J. OPERATOR THEORY 49(2003), 389-405

© Copyright by Theta, 2003

SPECTRAL INVARIANCE, K-THEORY ISOMORPHISM AND AN APPLICATION TO THE DIFFERENTIAL STRUCTURE OF C^* -ALGEBRAS

S.J. BHATT, A. INOUE and H. OGI

Communicated by Şerban Strătilă

Abstract. The notion of spectral invariance of a locally convex *-algebra is defined by constructing the enveloping C^* -algebra and is characterized. It is shown that the spectral invariance induces K-theory isomorphism at a general level. As an application the differential structure of C^* -algebras is

Keywords: Differential geometry, algebraic geometry. MSC (2000): Primary 46K05; Secondary 46K10, 46L05.

1. INTRODUCTION

Recent developments in non-commutative geometry ([11]) demand the search for, and the investigations of, smooth structures associated with a C^* -algebra \mathcal{B} , usually (but not always) manifested as dense *-subalgebras \mathcal{A} of \mathcal{B} ([9]). Differential seminorms provide a general mean to construct a differential structure associated with a dense subalgebra \mathfrak{A} of \mathcal{B} ([9]). The differential Fréchet *-algebra \mathfrak{A}_{τ} and the differential Banach *-algebra \mathfrak{A}_T defined by a differential *-seminorm on \mathfrak{A} are generally not subalgebras of \mathcal{B} , though there exist surjective *-homomorphisms $\mathfrak{A}_{\tau} \to \mathcal{B}, \, \mathfrak{A}_{T} \to \mathcal{B}$. Now besides completeness in an appropriate locally convex *-algebra topology, spectral invariance and closure under appropriate functional calculus have been recongnized as important attributes of smooth subalgebras ([9]). One says that \mathcal{A} is spectrally invariant in \mathcal{B} if $\forall x \in \mathcal{A}$, $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{\mathcal{B}}(x)$. This is known to imply the K-theory isomorphism $K_*(\mathcal{B}) = K_*(\mathcal{A})$. We aim to discuss spectral invariance and the closure under holomorphic functional calculus in a situation where there is a natural homomorphism from \mathcal{A} to \mathcal{B} instead of inclusion with a view to understand the structure of the differential algebras \mathfrak{A}_{τ} and \mathfrak{A}_T .

In fact, spectral invariance of a locally m-convex algebra \mathcal{A} in its homomorphic image has been considered in [19] to give a short proof of the assertion that $M_n(\mathcal{A})$ is local if \mathcal{A} is local and Fréchet, whereas the spectral invariance of a Banach *-algebra \mathcal{A} in its enveloping C^* -algebra has been considered in [3] to discuss the discretized version of CCR algebras. First we shall characterize the spectral invariance by the spectrality of submultiplicative *-seminorms or of C^* -seminorms on a pseudo-complete locally convex *-algebra \mathcal{A} in which every element is bounded in a natural sense ([1]). A submultiplicative *-seminorm p on \mathcal{A} is said to be spectral if $\gamma_{\mathcal{A}}(x) \leq p(x)$ for each $x \in \mathcal{A}$, where $\gamma_{\mathcal{A}}(x)$ is the spectral radius of x in \mathcal{A} . If there exists a non-zero continuous spectral submultiplicative *-seminorm (respectively C^* -seminorm) on \mathcal{A} , then \mathcal{A} is said to be spectral (respectively C^* -spectral). The spectral invariance of \mathcal{A} is defined as follows: Let CRep(\mathcal{A}) be the family of all non-zero (automatically, bounded ([5])) continuous *-representations of \mathcal{A} . Suppose CRep(\mathcal{A}) $\neq \emptyset$, then a C^* -seminorm | \cdot | $_u$ on \mathcal{A} called a Gelfand-Naimark C^* -seminorm is defined by

$$|x|_u = \sup\{\|\pi(x)\| : \pi \in \operatorname{CRep}(\mathcal{A})\}, \quad x \in \mathcal{A}$$

and the C^* -algebra E(A) obtained by completion of the normed C^* -algebra $\mathcal{A}/\ker|\cdot|_u$ is called an enveloping C^* -algebra. If $\mathrm{CRep}(\mathcal{A})\neq\emptyset$ and $\mathrm{Sp}_{\mathcal{A}}(x)=$ $\operatorname{Sp}_{E(\mathcal{A})}(j(x))$ for each $x \in \mathcal{A}$, where j is a natural map of \mathcal{A} onto $\mathcal{A}|\ker(|\cdot|_u)$, then \mathcal{A} is said to be *spectral invariant*. We define \mathcal{A} to be *local* (or closed under the holomorphic functional calculus (of E(A))) if given $x \in A$ and a function f holomorphic on $\operatorname{Sp}_{E(\mathcal{A})}(j(x))$, there exists $y \in \mathcal{A}$ such that f(j(x)) = j(y). This refines the usual notion of local subalgebras ([19]). By Lemma 1.2 of [19], if \mathcal{A} is a Fréchet subalgebra of an m-convex Fréchet Q-algebra \mathcal{B} (in particular, of a C^* -algebra \mathcal{B}), then \mathcal{A} is closed under the holomorphic functional calculus of \mathcal{B} if and only if A is spectrally invariant in B. Here we shall incorporate this at the generality of the present paper where A is not a subalgebra of a C^* -algebra \mathcal{B} , but there exists the continuous *-homomorphism $j: \mathcal{A} \to E(\mathcal{A}) = \mathcal{B}$. In Theorem 2.11, it is shown that \mathcal{A} is spectral and hermitian $(\operatorname{Sp}_{\mathcal{A}}(x) \subset \mathbb{R})$ for each $x^* = x \in \mathcal{A}$) if and only if \mathcal{A} is C^* -spectral if and only if \mathcal{A} is spectrally invariant if and only if A is local and rad $A = \operatorname{srad} A$ (the strong radical of A). Speaking the proofs roughly, suppose A is spectral and hermitian, then s_A defined by $s_{\mathcal{A}}(x) \equiv \gamma_{\mathcal{A}}(x^*x)^{1/2}, x \in \mathcal{A}$, becomes a continuous spectral C^* -seminorm on \mathcal{A} , that is, \mathcal{A} is C^* -spectral. The converse is trivial. Suppose that \mathcal{A} is C^* -spectral, that is, there exists a non-zero continuous spectral C^* -seminorm p on \mathcal{A} . Then it can be shown that $p = |\cdot|_u = s_A$, which implies that A is spectrally invariant. The necessary and sufficient condition of the spectral invariance of A and of the locality of \mathcal{A} and rad $\mathcal{A} = \operatorname{srad} \mathcal{A}$ is based on the holomorphic functional calculus in pseudo-complete locally convex algebras ([1]).

