The co-optimization of floral display and nectar reward

Prajakta V Belsare, Balasubramanian Sriram and Milind G Watve

J. Biosci. 34(6), December 2009, 963-967 © Indian Academy of Sciences

Appendix

Article 1

Here, we attempt to establish analytically the relationship of R with N as affected by p.

$$
\begin{aligned}
& R=f(p), \text { i.e. } \\
& R=B R+\frac{(1-B R) \times N^{p}}{A^{p}+N^{p}}-C(N+D) \\
& R^{\prime}=\frac{N^{p}}{A^{p}+N^{2}} \text { and compute } d R^{\prime} / d p .
\end{aligned}
$$

$$
\ln R^{\prime}=\ln N^{P}-\ln \left(A^{P}+N^{P}\right)
$$

now differentiating with respect to p

$$
\frac{1}{R^{\prime}} \frac{d R^{\prime}}{d p}=\frac{1}{N^{p}} \frac{d N^{p}}{d p}-\frac{1}{\left(N^{p}+A^{p}\right)} \frac{d\left(N^{p}+A^{p}\right)}{d p}
$$

applying

$$
\frac{d x}{d p}=x \ln N=N^{P} \ln N
$$

thus we get

$$
\begin{aligned}
& \frac{1}{R^{\prime}} \frac{d R^{\prime}}{d p}=\frac{1}{N^{p}} N^{p} \ln N-\frac{1}{\left(N^{p}+A^{p}\right)}\left(A^{p} \ln A+N^{p} \ln N\right) \\
& \frac{1}{R^{\prime}} \frac{d R^{\prime}}{d p}=\frac{A^{p}}{\left(A^{p}+N^{p}\right)} \ln \frac{N}{A} \\
& \frac{d R^{\prime}}{d p}=\frac{A^{p} N^{p}}{\left(A^{p}+N^{p}\right)^{2}} \ln \frac{N}{A} \\
& \Rightarrow \frac{d R}{d p}=\frac{(1-B R) A^{p} N^{p}}{\left(A^{p}+N^{p}\right)^{2}} \ln \frac{N}{A}
\end{aligned}
$$

Thus, for $N>A$ as per the assumption in the simulations, we find that the rate of change in R with respect to p is positive tending towards 0 as $N \rightarrow A$ and for $N<A$ the rate of change is negative. This results in the curves shown in figure 1.

Article 2:
Analytical treatment of the optimization problem
R is a function of N and D. Thus, we are interested in finding the optimum value of R in the surface obtained by plotting R versus N and D. We assume $C=1$ for simplicity of solutions.

We optimize in two dimensions.
To do this, we compute

$$
\frac{d R}{d D}, \frac{d R}{d N}, \frac{d^{2} R}{d D^{2}}, \frac{d^{2} R}{d N^{2}}, \frac{d^{2} R}{d D d N}=\frac{d^{2} R}{d N d D}
$$

Next, we put $\frac{d R}{d D}=0$ and $\frac{d R}{d N}=0$ to obtain the critical point. In order to obtain the nature of the critical point, we compute the Hessian determinant $\left(H=\left(\frac{d^{2} R}{d D^{2}} \cdot \frac{d^{2} R}{d N^{2}}-\left(\frac{d^{2} R}{d D d N}\right)^{2}\right)\right.$ to check its sign and check for the sign of $\frac{d^{2} R}{d D^{2}}$.

Thus, $\frac{d R}{d D}=\frac{a A^{p+1}}{(a+A \times D)^{2}\left(A^{p}+N^{p}\right)}-1$,

$$
\frac{d R}{d N}=\frac{a p A^{p} N^{p-1}}{(a+A \times D)\left(A^{p}+N^{p}\right)^{2}}-1
$$

$\frac{d R}{d D}=0$ and $\frac{d R}{d N}=0$ yields the critical point which is computed numerically for different values of p. Thus, the values of N and D are obtained.

$$
\begin{aligned}
& \frac{d^{2} R}{d D^{2}}=\frac{-2 a A^{p+2}}{(a+A \times D)^{3}\left(A^{p}+N^{p}\right)}<0 \\
& \frac{d^{2} R}{d N^{2}}=\frac{a p A^{p} N^{p-2}\left(A^{p}(p-1)-N^{p}(p+1)\right)}{(a+A \times D)\left(A^{p}+N^{p}\right)^{3}} \\
& \frac{d^{2} R}{d D d N}=\frac{-a p A^{p+1} N^{p-1}}{(a+A \times D)^{2}\left(A^{p}+N^{p}\right)^{2}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{H}= & \left(2 A^{3 p+2} N^{p-2} a^{2} p(1-p) A^{2 p+2} N^{2 p-2} a^{2} p(p+2)\right) /\left((a+A \times D)^{4}\right. \\
& \left.\left(A^{p}+N^{p}\right)^{4}\right)
\end{aligned}
$$

Thus for all $p=\in(0,1) H>0$ and as $\frac{d^{2} R}{d D^{2}}<0$ maxima is possible for every p in this range at the critical points. At equilibrium $A=N$ and substituting this in H we get

$$
\begin{aligned}
H= & 2 A^{4 p} a^{2} p(1-p)+A^{4 p} a^{2} p(p+2) /\left(16 a^{4}(1+A)^{4}\left(A^{P}\right)^{4}\right) \\
H= & (2 p(1-p)+p(p+2)) /\left(16 a^{2}(1+A)^{4}\right)=\left(4 p-p^{2}\right) / \\
& \left(16 a^{2}(1+A)^{4}\right)
\end{aligned}
$$

Thus, for all $p>4 \mathrm{H}<0$ and $p<4 \mathrm{H}>0$.
This implies that at critical points less than 4 , we get maxima when stability is achieved when $N=A$, and for all critical points greater than 4 , we get a saddle point as the sign of the Hessian changes at 4 . The precise position of the critical p will change if we change the assumed parameters. The behaviour that there will be stability below a critical p remains invariant.

