Bull. Austral. Math. Soc. Vol. 66 (2002) [91–93]

A BEURLING ALGEBRA IS SEMISIMPLE: AN ELEMENTARY PROOF

S.J. BHATT AND H.V. DEDANIA

The Beurling algebra $L^1(G, \omega)$ on a locally compact Abelian group G with a measurable weight ω is shown to be semisimple. This gives an elementary proof of a result that is implicit in the work of M.C. White (1991), where the arguments are based on amenable (not necessarily Abelian) groups.

Let G be a locally compact Abelian group with Haar measure λ . A weight on G is a meaurable function $\omega : G \longrightarrow (0, \infty)$ such that $\omega(s + t) \leq \omega(s)\omega(t)$ $(s, t \in G)$. Then the Beurling algebra $L^1(G, \omega)$ consists of all complex-valued measurable functions f on G such that $f\omega \in L^1(G)$. It is a commutative Banach algebra with convolution product and with the norm $||f||_{\omega} := \int_G |f(s)|\omega(s)d\lambda(s)$. The authors faced the problem of the semisimplicity of $L^1(G, \omega)$ in the investigation of the unique uniform norm property in Banach algebras ([1]). It is shown in [5] that if G is amenable, then there exists a continuous, positive, ω -bounded character on G. Then Lemma 2 (below) quickly implies that $L^1(G, \omega)$ is semisimple for an Abelian G. Since the theory of amenable groups is not (yet) a standard part of Harmonic Analysis, and certainly not a part of Abelian Harmonic Analysis, we present an elementary proof of this basic result within the context of Abelian groups.

THEOREM 1. The Beurling algebra $L^1(G, \omega)$ is semisimple.

LEMMA 2. $L^1(G, \omega)$ is either semisimple or radical.

PROOF: Assume that $L^1(G, \omega)$ is not radical. So its Gelfand space $\Delta(L^1(G, \omega))$ is non-empty. Let $\varphi \in \Delta(L^1(G, \omega))$. Then there exists a function $\alpha \in L^{\infty}(G, 1/\omega)$, the Banach space dual of $L^1(G, \omega)$, such that

$$\varphi(f) = \int_G f(s)\alpha(s)d\lambda(s)$$

for all $f \in L^1(G, \omega)$. By the standard argument in the case of $L^1(G)$, one can show that α is a continuous function, $0 < |\alpha(s)| \leq \omega(s)$ ($s \in G$) and $\alpha(s+t) = \alpha(s)\alpha(t)$ ($s, t \in G$).

Received 8th January, 2002

The authors are thankful to Professor H.G. Dales, Leeds (UK), for drawing their attention towards the paper [5].

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

For each $\theta \in \widehat{G}$, define α_{θ} by

$$lpha_{ heta}(g) = \int_{G} g(s) lpha(s) heta(s), \ g \in L^{1}(G, \omega).$$

Then $\alpha_{\theta} \in \Delta(L^{1}(G, \omega))$. Now let $f \in \operatorname{rad} L^{1}(G, \omega)$, the radical of $L^{1}(G, \omega)$. Then $\alpha_{\theta}(f) = \widehat{f}(\alpha_{\theta}) = \widehat{f}\alpha(\theta) = 0$ ($\theta \in \widehat{G}$). Since $f \in L^{1}(G, \omega)$, we have $f\alpha \in L^{1}(G)$. Since $L^{1}(G)$ is semisimple and $\widehat{f\alpha}(\theta) = 0$ ($\theta \in \widehat{G}$), we have $f\alpha \equiv 0$ almost everywhere on G. But $\alpha(s) \neq 0$ for any $s \in G$; and hence $f \equiv 0$ almost everywhere on G. This proves that $L^{1}(G, \omega)$ is semisimple.

LEMMA 3. Let G_1 be a locally compact Abelian group such that $L^1(G_1, \omega)$ is semisimple for every weight ω on G_1 . Let G_2 be a locally compact Abelian group such that $L^1(G_2, \omega)$ is semisimple for every weight ω on G_2 . Let $G = G_1 \oplus G_2$ be the direct sum. Then $L^1(G, \omega)$ is semisimple for every weight ω on G.