It is also known that the spectral invariance plays an important rule for the structure theory and for the representation theory of locally convex *-algebras ([6], [7]) and so in Theorem 2.15 we shall characterize the spectral invariance by the properties of *-representations (the existence of spectral *-representations, the dilation property of *-representations etc.) though they are not used in this paper.

In Section 3 we shall consider the K-theory isomorphisms of Fréchet *-algebras and the differential structure of a C^* -algebra as applications of Theorem 2.11. Given a dense *-subalgebra \mathcal{A} of a C^* -algebra \mathcal{B} , the significance of the

spectral invariance of \mathcal{A} in \mathcal{B} lies in the fact that it induces K-theory isomorphism $K_*(\mathcal{A}) = K_*(\mathcal{B})$ (Chapter III, Appendix C, [11]). This can be extended to more general Fréchet *-algebras applying Theorem 2.11 and the K-theory for Fréchet algebras developed by Phillips ([15]). In Theorem 3.1, it is shown that if \mathcal{A} is a Fréchet locally m-convex *-algebra in which each element is bounded, then the spectral invariance of \mathcal{A} implies the K-theory isomorphisms $K_*(\mathcal{A}) \simeq K_*(E(\mathcal{A}))$. As an application of Theorems 2.11 and 3.1, we investigate the properties of the C^* -spectrality and the spectral invariance of a Fréchet *-algebra defined by a differential seminorm. Let \mathcal{A} be a C^* -algebra and \mathfrak{A} a dense *-subalgebra of \mathcal{A} . Given

a differential *-seminorm $T \sim (T_k)_0^\infty$ on $\mathfrak A$ in the sense of [9], let $p_k(x) = \sum_{i=0}^k T_i(x)$.

Then $(p_k)_0^{\infty}$ is a separating increasing sequence of submultiplicative *-seminorms. Let τ be a locally convex *-algebra topology on $\mathfrak A$ defined by $(p_k)_0^{\infty}$. The completion $\mathfrak A_{\tau}$ of $\mathfrak A$ with respect to τ is a Fréchet *-algebra which is an inverse limit $\lim_{\leftarrow} \mathfrak A_{(k)}$ of the Banach *-algebras $\mathfrak A_{(k)}$ obtained by the completion of $\mathfrak A$ with respect to p_k . Let $\mathcal B$ denote $\mathfrak A_{(k)}$ or $\mathfrak A_{\tau}$. In Theorem 3.3, it is shown that $\mathcal B$ is a C^* -spectral and spectral invariant hermitian Q-algebra such that $E(\mathcal B) = \mathcal A$ and $K_*(\mathcal B) = K_*(\mathcal A) = K_*(\mathfrak A_{(k)})$ for all k.

2. SPECTRAL INVARIANCE

We begin with the basic definitions and properties about locally convex *-algebras. For more details refer to [1] and [2]. The term locally convex *-algebra means a *-algebra \mathcal{A} equipped with a topology τ such that

- (i) $\mathcal{A}[\tau]$ is a Hausdorff locally convex space;
- (ii) the multiplication of A is separately continuous;
- (iii) the involution on A is continuous.

We may essentially restrict our considerations in this paper to the case in which \mathcal{A} has an identity 1 by considering the adjunction \mathcal{A}_1 of an identity if \mathcal{A} has no identity. Henceforth it will be assumed, without further mention that \mathcal{A} has an identity 1.

Let \mathcal{A} be a locally convex *-algebra. An element x of \mathcal{A} is bounded if, for some non-zero $\lambda \in \mathbb{C}$, the set $\{(\lambda^{-1}x)^n : n \in \mathbb{N}\}$ is bounded. The set of all bounded elements of \mathcal{A} is denoted by \mathcal{A}_0 . We write \mathcal{B} for the collection of all absolutely convex, bounded and closed subsets \mathcal{B} of \mathcal{A} such that $\mathbb{1} \in \mathcal{B}$ and $\mathcal{B}^2 \subset \mathcal{B}$. For each $\mathcal{B} \in \mathcal{B}$, let $\mathcal{A}[\mathcal{B}]$ denote the subspace of \mathcal{A} generated by \mathcal{B} . Then $\mathcal{A}[\mathcal{B}] = \{\lambda x : \lambda \in \mathbb{C}, x \in \mathcal{B}\}$ and the equation: $\|x\|_{\mathcal{B}} = \inf\{\lambda > 0 : x \in \lambda \mathcal{B}\}$ defines a norm on $\mathcal{A}[\mathcal{B}]$, which makes $\mathcal{A}[\mathcal{B}]$ a normed algebra. If $\mathcal{A}[\mathcal{B}]$ is complete for each $\mathcal{B} \in \mathcal{B}$, then \mathcal{A} is said to be pseudo-complete. We remark that if \mathcal{A} is sequentially complete, then \mathcal{A} is pseudo-complete. Throughout this paper we consider only a locally convex *-algebra \mathcal{A} with $\mathcal{A} = \mathcal{A}_0$.

We define the spectrum $Sp_{\mathcal{A}}(x)$ and the spectral radius of x in \mathcal{A} as follows:

$$\operatorname{Sp}_{\mathcal{A}}(x) = \{\lambda \in \mathbb{C} : \ \mathbb{A}(\lambda \mathbb{1} - x)^{-1} \text{ in } \mathcal{A}\}, \quad r_{\mathcal{A}}(x) = \sup\{|\lambda| : \lambda \in \operatorname{Sp}_{\mathcal{A}}(x)\}.$$

Then it is known in [1] that

(2.1)
$$\gamma_{\mathcal{A}}(x) = \beta(x) \equiv \inf\{\lambda > 0 : \{(\lambda^{-1}x)^n : n \in \mathbb{N}\} \text{ is bounded}\}$$
$$= \sup\{\overline{\lim_{n \to \infty}} |f(x^n)|^{\frac{1}{n}} : f \in \mathcal{A}'\}$$
$$= \sup\{\overline{\lim_{n \to \infty}} p(x^n)^{\frac{1}{n}} : p \in P\},$$

where \mathcal{A}' is the dual space of \mathcal{A} and P is a family of seminorms which define the topology.

DEFINITION 2.1. A (continuous) seminorm p on \mathcal{A} is said to be *spectral* if $\gamma_{\mathcal{A}}(x) \leqslant p(x)$ for each $x \in \mathcal{A}$.

