response time reduces by 35-50% as we
increase the cache size from zero to infinity, but the reduction in

the 99 th percentile of the response time is only 20%. Moreover,
this reduction decreases with increasing percentiles of the response
time distribution; the percentage reduction varies from 25-40% for
the 95 th percentile to 15% for the 99.5 tth percentile (see Figure
9(b)). (Observe that Figures 8 and 9 are the server response time
counterparts of Figures 3 and 4 for network bandwidth usage.)

Thus, we have the following result:

R e s u l t 3 Server-side proxy caches can be somewhat effec-
tive for provisioning servers. The increase in capacity of a
server (or the savings in capacity/or a particular workload)
depends on the percentile of the response time distribution
chosen for provisioning the server. For our trace workloads,
these gains varied from 25=~0~ fo r the 95 th percentile to
only 15~ for the 99.5 th percentile. The savings in capac-
ity may be further limited by constraints on the size of an
in-memory cache (our results provide upper bounds on the
response time reduction by assuming an infinite cache).

3.3 Impact of Caching on Burstiness and Locality

Our experiments thus far have examined the impact of proxy caches
on the capacity of servers and networks. In this section, we examine

72

Probability Density Function, Clarknet Trace

1 Zero (~ache' .._.L-
Infinite Cache

0.8

o.s

i 0.4

0.2 ~

50 100 150 200 250 300 350 400 450 500
Server Response Time (ms)

(a) Probability density function

0.8

i 0.6 o.

~ 0.4

o 0.2

Cumulative Distribution Function, Clark.Net trace

Zero Cache -
. Inflai~e Cache ; - ' " T

50 100 150 200 250 300 350 400 450 500
Server Response Time (ms)

(b) Cumulative Distribution function

Various Pementiles of Server Response Time, ClaW.Net

200 I Zero Cache ,,
I Infinte Cache ---*---

/

_yl
0 ~

60 65 70 75 80 85 90 95 100
Percentilas(%)

(c) Percentiles of response time

Figure 8: Dis t r ibut ion of server response t imes in the presence and absence of caching.

.E

fE

1 0 0

8 0

6 0

4 0

2 0

0

Percentage Reduction inServer Response Time

' Average, ClarkNet trace ,,
99th Percentile, ClarkNet trace

Average, Nasa trace .----~
99th Percentile, Nasa trace

..... o ~- ..

rf" ii.'~":_':_:_%'_'.'_TS:S'kL'~-'.ZE : ' : .Z.:: Z.:.: Z 3:= :S~Z:.:;

i i i i
2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

C a c h e S i z e (M B)

(a) Reduction for different cache sizes

Percentage R e d u c t i o n in S e r v e r R e s p o n s e T i m e s

1 0 0 i C la r l~Net t i ' a c e ' . '
N a s a t race ----*

80

m 40

20

0
80 82 84 86 88 90 92 94 96 98

Percentile of Response Time

(b) Reduction for different percentiles

Figure 9: Reduct ion in Server Response Times due to Caching

why proxies have such an effect on the web workloads. Specifically,
we examine (a) whether proxies can help smooth out the burstiness
in web workloads, and (b) the relationship between locality and the
burstiness of web workloads.

3.3.1 Effect of Caching on B u r s t i n e s s

Past studies have shown that web workloads exhibit burstiness at
multiple time scales [7, 11]; the workloads employed in our study
are no different (see Figures l(b) and (c)). In this section, we
determine whether a proxy cache can help smooth out the burstiness
in web workloads, or whether the resulting workload becomes more
bursty. A better understanding of these issues will help network
designers determine if proxies should be deployed to smooth out
the aggregate web traffic in a network 8 and the implications of
doing so (a more bursty workload yields statistical multiplexing
gains, but also increases the probability of transient congestion in
the network).

