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Appendix

Article 1

Here, we attempt to establish analytically the relationship of
R with N as affected by p.
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Thus, for N >4 as per the assumption in the simulations, we
find that the rate of change in R with respect to p is positive
tending towards 0 as N—A and for N <A the rate of change is
negative. This results in the curves shown in figure 1.
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Article 2:
Analytical treatment of the optimization problem

R is a function of N and D. Thus, we are interested in
finding the optimum value of R in the surface obtained by
plotting R versus N and D. We assume C = 1 for simplicity
of solutions.

We optimize in two dimensions.

To do this, we compute
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Next, we put % = Ofmd% = 0 to obtain the critical point.

In order to obtain the nature of the critical point, we compute
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the Hessian determinant (H = ( AR 4R _ (di)z)to check
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its sign and check for the sign of &R
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4B and H _ g yields the critical point which is computed
dD dN
numerically for different values of p. Thus, the values of N

and D are obtained.
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Therefore
H = (24%"2 N2a’p(1-p)A>*N*2a*p(p+2))/((a+A*xD)*
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Thus for all p =€ (0,1) H > 0 and as % < 0 maxima is

possible for every p in this range at the critical points.
At equilibrium 4 = N and substituting this in H we get

H =24%a*p(1-p)+Aap(p+2)/(16a*(1+4)*(47)")

H=Q2p(1-p)tp(p+2))[(16a°(1+A4)") = (4p-p*) /
(16a2(1+A)*)

S2

Thus, for all p >4 H <0 and p <4 H >0.

This implies that at critical points less than 4, we get
maxima when stability is achieved when N = 4, and for all
critical points greater than 4, we get a saddle point as the
sign of the Hessian changes at 4. The precise position of the
critical p will change if we change the assumed parameters.
The behaviour that there will be stability below a critical p
remains invariant.
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