An element x of \mathcal{A} is said to be *quasi-regular* if $(\mathbb{1} - x)$ has the inverse belonging to \mathcal{A} . Let \mathcal{A}^{qr} be the set of all quasi-regular elements of \mathcal{A} .

By Lemma 4.1 of [5]) we have the following

LEMMA 2.2. Let A be pseudo-complete and p a seminorm on A. Then the following statements are equivalent:

- (i) p is spectral;
- (ii) $\{x \in \mathcal{A} : p(x) < 1\} \subset \mathcal{A}^{qr}$.

A locally convex *-algebra \mathcal{A} is said to be Q-algebra if \mathcal{A}^{qr} is open.

By Theorem 4.2 of [5] we have the following

Lemma 2.3. Let A be a pseudo-complete locally convex *-algebra. Consider the following statements:

- (i) \mathcal{A} has continuous quasi-inverse, that is, there exists a neighbourhood U of 0 such that $U \subset \mathcal{A}^{qr}$ and the quasi-inverse $x \to x^q$ is continuous at 0;
 - (ii) A is a Q-algebra;
 - (iii) there exists a continuous spectral seminorm on A.

Then the following implications hold: (i) \Rightarrow (ii) \Leftrightarrow (iii).

In particular, if \mathcal{A} has jointly continuous multiplication, then (i), (ii) and (iii) are equivalent.

We next define the notions of C^* -spectrality, spectral invariance and stability of locally convex *-algebra. A seminorm p on a (locally convex) *-algebra \mathcal{A} is said to be a m^* -seminorm (respectively a C^* -seminorm) if it is *-submultiplicative, that is, $p(xy) \leq p(x)p(y)$ and $p(x^*) = p(x)$, $\forall x, y \in \mathcal{A}$ (respectively $p(x^*x) = p(x)^2$, $\forall x \in \mathcal{A}$). Let p be a m^* -seminorm on \mathcal{A} . Then $\mathcal{N}_p \equiv \ker p = \{x \in \mathcal{A} : p(x) = 0\}$ is a *-ideal of \mathcal{A} and the quotient space $\mathcal{A}/\mathcal{N}_p$ is a normed *-algebra equipped with the multiplication $(x+\mathcal{N}_p)(y+\mathcal{N}_p) \equiv xy+\mathcal{N}_p$, the involution $(x+\mathcal{N}_p)^* \equiv x^*+\mathcal{N}_p$ and the norm $\|x+\mathcal{N}_p\|_p \equiv p(x)$. We denote by \mathcal{A}_p the Banach *-algebra which is the completion of $\mathcal{A}/\mathcal{N}_p$. In particular, if p is a C^* -seminorm on \mathcal{A} , then \mathcal{A}_p is a C^* -algebra.

Lemma 2.4. Let p be a (continuous) m^* -seminorm on a locally convex *algebra A. Then the following statements are equivalent:

- (i) p is spectral;
- (ii) $\gamma_{\mathcal{A}}(x) = \lim_{n \to \infty} p(x^n)^{\frac{1}{n}}, \ \forall x \in \mathcal{A};$ (iii) $\gamma_{\mathcal{A}}(x) = \gamma_{\mathcal{A}_p}(x_p), \ \forall x \in \mathcal{A}, \ where \ x_p \equiv x + \mathcal{N}_p;$
- (iv) $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{\mathcal{A}_p}(x_p), \ \forall x \in \mathcal{A}.$

In particular, if p is a C^* -seminorm on A, then the above statements (i)-(iv) are equivalent to

(v)
$$\gamma_{\mathcal{A}}(x) = p(x), \ \forall x \in \mathcal{A}_h \equiv \{a \in \mathcal{A} : a^* = a\}.$$

Proof. (i) \Rightarrow (iv) Let $x \in \mathcal{A}$. It is clear that $\operatorname{Sp}_{\mathcal{A}_p}(x_p) \subset \operatorname{Sp}_{\mathcal{A}}(x)$. We show the converse. Take an arbitrary $\lambda \in \mathbb{C}$ such that $(\lambda \mathbb{1}_p - x_p)^{-1}$ exists in \mathcal{A}_p . Since \mathcal{A}_p is the completion of the normed *-algebra $\mathcal{A}\lceil \mathcal{N}_p$, there exists an element y of \mathcal{A} such that $\|\mathbb{1}_p - (\lambda \mathbb{1}_p - x_p)y_p\|_p = p(\mathbb{1} - (\lambda \mathbb{1} - x)y) < 1$ and $\|\mathbb{1}_p - y_p(\lambda \mathbb{1}_p - x_p)\|_p = p(\mathbb{1} - y(\lambda \mathbb{1} - x)) < 1$, which implies by the spectrality of p that $(\lambda \mathbb{1} - x)y$ and $y(\lambda \mathbb{1} - x)$ are invertible. Hence, $(\lambda \mathbb{1} - x)$ is invertible, and so $\lambda \notin \mathrm{Sp}_{\mathcal{A}}(x)$. Thus we have $\mathrm{Sp}_{\mathcal{A}}(x) \subset \mathrm{Sp}_{\mathcal{A}_n}(x_p)$.

- (iv) \Rightarrow (iii) This is trivial.
- $(iii) \Rightarrow (ii)$ This follows from the equalities:

$$\gamma_{\mathcal{A}}(x) = \gamma_{\mathcal{A}_p}(x_p) = \lim_{n \to \infty} \|x_p^n\|_p^{\frac{1}{n}} = \lim_{n \to \infty} p(x^n)^{\frac{1}{n}}, \quad x \in \mathcal{A}.$$

(ii) \Rightarrow (i) This follows from the submultiplicativity of p. Suppose p is a C^* -seminorm on \mathcal{A} . Then the equivalence of (ii) and (v) is clear.

Definition 2.5. A locally convex *-algebra \mathcal{A} is said to be spectral (respectively C^* -spectral) if there exists a non-zero continuous spectral m^* -seminorm (respectively C^* -seminorm) on \mathcal{A} .