We use two different metrics to quantify the burstiness of a
workload: (i) the Hurst Parameter H, which is a measure of the
self-similarity (i.e., burstiness) exhibited by a workload [7]; and (ii)

S D o i n g so r e q u i r e s L a y e r 4 s w i t c h i n g a l g o r i t h m s in t h e r e u t e r s
to i n t e r c e p t w e b r e q u e s t s a n d f o r w a r d t h e m to a p r o x y . W e do n o t
c o n s i d e r t h e c o s t s o f L a y e r 4 s w i t c h i n g a l g o r i t h m s in t h i s p a p e r , a n d
f o c u s o n l y on t h e p e r f o r m a n c e b e n e f i t s o f d e p l o y i n g p r o x y c a c h e s n e a r
n e t w o r k r e u t e r s .

the heavy-tailed nature of the workload as defined by the Pareto
distribution: P (X > x) ~ x - s , as x ~ oo, 0 < a < 2.

To determine the impact of caching on burstiness, we compare
the original workload to that generated in the presence of an infinite
cache. To do so, we first compute the bit rate of the workload
over one second intervals (assuming no proxy is present). Next,
we filter out cache hits from the workload assuming the presence
of an infinite cache and repeat this process. We then compute the
Hurst parameter H and the parameter c~ of the Pareto distribution
for these two workloads as follows.

To compute the Hurst parameter, we assume that the bit rate
of the workload over one second intervals represents a time series
X = (X t ; t = 1,2 ,3 , . . .) . We then compute the m-aggregated
series X (m) = (X~m); k = . 1, 2, 3...) by summing the original
series X over non-overlapping blocks of size m. The variance of
X (m) is then plotted against m on a log-log plot, yielding the so-
called variance-time plot [7, 11, 15]. A straight line with slope - /3
is indicative of self-similarity and the Hurst parameter H is given
by

H = I - ~ ; 0 < / 3 < 2

The workload is said to self-similar if 0.5 < H < 1, with larger
values of H indicating an increase in burstiness. (see [7, 11, 15] for
a more detailed treatment of self-similarity). Figure l0 illustrates
this process by: (i) depictiffg the variance-time plot for the Digital
trace, and (ii) computing a linear fit through these data points using

73

o

12

10

8

6

4

2

0

Digital trace, no cache

...... y = - 0 . 5 7 * x + i l . 1 6 '
12

10

8

Digital trace, infinite cache

~, =-0 .6~* x + ¢0.70 '

i i i i i i 0 i i I i i h

0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3

Iogl0(m) Iogl0(m)
(a) No cache (b) Infinite cache

3.5

Figure 10: De te rmina t ion of the Hurs t pa rame te r using var iance- t ime plots

Table 2: Effect of caching on burst iness

Mean bit rate (KB/s)
Hurst parameter and 95% CI

Pareto and 95% CI

Digital
/l~lll'-&'gd m IIl~11'll/-~ff.T4 ~
120.82 75.97

0.71 ± 0.06 0.68 ± 0.05
1.32 ± 0.009 1.33 :::E 0.013

Berkeley
No cache Infinite cache

52.7 35.2
0.75 ± 0.06 0.68 ± 0.05
1.5 ± 0.03 1.62 ± 0.04

a simple linear regression model (least-squares method). The figure
yields fl = 0.57 and ~ = 0.64 for cache sizes of zero and infinity,
respectively, and corresponding Hurst parameters of H = 0.71 and
H = 0.68, respectively. Table 2 summarizes the Hurst parameter
and the 95% confidence intervals obtained for our workloads. The
table shows that H reduces in the presence of a proxy cache for
both the Digital and Berkeley workloads, suggesting that a proxy

7 can indeed reduce the burstiness in web workloads. However, the
Hurst parameter of the resulting workload continues to be in the
range 0.5 < H < 1, indicating that the workload continues to be
self-similar with significant burstiness.