PROOF: Let ω be a weight on G. By Lemma 2, it is enough to prove that $L^1(G, \omega)$ is not radical. Let U_1 and U_2 be symmetric neighbourhoods of the identities in G_1 and G_2 respectively such that their closures are compact. Define $f = \chi_{U_1 \times U_2}$, the characteristic function of $U_1 \times U_2$. Then f is a non-zero element of $L^1(G, \omega)$. It is clear that $f^n = \chi_{U_1}^n \chi_{U_2}^n$ for all $n \in \mathcal{N}$. It is enough to show that $\lim_{n \to \infty} ||f^n||_{\omega}^{1/n} > 0$. So define

$$\begin{aligned} \omega_1(s) &= \omega(s,0) \ (s \in G_1) \quad \text{and} \quad \omega_2(s) &= \omega(0,s) \ (s \in G_2); \\ m &= \inf \{ \omega_1(s) : s \in U_1 \} \quad \text{and} \quad M &= \sup \{ \omega_2(s) : s \in U_2 \}. \end{aligned}$$

It is clear that ω_i is a weight on G_i (i = 1, 2). Then by [2, Proposition 2.1], m > 0 and $M < \infty$. Also note that for any $n \in \mathcal{N}$, $\omega_2(s) \leq M^n$ for all $s \in U_2 + \cdots + U_2$ (*n*-times) and

$$\begin{split} \|f^{n}\|_{\omega} &= \int_{G} \left| f^{n}(s,t) \left| \omega(s,t) d\lambda_{1}(s) d\lambda_{2}(t) \right. \\ &= \int_{G_{1}} \int_{G_{2}} \left| \chi_{U_{1}}^{n}(s) \right| \left| \chi_{U_{2}}^{n}(t) \right| \omega(s,t) d\lambda_{1}(s) d\lambda_{2}(t) \\ &\geq \int_{G_{1}} \int_{G_{2}} \left| \chi_{U_{1}}^{n}(s) \right| \left| \chi_{U_{2}}^{n}(t) \right| \frac{\omega_{1}(s)}{\omega_{2}(-t)} d\lambda_{1}(s) d\lambda_{2}(t) \\ &= \int_{G_{1}} \left| \chi_{U_{1}}^{n}(s) \right| \omega_{1}(s) d\lambda_{1}(s) \int_{G_{2}} \left| \chi_{U_{2}}^{n}(t) \right| \frac{1}{\omega_{2}(-t)} d\lambda_{2}(t) \\ &\geq \|\chi_{U_{1}}^{n}\|_{\omega_{1}} \frac{1}{M^{n}} \int_{G_{2}} \left| \chi_{U_{2}}^{n}(t) \right| d\lambda_{2}(t) \\ &= \frac{1}{M^{n}} \|\chi_{U_{1}}^{n}\|_{\omega_{1}} \|\chi_{U_{2}}^{n}\|_{1}, \end{split}$$

where $\|\cdot\|_1$ denotes the L^1 -norm and λ_i denotes the Haar measure on G_i for i = 1, 2. Then $\lim_{n \to \infty} \|f^n\|_{\omega}^{1/n} \ge (1/M) \lim_{n \to \infty} \|\chi_{U_1}^n\|_{\omega_1}^{1/n} \lim_{n \to \infty} \|\chi_{U_2}^n\|_1^{1/n} > 0$. This proves that $L^1(G, \omega)$ is semisimple. A Beurling algebra

PROOF OF THEOREM 1: Note that if G is a compact Abelian group, then $L^1(G, \omega) = L^1(G)$ for any weight ω on G; so it is semisimple. By [3, p. 113], $L^1(\mathcal{R}, \omega)$ is semisimple for any weight ω on \mathcal{R} ; so Lemma 3 implies that $L^1(\mathcal{R}^n, \omega)$ is semisimple for any weight ω on \mathcal{R}^n , where $n \ge 1$. Hence, again by Lemma 3, $L^1(\mathcal{R}^n \oplus H, \omega)$ is semisimple for any weight ω on $\mathcal{R}^n \oplus H$, where $n \ge 0$ and H is a compact Abelian group.

Now let G be an arbitrary locally compact Abelian group and let ω be a weight on G. By [4, Theorem 2.4.1], there exists an open subgroup G_1 of G such that $G_1 = \mathcal{R}^n \oplus H$, where $n \ge 0$ and H is a compact Abelian group. By above argument $L^1(G_1, \omega_{|G_1})$ is semisimple. But the later is a closed subalgebra of $L^1(G, \omega)$. Hence $L^1(G, \omega)$ is not radical. Thus it is semisimple due to Lemma 2.

References

- S.J. Bhatt and H.V. Dedania, 'Banach algebras with unique uniform norm II', Studia Math. 147 (2001), 211-235.
- H.A.M. Dzinotyiweyi, 'Weighted function algebras on groups and semigroups', Bull. Austral. Math. Soc. 33 (1986), 307-318.
- [3] I. Gelfand, D. Raikov and G. Shilov, Commutative normed rings (Chelsea Publication Company, New York, 1964).
- [4] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics 12 (Interscience Publishers, New York, London, 1962).
- [5] M.C. White, 'Characters on weighted amenable groups', Bull. London Math. Soc. 23 (1991), 375-380.

Department of Mathematics Sardar Patel University Vallabh Vidyanagar - 388 120 Gujarat India e-mail: sjb@spu.ernet.in haresh@spu.ernet.in