We define the Gelfand-Naimark C^* -seminorm $|\cdot|_u$ on \mathcal{A} and the enveloping C^* -algebra $E(\mathcal{A})$ of \mathcal{A} . We state the definition of *-representation of \mathcal{A} . Let \mathcal{D} be a dense subspace in a Hilbert space \mathcal{H} and $\mathcal{L}^{\dagger}(\mathcal{D})$ the set of all linear operators X in \mathcal{H} with the domain \mathcal{D} for which $X\mathcal{D} \subset \mathcal{D}$, $\mathcal{D}(X^*) \supset \mathcal{D}$ and $X^*\mathcal{D} \subset \mathcal{D}$. Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra under the usual operations and the involution $X \mapsto X^{\dagger} \equiv X^* \lceil \mathcal{D}$. A *-homomorphism π of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D})$ satisfying $\pi(1) = I$ is a *-representation of \mathcal{A} on \mathcal{H} with domain \mathcal{D} , and then we write \mathcal{D} and \mathcal{H} by $\mathcal{D}(\pi)$ and \mathcal{H}_{π} , respectively. For more details refer to [16] and [18]. If $\pi(x) \in \mathcal{B}(\mathcal{H}_{\pi})$ for each $x \in \mathcal{A}$, equivalently $\mathcal{D}(\pi) = \mathcal{H}_{\pi}$, then π is said to be bounded. By Corollary 3.13 from [5] we have the following

LEMMA 2.6. Every *-representation π of \mathcal{A} is bounded and $\|\pi(x)\| \leq s_{\mathcal{A}}(x)$ $\equiv \gamma_{\mathcal{A}}(x^*x)^{1/2} \text{ for each } x \in \mathcal{A}.$

It is natural to consider unbounded *-representations for general locally convex *-algebras, but by Lemma 2.6 it is here sufficient to consider only bounded *-representations. We denote by CRep(A) the family of all continuous (automatically, bounded by Lemma 2.6) *-representations of A.

DEFINITION 2.7. If $CRep(A) \neq \emptyset$, then A is said to be representable.

We remark that even a Banach *-algebra is not necessarily representable (Example 37.16, [10]). Suppose \mathcal{A} is representable. By Lemma 2.6, a C^* -seminorm on \mathcal{A} is defined by

$$|x|_u = \sup\{\|\pi(x)\| : \pi \in \operatorname{CRep}(\mathcal{A})\}, \quad x \in \mathcal{A},$$

and it is said to be the Gelfand-Naimark C^* -seminorm on \mathcal{A} . The C^* -algebra $\mathcal{A}_{|\cdot|_u}$ constructed from the C^* -seminorm $|\cdot|_u$ is said to be an enveloping C^* -algebra of \mathcal{A} and denoted by $E(\mathcal{A})$. The natural map $j: x \in \mathcal{A} \mapsto x + \mathcal{N}_{|\cdot|_u} \in E(\mathcal{A})$ is a *-homomorphism.

DEFINITION 2.8. If \mathcal{A} is representable and $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{E(\mathcal{A})}(j(x))$ for each $x \in \mathcal{A}$, then \mathcal{A} is said to be *spectrally invariant*.

The family $C^*N(\mathcal{A})$ of all C^* -seminorms on \mathcal{A} is a partially ordered family with order $r_1 \leq r_2$ defined by $r_1(x) \leq r_2(x), \ \forall x \in \mathcal{A}$.

LEMMA 2.9. Let r be a spectral C^* -seminorm on \mathcal{A} . Then $r = s_{\mathcal{A}}$ and r is the largest element in the partially ordered family $C^*N(\mathcal{A})$. Thus, a spectral C^* -seminorm is unique. Further, if r is continuous then \mathcal{A} is representable and $r = |\cdot|_u$.

Proof. It follows from Lemma 2.4, (v) that $r(h) = r_{\mathcal{A}}(h)$ for $\forall h \in \mathcal{A}_h$, which implies that $r = s_{\mathcal{A}}$. Thus, a spectral C^* -seminorm is unique. Let $p \in C^*N(\mathcal{A})$. Then it follows that $q \equiv \max(r, p) \in C^*N(\mathcal{A})$ and q is spectral. By the uniqueness of a spectral C^* -seminorm we have q = r, which implies that r is the largest in $C^*N(\mathcal{A})$. Suppose that r is continuous. Then the continuous *-representation π_r of \mathcal{A} is defined by $\pi_r(x) = \Pi_r(x + N_r)$, $x \in \mathcal{A}$, where Π_r is a faithful *-representation of the C^* -algebra \mathcal{A}_r on a Hilbert space. Hence it follows that \mathcal{A} is representable and

$$r(x) = \|\pi_r(x)\| \le \left\| \bigoplus_{\pi \in \operatorname{CRep}(A)} \pi(x) \right\| = |x|_u$$

for all $x \in \mathcal{A}$. On the other hand, since r is the largest in $C^*N(\mathcal{A})$, we have $|\cdot|_u \leq r$. Thus, we have $r = |\cdot|_u$. This completes the proof.

We define the locality of A.

DEFINITION 2.10. \mathcal{A} is said to be *local* if for $x \in \mathcal{A}$ and a function f holomorphic on $\mathrm{Sp}_{E(\mathcal{A})}(j(x))$, there exists $y \in \mathcal{A}$ such that f(j(x)) = j(y).

This refines the usual definition of local subalgebras ([19]).

The spectral invariance of \mathcal{A} can be characterized by the $(C^*$ -)spectrality and the locality of \mathcal{A} as follows:

Theorem 2.11. The following statements are equivalent:

- (i) A is spectrally invariant;
- (ii) \mathcal{A} is C^* -spectral;
- (iii) A is spectral and hermitian;
- (iv) \mathcal{A} is local and rad $\mathcal{A} = \operatorname{srad} \mathcal{A}$.

Proof. The equivalence of (i) and (ii) follows from Lemmas 2.4 and 2.9.

- (ii) \Rightarrow (iii) This is trivial.
- (iii) \Rightarrow (ii) We can show in a slight change of proof of Theorem 41.7 from [10] that $s_{\mathcal{A}}$ is a spectral C^* -seminorm on \mathcal{A} . We first show the Ptak inequality:

(2.2)
$$\gamma_{\mathcal{A}}(a) \leqslant s_{\mathcal{A}}(a), \quad \forall a \in \mathcal{A}.$$

In fact, take an arbitrary $a \in \mathcal{A}$ such that $s_{\mathcal{A}}(a) < 1$. Since $\mathcal{A} = \mathcal{A}_0$ and \mathcal{A} is pseudo-complete, there exists $B^* = B \in \mathcal{B}$ such that a^*a is an element of the Banach *-algebra $\mathcal{A}[B]$. By Proposition 12.11 of [10] there is a unique element x of $\mathcal{A}[B]_h$ such that $2x - x^2 = a^*a$ and $\gamma_{\mathcal{A}[B]}(x) < 1$. Since $\gamma_{\mathcal{A}}(x) \leqslant \gamma_{\mathcal{A}[B]}(x) < 1$, it follows that $h \equiv 1 - x$ is invertible and $1 - a^*a = h^2$. Since $(1 + a^*)(1 - a) = h\{1 + h^{-1}(a^* - a)h^{-1}\}h$, ih $h^{-1}(a^* - a)h^{-1} \in \mathcal{A}_h$ and \mathcal{A} is hermitian, it follows that $(1 + h^{-1}(a^* - a)h^{-1})$ is invertible, which implies that 1 - a is left invertible. Similarly, 1 - a is right invertible. Hence $1 \notin \mathrm{Sp}_{\mathcal{A}}(a)$ and so $\gamma_{\mathcal{A}}(a) < 1$. Thus we have $\gamma_{\mathcal{A}}(a) \leqslant s_{\mathcal{A}}(a)$. We next show the inequalities:

(2.3)
$$\gamma_{\mathcal{A}}(hk) \leqslant \gamma_{\mathcal{A}}(h)\gamma_{\mathcal{A}}(k), \quad \forall h, k \in \mathcal{A}_h$$

$$(2.4) s_{\mathcal{A}}(xy) \leqslant s_{\mathcal{A}}(x)s_{\mathcal{A}}(y), \quad \forall x, y \in \mathcal{A}.$$

In fact, since A is spectral, there exists a continuous m^* -seminorm p on A such that

$$(2.5) \gamma_{\mathcal{A}}(x) \leqslant p(x), \quad \forall x \in \mathcal{A}.$$

Take arbitrary $h, k \in \mathcal{A}_h$. Then we have

$$\begin{split} \gamma_{\mathcal{A}}(hk) &\leqslant \gamma_{\mathcal{A}}(kh^2k)^{\frac{1}{2}} & \text{by } 2.2 \\ &= \gamma_{\mathcal{A}}(h^2k^2)^{\frac{1}{2}} & \\ &\leqslant \gamma_{\mathcal{A}}(h^{2^n}k^{2^n})^{\frac{1}{2^n}} & \text{by repeating this} \\ &\leqslant p(h^{2^n})^{\frac{1}{2^n}}p(k^{2^n})^{\frac{1}{2^n}} & \text{by } 2.5 \\ &= \gamma_{\mathcal{A}}(h)\gamma_{\mathcal{A}}(k), & \text{by } 2.1 \end{split}$$

which implies immediately the inequality (2.4). We can prove the same way as Theorem 41.7 in [10] that $s_{\mathcal{A}}$ is a seminorm on \mathcal{A} . It is clear that $s_{\mathcal{A}}(x)^2 = s_{\mathcal{A}}(x^*x)$, $\forall x \in \mathcal{A}$. Thus $s_{\mathcal{A}}$ is a spectral C^* -seminorm on \mathcal{A} . Further, it follows from (2.5) that $s_{\mathcal{A}}$ is continuous. Thus, \mathcal{A} is C^* -spectral.

(i) \Rightarrow (iv) Assume (i). Then $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{E(\mathcal{A})}(j(x))$ ($\equiv \mathcal{K}$) for an arbitrary fixed $x \in \mathcal{A}$, and $\mathcal{K} \subset \mathbb{C}$ is compact. Let f be a function holomorphic on an open set U containing \mathcal{K} . Let Γ be a rectifiable Jordan curve in $U \setminus \mathcal{K}$ enclosing \mathcal{K} . Put z = j(x). Then by the holomorphic functional calculus in $E(\mathcal{A})$,

$$(2.6) f(z) = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda)(\lambda I - z)^{-1} d\lambda = \frac{1}{2\pi i} \int_{\Gamma} j(f(\lambda)(\lambda \mathbb{1} - x)^{-1}) d\lambda.$$

Now $\mathcal{A} = \mathcal{A}_0 = \bigcup \{\mathcal{A}[B] : B \in \mathcal{B}\}$, and by the pseudo-completeness of \mathcal{A} , each $(\mathcal{A}[B], \| \cdot \|_B)$ is a Banach algebra. Also, by Proposition 5.1 of [1], there exists $B \in \mathcal{B}$ such that both the resolvent $R_{\lambda} = (\lambda \mathbb{1} - x)^{-1}$, $\forall \lambda \in \Gamma$, and $f(x) = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda)(\lambda \mathbb{1} - x)^{-1} d\lambda$ exist in $\mathcal{A}[B]$ in the sense of the norm convergence in $\mathcal{A}[B]$. Consider the following diagram:

$$(\mathcal{A}[B], \|\cdot\|_B)$$

$$\downarrow id \downarrow \qquad \qquad \downarrow \widetilde{j}$$

$$(\mathcal{A}, \tau) \qquad \xrightarrow{j} \qquad (E(\mathcal{A}), \|\cdot\|).$$

Here τ is a given topology of \mathcal{A} . The map $\mathrm{id}: (\mathcal{A}[\mathrm{B}], \|\cdot\|_{\mathrm{B}}) \to (\mathcal{A}, \tau)$ is continuous. Also \mathcal{A} is C^* -spectral. Let p be a continuous spectral C^* -seminorm on \mathcal{A} . Let τ' be the topology defined by τ and p. Then (\mathcal{A}, τ') is a Q-algebra, and the map $\mathrm{id}: (\mathcal{A}[\mathrm{B}], \|\cdot\|_{\mathrm{B}}) \to (\mathcal{A}, \tau')$ is also continuous. Since j is a *-homomorphism from the Q-algebra (\mathcal{A}, τ') to the C^* -algebra $E(\mathcal{A}), j$ is τ' -continuous. It follows that the map $\widetilde{j} = j\lceil_{\mathcal{A}[\mathrm{B}]}$ is $\|\cdot\|_{\mathrm{B}}$ -continuous. This is used in (2.6) to show that

$$f(z) = j \left(\frac{1}{2\pi i} \int_{\Gamma} f(\lambda) (\lambda \mathbb{1} - x)^{-1} d\lambda \right).$$

Thus we have f(j(x)) = j(f(x)). Also \mathcal{A} is hermitian and C^* -spectral. Then for all $x \in \mathcal{A}$,

$$\gamma_{\mathcal{A}}(x) \leqslant p(x) = |x|_{\mathcal{U}} = s_{\mathcal{A}}(x).$$

Hence, $\operatorname{srad} A \subset \operatorname{rad} A \subset \operatorname{srad} A$. Therefore we have $\operatorname{rad} A = \operatorname{srad} A$.