Next, we determine if the asymptotic shape of the bit rate dis-
tribution has a heavy-tailed nature (i.e., if it conforms to the Pareto
distribution). To do so, we use log-log complementary distribution
(LLCD) plots [7]. These are plots of the complementary cumulative
distribution F(x) = 1 - F (x) = P (X > x) on the log-log axes.
If the LLCD plot is approximately linear over a significant range
in the tail, then the distribution is heavy tailed, and the slope - a
of the linear portion yields the corresponding Pareto distribution.
A decrease in a indicates that an increasing portion of the mass is
present in the tail, making the distribution more heavy-tailed (see
[7] for a more detailed description). Figure 11 shows the LLCD
plots for the Digital trace as well as a linear fit through the tail of
the distribution using the least squares method. The slopes of the
linear fit as well as the 95% confidence intervals are summarized
in Table 2. Together, Figure 11 and Table 2 show that: (i) the
original workload and that in the presence of an proxy cache are
heavy-tailed and conform to the Pareto distribution, (ii) c~ increases
in the presence of a cache, indicating that a proxy is somewhat suc-
cessful in reducing the tail of the distribution (however, the increase

7Since t h e 95% c o n f i d e n c e i n t e r v a l s o f t h e two w o r k l o a d s o v e r l a p ,
we can n o t d r a w any d e f i n i t e c o n c l u s i o n s a b o u t a r e d u c t i o n in b u r s t i -
ness d u e t o cach ing .

in a is small (< 8%) and the resulting workload continues to be
heavy-tailed).

Thus, we have the following result:
(

R e s u l t 4 Deploying proxies in the network not only reduces
the average volume of tra2~ic due to web requests (as shown
in Section 3.1), but also produces a reduction, albeit small,
in the burstiness in the workload. The resulting workload
continues, however, to exhibit significant burstiness (self-
similarity) and a heavy-tailed nature.

3,3.2 Effect of Burstiness on Locality

To understand the effect of burstiness on locality, let B~ and B~o
denote the bit rate of the trace in the interval [t, t + 1) when no
proxy is present and in the presence of a proxy with an infinite
cache, respectively. Let '7 denote the average byte hit ratio of the
workload over the entire trace. Observe that, ifB~o < 7 .B~thenthe
workload exhibits better than average locality within that interval.
On the other hand, if B ~ > '7 " Bo t then the trace exhibits worse
than average locality in that interval. Figure 12(a) plots (Bo t, B~o)
pairs for each one second interval in the Digital trace. The figure
shows that, for high bit rates, it is more likely that the trace exhibits
worse than average locality. In fact, for some intense bursts, the
figure shows that B~o ~ B~, indicating that most requests in that
interval were cache misses.

To understand the reasons for such poor locality, we computed
the fraction of the intervals in which the trace exhibited worse than
average locality for various burst sizes. Figure 12(b) plots these
values. As shown in the figure, the probability that the locality ex-
hibited by the trace is worse than average increases with increasing
burst sizes (i.e., bit rates). To further understand this behavior, we
computed the average requests sizes and the number of requests/s
for different burst sizes. Figures 13(a) and (b) plot these values.

74

..t:~ I

O

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5
3.5

Digital trace, no cache

. . . . :~',,~tt,,ff'= -1.32 * x + 5.96 ..L

i i I i i i

4 4.5 5 5.5 6 6.5

10g 10(bit_rate)

(a) No Cache

v
O

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5
3.5

Digital trace, infinite cache

' • • : ' ~ , ~/= - 1 . 3 ~ " x . ~ . 8 3 --:

i I i t I r

4 4.5 5 5.5 6 6.5

log10(bit rate)
(b) Infinite Cache

Figure 11: De te rmina t ion of the a pa ramete r of the Pare to d is t r ibut ion using LLCD plots.

CD
v

40000

35000

30000

25000

20000

15000

10000

5000

0 -
0

Digital trace, interval=Is, byte hit ratio=0.46

/ /

/ - +

/ /

z , - /

/ . 4
, /

,,,÷ J"
i ~ % ++ ''+'''~[" ~" " "..... """..................