(iv) \Rightarrow (i) Assume that (iv) holds. It is clear that $\operatorname{Sp}_{\mathcal{A}}(x) \supset \operatorname{Sp}_{E(\mathcal{A})}(j(x))$ for each $x \in \mathcal{A}$. Let $\lambda \not\in \operatorname{Sp}_{E(\mathcal{A})}(j(x))$. Then $R_{\lambda} = (\lambda I - j(x))^{-1} \in E(\mathcal{A})$. The function $f(\mu) = (\lambda - \mu)^{-1}$ is holomorphic on a neighborhood of the closed set $\operatorname{Sp}_{E(\mathcal{A})}(j(x))$ and $R_{\lambda} = f(j(x))$. Hence by (vi), there exists $y \in \mathcal{A}$ such that $(\lambda I - j(x))^{-1} = f(j(x)) = j(y)$, and so $j(y(\lambda \mathbb{1} - x)) = j((\lambda \mathbb{1} - x)y) = I$. This implies that $\lambda \not\in \operatorname{Sp}_{j(\mathcal{A})}(j(x))$. Thus we have $\operatorname{Sp}_{j(\mathcal{A})}(j(x)) \subset \operatorname{Sp}_{E(\mathcal{A})}(j(x)) \subset \operatorname{Sp}_{j(\mathcal{A})}(j(x))$. Hence the *-subalgebra $j(\mathcal{A})$ is spectrally invariant in the C^* -algebra $E(\mathcal{A})$, and so $j(\mathcal{A})$ is hermitian. Since rad $\mathcal{A} = \operatorname{srad} \mathcal{A}$ by the assumption, it follows that $j(\mathcal{A}) = \mathcal{A}/\operatorname{rad} \mathcal{A}$ and $j(x) = x + \operatorname{rad} \mathcal{A}$. Hence we have $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{j(\mathcal{A})}(x + \operatorname{rad} \mathcal{A}) = \operatorname{Sp}_{E(\mathcal{A})}(j(x))$. Thus (i) follows. This completes the proof.

We give an example of a C^* -spectral locally convex *-algebra.

EXAMPLE 2.12. The Schwartz spaces $\mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$ and $\mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$ equipped with the Volterra convolution and the involution:

$$(f \circ g)(x,y) = \int_{\mathbb{R}^n} f(x,z)g(z,y) dz$$
 and $f^*(x,y) = \overline{f(y,x)}$

are C^* -spectral. In fact, let $f \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$. We put

$$[\pi_0(f)\varphi](x) = \int_{\mathbb{R}^n} f(x,y)\varphi(y) \,dy, \quad \varphi \in \mathcal{D}(\mathbb{R}^n).$$

Then we can show that $\pi_0(f)$ can be extended to a bounded linear operator $\pi(f)$ on $L^2(\mathbb{R}^n)$ and π is a continuous bounded *-representation of $\mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$ on $L^2(\mathbb{R}^n)$. We show that the continuous C^* -seminorm r on $\mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$ defined by $r(f) = ||\pi(f)||, f \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$ is spectral. By the simple calculation we have

$$f^{[n]} \equiv \overbrace{f \circ \cdots \circ f}^{n} = \left(\int_{\mathbb{D}_n} f(x, x) \, \mathrm{d}x \right)^{n-1} f, \quad n \in \mathbb{N}$$

and

$$\left| \int_{\mathbb{R}^{n}} f(x, x) \, \mathrm{d}x \right| < 1 \quad \text{if } r(f) < 1,$$

which implies that r is spectral. Similarly, we can show that the Schwartz space $\mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$ is also C^* -spectral.

Next we shall consider to characterize the spectral invariance of \mathcal{A} by the notions different from (ii), (iii) and (iv) in Theorem 2.11.

We define the spectrality of *-representations and the stability of \mathcal{A} .

DEFINITION 2.13. A continuous *-representation π of \mathcal{A} is said to be spectral if $\operatorname{Sp}_{\mathcal{A}}(x) = \operatorname{Sp}_{C^*(\pi)}(\pi(x))$ for each $x \in \mathcal{A}$, where $C^*(\pi)$ is a C^* -algebra generated by $\pi(\mathcal{A})$.

DEFINITION 2.14. If for any closed *-subalgebra \mathcal{B} of \mathcal{A} , any continuous *-representation π of \mathcal{B} on a Hilbert space \mathcal{H}_{π} admits a dilation to a continuous *-representation $\widetilde{\pi}$ of \mathcal{A} on a Hilbert space $\mathcal{H}_{\widetilde{\pi}}$ in the sense that there exist a Hilbert space $\mathcal{H}_{\widetilde{\pi}}$ containing \mathcal{H}_{π} as a closed subspace and a continuous *-representation $\widetilde{\pi}$ of \mathcal{A} on $\mathcal{H}_{\widetilde{\pi}}$ such that $\pi(x) = \widetilde{\pi}(x) [\mathcal{H}_{\pi}$ for each $x \in \mathcal{B}$, \mathcal{A} is said to be *stable*.

Theorem 2.15. The following statements are equivalent:

- (i) A is spectrally invarinat;
- (ii) A is spectral and stable;
- (iii) there exists a spectral continuous *-representation of A into bounded linear operators on a Hilbert space;
- (iv) every algebraically irreducible representation of A on a vector space is similar to an algebraically irreducible continuous bounded operator *-representation on a pre-Hilbert space;
- (v) every algebraicaly irreducible representation of A on a vector space extends to an irreducible *-representation of the C^* -algebra E(A) on a Hilbert space.

Proof. The equivalence of (i), (ii) and (iii) is shown similarly to Theorem 6.10, Proposition 6.12 and Theorem 6.8 in [7], and Theorem 1.6 in [6].

(i) \Rightarrow (iv) and (i) \Rightarrow (v) Assume (i). Let $\pi: \mathcal{A} \mapsto \mathcal{L}(V)$ be an algebraically irreducible representation of \mathcal{A} on a vector space V. Here $\mathcal{L}(V)$ is the algebra of all linear operators on the vector space V. Let $v \neq 0$ in V, $\mathfrak{N} = \{x \in \mathcal{A} : \pi(x)v = 0\}$. Then $\pi(\mathcal{A})v = V$, and \mathfrak{N} is a maximal modular left ideal of \mathcal{A} . We define a representation $\sigma: \mathcal{A} \mapsto \mathcal{L}(\mathcal{A}/\mathfrak{N})$ by $\sigma(x)(y + \mathfrak{N}) = xy + \mathfrak{N}$. Then we show that

(2.7)
$$\pi$$
 is similar to σ .