I
10000 20000 30000

Bit rate with no cache (KB/s)

(a)

v
o

CE

El v
O
O.

40000

1

0.8

0.6

0.4

0.2

0
<=1

Digital trace, infinite cache, interval=Is

2 4 8 12

Burst size (MB/s)

(b)

I

>12

Figure 12: Effect of burst iness on the locality.

The figure shows that both the request rate and the average size of
a requested object increases with burst size. Since the increase in
request size is significantly larger than that in request rate, we con-
jecture that requests for large objects with poor locality contribute
to the reduction in overall locality during intense bursts, s We are
currently conducting a more extensive study using recent traces to
examine the validity of this hypothesis, and to gain further insights
into the characteristics of large objects.

Thus, we have the following result:

R e s u l t 5 Intense bursts result in an increase in the request
rate as well as a sharp increase in the average request size.
Since large objects are more likely to exhibit poor locality
as compared to small objects, an increase in the request size
causes the overall locality of the workload to reduce during in-
tense bursts (and consequently, reduce the impact of caching
on the tail of the load distribution).

SA prior study ha~ found a weak correlation between the object
size and its access frequency--larger objects are less likely to be re-
quested again as compared to smaller objects [2]. Our study seems to
indicate that even a weak correlation can have significant performance
implications, especially on the tail of the distribution.

4 Addit ional Considerations and Directions for Future Work

In this section, we consider the possible effects of the assumptions
made in our simulation study on our results and discuss possible
directions for future work.

Effect of hierarchies/cooperating caches: Our study assumed
a single proxy cache that is deployed near an access link or
a web server. Many large organizations make use of a set of
cooperating caches that are often organized in a hierarchical
manner. Cooperating caches can improve hit ratios by sharing
cached data across a larger set of clients. However, for an
indentical clientele, a set of cooperating caches will be unable
to achieve a larger degree of sharing than the infinitely large
proxy cache assumed in our study. Consequently, even in
the presence of multiple cooperating caches, the network
bandwidth usage on the access link will be similar to that for a
single infinite proxy cache. The response times, however, will
be different since cache hits in former could be either local
hits or remote hits. Moreover, a set of cooperating caches will
always outperform a set of non-cooperating proxies, each of
which services only a subset of the total clientele.

75

40O

350

~. 300

'~ 250

== 200 g
a~ 150

100

50

Digital trace, infinite cache, interval=Is

<= 1 2 4 8 16 32 >50

Burst size (MB/s)
(a) Average request size per burst

400

350

3OO

25O

200

150

100

50

o

Digital trace, infinite cache, interval=Is

<=1 2 4 8 16 >50
Burst size (MB/s)

(b) Request rate

Figure 13: Variation in the average requests size and the request rate with increasing burst size.

• Effect of cache replacement algorithms: Our study assumed
that proxies manage their caches using the LRU cache re-
placement policy (since LRU is the algorithm of choice in
most proxies). Recent studies indicate that cache replace-
ment policies that take into account locality, size, and access
costs of web objects yield better hit ratios than LRU. Whether
these improvements in hit ratios have a significant impact on
the tail of the load distribution is a question that we plan to
address as part of future work. We conjecture that the impact
on the tail is likely to be marginal, at best, since even an
improvement in hit ratios is unlikely to have an impact on
the poor locality exhibited by large objects (the locality of an
object is a characteristic of the clients access patterns and not
the cache replacement algorithm).

• Effect of cache consistency mechanisms: For simplicity, our
study assumed a strong consistency mechanism that ensured
the stale data is never present in the cache. In practice, many
proxies provide weaker consistency guarantees and can occa-
sionally supply stale data to clients. By delaying the fetching
of updates from the server and servicing interim requests us-
ing stale data, weak consistency mechanisms can yield higher
hit ratios and result in lower bandwidth requirements. In spite
of these differences, we conjecture that, like strong consis-
tency, weak consistency mechanisms will have a negligible
impact on the tail of the load distribution. This is because the
poor locality of large objects that governs the tail of the load
distribution is unaffected by the cache consistency mecha-
nism.