Indeed, the similarity is implemented by the bijective linear map $U: \mathcal{A}/\mathfrak{N} \mapsto V$, $U(y+\mathfrak{N}) = \pi(y)v$ satisfying $U\sigma(x)\xi = \pi(x)U\xi$, $\forall \xi \in \mathcal{A}/\mathfrak{N}$, $\forall x \in \mathcal{A}$. We show

that there exists a pure state f on the enveloping C^* -algebra $E(\mathcal{A})$ such that π_f is an extension of π in the sense that there exists an injection $W: V \mapsto \mathcal{H}_f$ with dense range such that

(2.8)
$$\pi_f(j(x))W\xi = W\pi(x)\xi, \quad x \in \mathcal{A}, \xi \in V.$$

This is proved as follows. Since \mathfrak{N} is a maximal left ideal of \mathcal{A} , we have $\mathfrak{N} \cap \mathcal{A}^{\mathrm{r}} = \varphi$, where \mathcal{A}^{r} is the set of all regular elements of \mathcal{A} . By the assumption (i), $j(\mathfrak{N}) \cap \underline{E(\mathcal{A})^{\mathrm{r}}} = \varphi$. Now $E(\mathcal{A})$ being a C^* -algebra, $E(\mathcal{A})^{\mathrm{r}}$ is an open set in $E(\mathcal{A})$. Hence $\underline{j(\mathfrak{N})}$ (= closure in $E(\mathcal{A})$) is a proper subset of $E(\mathcal{A})$, and so

(2.9)
$$\overline{j(\mathfrak{N})}$$
 is a closed left ideal of $E(\mathcal{A})$

and there exists a maximal left ideal \mathfrak{M} of $E(\mathcal{A})$ containing $\overline{j(\mathfrak{N})}$. Since $E(\mathcal{A})$ is a C^* -algebra, \mathfrak{M} is closed, and by p. 56 of [12] there exists a pure state f on $E(\mathcal{A})$ such that $\mathfrak{M} = \mathcal{N}_f \equiv \{x \in E(\mathcal{A}) : f(x^*x) = 0\}$, and by p. 53 of [12] the pre-Hilbert $\mathcal{H}_f \equiv E(\mathcal{A})/\mathcal{N}_f$ is complete. Since $j(\mathfrak{N}) \subset \mathcal{N}_f$, we can define a linear map $\tilde{j} : \mathcal{A}/\mathfrak{N} \mapsto \mathcal{H}_f$ by

$$\widetilde{j}(x+\mathfrak{N}) = \widetilde{j}(x) + \mathcal{N}_f, \quad x \in \mathcal{A}.$$

Since $\overline{j(\mathfrak{N})}$ is a left ideal of $E(\mathcal{A})$ and $j(\mathcal{A})$ is dense in $E(\mathcal{A})$, it follows that $j^{-1}(\overline{j(\mathfrak{N})}) \neq \mathcal{A}$. Thus $j^{-1}(\overline{j(\mathfrak{N})})$ is a proper left ideal of \mathcal{A} containing \mathfrak{N} . By the maximality of \mathfrak{N} we have $\mathfrak{N} = j^{-1}(\overline{j(\mathfrak{N})})$. Further, $j^{-1}(\mathcal{N}_f)$ is a proper left ideal of \mathcal{A} . In fact, suppose $j^{-1}(\mathcal{N}_f) = \mathcal{A}$. Then, $f(j(x)^*j(x)) = 0$ for all $x \in \mathcal{A}$, and so f(j(x)) = 0 by the Cauchy-Schwartz inequality. Since f is continuous and $j(\mathcal{A})$ is dense in $E(\mathcal{A})$, we have f = 0, which is contradition. Hence $j^{-1}(\mathcal{N}_f) \neq \mathcal{A}$. Since $\mathfrak{N} = j^{-1}(\overline{j(\mathfrak{N})}) \subset j^{-1}(\mathcal{N}_f) \neq \mathcal{A}$, it follows from the maximality of \mathfrak{N} that $\mathfrak{N} = j^{-1}(\overline{j(\mathfrak{N})}) = j^{-1}(\mathcal{N}_f)$, which implies that \widetilde{j} is an injection. Here we put $W = \widetilde{j} \circ U^{-1}$. Then W is an injection from V onto a dense subspace of \mathcal{H}_f satisfying (2.8). We put $g = f \circ j$. Then g is a pure state on \mathcal{A} satisfying

$$g(y^*x^*xy) \leqslant |x|_n^2 g(y^*y), \quad \forall x, y \in \mathcal{A}.$$

Hence, π_g is continuous. Further, since $\mathfrak{N} \subset \mathcal{N}_g \subset j^{-1}(\mathcal{N}_f) \neq \mathcal{A}$, it follows from the maximality of \mathfrak{N} that $\mathfrak{N} = \mathcal{N}_g = j^{-1}(\mathcal{N}_f)$, which implies that the restriction π_g° of π_g to the pre-Hilbert space $\mathcal{A}/\mathcal{N}_g$ coincides with σ . Hence it follows from (2.7) that π is similar to the algebraically irreducible continuous bounded *-representation π_g° of \mathcal{A} on a pre-Hilbert space $\mathcal{A}/\mathcal{N}_g$. We have thus shown that (i) \Rightarrow (iv) and (i) \Rightarrow (v) hold.

```
(iv) \Rightarrow (i) Let x \in \mathcal{A}. This follows from
\operatorname{Sp}_{A}(x) = \bigcup \{ \operatorname{Sp}(\pi(x)) : \pi \text{ is an algebraically irreducible representation} \}
                                       of \mathcal{A} on a vector space
                                                                            (by [17], Theorem 2.2.9)
           = \bigcup \{ \operatorname{Sp}(\pi(x)) : \pi \text{ is an algebraically irreducible continuous } \}
                                       bounded *-representation on a pre-Hilbert space}
                                                                                        (by assumption (iv))
           \subset \bigcup \{ \operatorname{Sp}(\pi(x)) : \pi \text{ is a topologically irreducible continuous bounded } \}
                                       *-representation on a pre-Hilbert space}
           =\bigcup \{\operatorname{Sp}(\sigma(j(x))): \sigma \text{ is a topologically irreducible *-representation}\}
                                      of E(A) on a Hilbert space
           = \bigcup \{ \operatorname{Sp}(\sigma(j(x))) : \sigma \text{ is an algebraically irreducible *-representation }
                                      on a Hilbert space}
                            (by Kadison's transitivity in the C^*-algebra E(\mathcal{A}) ([12]))
           = \mathrm{Sp}_{E(\mathcal{A})}(j(x))
           \subset \operatorname{Sp}_{\mathcal{A}}(x).
```

This completes the proof.