• Effect of dynamic objects: Since the traces used in our study
were gathered in 1995-96, they contain only a small fraction
(< 7%) of dynamic and uncacheable objects. The fraction of
such objects in more recent web workloads is reported to be
at least 30% [10]. We believe that an increase in the fraction
of dynamic and uncacheable objects is likely to exacerbate
the heavy-tailed behavior of web loads and further reduce the
effectiveness of proxy caching. We plan to validate this hy-
pothesis when more recent trace workloads become publicly
available.

• Effect ofintelligentprefetching: It is well known that prefetch-
ing can be an effective technique for reducing client response
times and improving hit ratios [14]. Consequently, one possi-
ble avenue for future research is to design intelligent prefetch-

ing schemes that counter the heavy-tailed nature of web work-
loads by prefetching large objects. However, the gains due
to such a prefetching policy may be offset by the bandwidth
costs of prefetching large objects that exhibit poor locality.
Hence, it is not a priori evident if such policies can be effective
in reducing the tail of the load distribution.

5 Re la ted W o r k

Due to the growing popularity of the world wide web, research on
optimizing web performance has received increasing attention. Sev-
eral research groups have focused on characterizing web workloads
so as to gain a better understanding of these workloads [1,2, 7, 8, 9].
These studies have shown that web workloads exhibit significant
short-term burstiness (self-similarity) and are heavy-tailed. The
performance benefits of web proxies in reducing the average re-
sponse time, network bandwidth usage and server load has been
shown in [10, 6, 16, 17]. Most of these studies focus on the average
load, or on issues such as the impact of low bandwidth connections
and uncacheable objects (in contrast to our study which investigates
the tail of the load distribution). Finally, other issues such as strong
and weak consistency mechanisms [3, 21], cache replacement algo-
rithms [13], hierarchical proxy caching [22] and prefetching tech-
niques [14] have also received significant research attention; these
efforts are complementary to our current study.

i
6 Conc lud ing Remarks

In this paper, we examined the potential benefits of web proxy
caches in improving the effective capacity of servers and networks.
Since servers and networks are provisioned on the basis of a high
percentile of the load, we focused on the effects of proxy caching
on the tail of the load distribution. We found that, unlike their
substantial impact on the average load, proxies have a diminished
impact on the tail of the load distribution. The exact reduction
in the tail and the corresponding capacity savings depend on the
percentile of the load distribution chosen for provisioning networks
and servers--the higher the percentile, the smaller the savings. In
particular, compared to over a 50% reduction in the average load,
the savings in network and server capacity is only 20-35% for
the 99 *h percentile of the load distribution. We also found that
while proxies can be somewhat useful in smoothing out some of
the burstiness in web workloads, the resulting workload continues

76

to exhibit substantial burstiness and a heavy-tailed nature. We
identified large objects with poor locality to be the limiting factor
that diminishes the impact of proxies on the tail of load distribution.
We conclude that, while there are good reasons to deploy proxies
to enhance user performance (due to the effectiveness in reduces
the average response times), they are less effective in improving
the capacities of networks and servers. This somewhat negative
result calls for a rethinking of the cost-benefit tradeoffs of deploying
proxies for capacity improvements in servers and networks and also
for more research into techniques such as intelligent prefetching that
can possibly counter these effects.

References

[1] M. Arlitt, R. Friedrich, and T. Jin. Workload Charac-
terization of a Web Proxy in a Cable Modem Environ-
ment. Technical Report HPL-1999-48, Hwelett-Packard
Laroratories, Palo Alto, CA, 1999.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. In Proceedings of Infocom '99, New York, NY,
March 1999.

[3] P. Cao and C. Liu. Maintaining Strong Cache Con-
sistency in the World-Wide Web. In Proceedings of the
Seventeenth International Conference on Distributed Comput-
ing Systems, May 1997.

[4] P. Chen and D. Patterson. Maximizing Performance in
a Striped Disk Array. In Proceedings ofACM SIGARCH
Conference on Computer Architecture, Seattle, WA, pages
322-331, May 1990.

[5] E. Cohen, B. Krishnamurthy, and J. Rexford. Improv-
ing end-to-end performance of the Web using server
volumes and proxy filters. In Proceedings ACM SIG-
COMM'98, Vancouver, BC, September 1998.

[6] Inktomi Corp. The Economics of Large-Scale Caching.
www.inktomi.com/Tech/EconOfLargeScaleCache.html,
1997.

[7] M R. Crovella and A. Bestavros. Self-Similarity
in World Wide Web Traffic: Evidence and Possible
Causes. IEEE/ACM Transactions on Networking, 5(6):835-
846, December 1997.

[8] F. Douglis, A. Feldmann, B. Krishnamurthy, and
J. Mogul. Rate of Change and Other Metrics: A Live
Study of the World Wide Web. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems,
pages 147-158, December 1997.

[9] B. Duska, D. Marwood, and M. Feeley. The Mea-
sured Access Characteristics of World-Wide-Web Client
Proxy Caches. In Proceedings of the USENIX Symposium
on lnternet Technologies and Systems, December 1997.

[10] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and
M. Rabinovich. Performance of Web Proxy Caching in
Heterogeneous Environments. In Proceedings of the IEEE
Infocom'99, New York, NY, March 1999.

[11] S. D. Gribble, G. Manku, D. Roselli, E. Brewer, T. Gib-
son, and E. Miller. Self-Similarity in File Systems. In
Proceedings of ACM SIGMETRICS '98, Madison, WI, June
1998.

[12] M. Harchol-Balter. The Effect of Heavy-Tailed Job Size
Distributions on Computer System Design. In Proceed-
ings of the Applications of Heavy Tailed Distributions in Eco-
nomics, Engineering and Statistics. Washington DC., June
1999.

[13] B. Krishnamurthy and C. Wills. Proxy Cache Co-
herency and Replacement--Towards a More Complete
Picture. In Proceedings of the l Pth International Conference
on Distributed Computing Systems (1CDCS), June 1999.

[14] T. Kroeger, D. Long, and J. Mogul. Exploring the
Bounds of Web Latency Reduction from Caching and
Prefetching. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[15] W E. Leland, M. Taqqu, W. Willinger, and D V. Wil-
son, On the Self-Similar Nature of Ethernet Traffic.
IEEE/ACM Transactions on Networking, 2(1):1-15, Febru-
ary 1994.

[16] C. Maitzahn, K. Richardson, and D. Grunwaid. Perfor-
mance Issues of Enterprise Level Web Proxies. In Pro-
ceedings of the S1GMETRICS Conference on Measurement
and Modeling of Computer Systems, June 1997.

[17] A. Rousskov and V. Soloviev. On Performance of
Caching Proxies. In Proceedings of ACM SIGMETRICS
Conference, Madison, W1, pages 272-273, June 1998.

[18] Seagate Technology, Inc. ST-11200N SCSI-2 Fast (Bar-
racuda 4) Specification, August 1994.

[19] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System Log-
ging Versus Clustering: A Performance Comparison. In
Proceedings of the Winter 1995 USENIX Conference, pages
249-264, January 1995.

[20] J. Thisquen. Seek Time Measurements. Technical re-
port, Amdahl Peripheral Products Division, May 1988.

[21] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases
for Consistency in Large-Scale Systems. IEEE Transac-
tions on Knowledge and Data Engineering, January 1999.

[22] H. Yu, L. Breslau, and S. 'Shenker. A Scalable Web
Cache Consistency Architecture. In Proceedings of the
ACM S1GCOMM'99, Boston, MA, September 1999.

77