Some comments on the relavance of Theorems 2.11 and 2.15 are in order. At the level of general *-algebras, Theorems 2.11 and 2.15 supplements Theorem 1.6 in [6] and Theorem 6.10 in [7]. At the level of Banach *-algebras, it supplements Corollary 2.7 in [6]. Further, it follows from Theorems 2.11 and 2.15 that a Banach *-algebra \mathcal{A} is hermitian if and only if every algebraically irreducible representation of \mathcal{A} on a vector space extends to a topologically irreducible *-representation of $E(\mathcal{A})$ on a Hilbert space. This is a non-commutative analogue of the well known result that a commutative Banach *-algebra \mathcal{A} is hermitian if and only if $\varphi(x^*) = \overline{\varphi(x)}$ for all $x \in \mathcal{A}$, for all complex homomorphisms φ on \mathcal{A} ([10], Theorem 35.3). Also, Theorem 4.7.11 from [17] implies that if \mathcal{A} is hermitian, then any *-representation of a closed *-subalgebra \mathcal{B} of \mathcal{A} dilates to a *-representation of \mathcal{A} . In Theorem 2.15 (ii) implies (v) provides a converse of this.

3. K-THEORY ISOMORPHISM AND APPLICATION TO DIFFERENTIAL STRUCTURE OF C^* -ALGEBRAS

We begin with considering the K-theory isomorphisms of Fréchet *-algebras as an application of Theorem 2.11.

THEOREM 3.1. Let \mathcal{A} be a Fréchet locally m-convex *-algebra in which each element is bounded. Let \mathcal{A} be spectrally invariant. Then the K-theory isomorphisms $K_*(\mathcal{A}) \cong K_*(E(\mathcal{A}))$ hold.

Proof. Let $(p_n)_{n=1}^{\infty}$ be a sequence of submultiplicative *-seminorms defining the given topology τ of \mathcal{A} . We have $\mathcal{A}=\mathcal{A}_0$. Assume that \mathcal{A} is spectrally invariant. By Theorem 2.11, \mathcal{A} is hermitian and C^* -spectral. Let q be a continuous spectral C^* -seminorm on \mathcal{A} . By Lemma 2.9, $q=s_{\mathcal{A}}=|\cdot|_u$. By Lemma 2.3, (\mathcal{A},τ) is a Fréchet Q-algebra. Notice that rad $\mathcal{A}=\operatorname{srad}\mathcal{A}$. Let $\mathcal{A}_q=\mathcal{A}/\operatorname{rad}\mathcal{A}$, which is a dense *-subalgebra of the C^* -algebra $E(\mathcal{A})$ and is a Fréchet Q-algebra in the quotient topology τ_q . The C^* -norm $|\cdot|_u$ of $E(\mathcal{A})$ is spectral. Thus \mathcal{A}_q is spectrally invariant in $E(\mathcal{A})$. By Corollary 7.9 in [15], $K_*(\mathcal{A}_q)=K_*(E(\mathcal{A}))$. The maps

$$\mathcal{A} \stackrel{j}{\longrightarrow} \mathcal{A}_q \stackrel{\mathrm{id}}{\longrightarrow} E(\mathcal{A})$$

induces the *-homomorphisms for each $n \in \mathbb{N}$,

$$M_n(\mathcal{A}) \xrightarrow{j_n} M_n(\mathcal{A}_q) = [M_n(\mathcal{A})]_q \to M_n(E(\mathcal{A})) = E(M_n(\mathcal{A})).$$

By the spectral invariance of \mathcal{A} in \mathcal{A}_q , $j(\operatorname{inv}(\mathcal{A})) = \operatorname{inv}(\mathcal{A}_q)$. Let $\operatorname{inv}_0(\cdot)$ denote the principle component of $\operatorname{inv}(\cdot)$. Since \mathcal{A} and also \mathcal{A}_q are Fréchet Q-algebras, $\operatorname{inv}_0(\mathcal{A})$ (respectively $\operatorname{inv}_0(\mathcal{A}_q)$) is the subgroup generated by the range $\exp \mathcal{A}$ (respectively $\exp(\mathcal{A}_q)$) of the exponential function. This gives $j(\operatorname{inv}_0(\mathcal{A})) = \operatorname{inv}_0(\mathcal{A}_q)$, and in view of the spectral invariance of $M_n(\mathcal{A})$ in $M_n(\mathcal{A}_q)$ via the map j_n , analogous arguments give $j_n(\operatorname{inv}_0(M_n(\mathcal{A}))) = \operatorname{inv}_0(M_n(\mathcal{A}_q))$. Now the surjective group homomorphisms

$$\operatorname{inv}(M_n(\mathcal{A})) \to \operatorname{inv}(M_n(\mathcal{A}_q)) \to \operatorname{inv}(M_n(\mathcal{A}_q))/\operatorname{inv}_0(M_n(\mathcal{A}_q))$$

give the isomorphism of groups

$$\operatorname{inv}(M_n(\mathcal{A}_q)) \setminus \operatorname{inv}_0(M_n(\mathcal{A}_q)) \cong \operatorname{inv}(M_n(\mathcal{A})) \setminus \operatorname{inv}_0(M_n(\mathcal{A})).$$

Hence by the definition of K_1 ,

(3.1)
$$K_1(\mathcal{A}) = \lim_{n \to \infty} \frac{\operatorname{inv}(M_n(\mathcal{A}))}{\operatorname{inv}_0(M_n(\mathcal{A}))} \cong \lim_{n \to \infty} \frac{\operatorname{inv}(M_n(\mathcal{A}_q))}{\operatorname{inv}_0(M_n(\mathcal{A}_q))} = K_1(\mathcal{A}_q).$$

Further, for \mathcal{B} to be \mathcal{A} or \mathcal{A}_q , the suspension of \mathcal{B} is

$$SB = \{ f \in C([0,1], B) : f(0) = f(1) = 0 \} \cong C_0(\mathbb{R}, B).$$

We use the Bott periodicity theorem $K_0(\mathcal{B}) \cong K_1(S\mathcal{B})$ to show that $K_0(\mathcal{A}) \cong K_0(\mathcal{A}_q)$. We have rad $(SA) \cong \operatorname{rad} C_0(\mathbb{R}, \mathcal{A}) \cong C_0(\mathbb{R}, \operatorname{rad} \mathcal{A})$, hence

$$SA_q \cong C_0(\mathbb{R}, \mathcal{A}_q) = C_0(\mathbb{R}, \mathcal{A}/\operatorname{rad}\mathcal{A})$$

 $\cong C_0(\mathbb{R}, \mathcal{A})/C_0(\mathbb{R}, \operatorname{rad}\mathcal{A}) \cong S\mathcal{A}/\operatorname{rad}S\mathcal{A}.$

Hence by applying (3.1) to SA,

$$K_0(\mathcal{A}_q) \cong K_1(S\mathcal{A}_q) \cong K_1(S\mathcal{A}/\mathrm{rad}\,S\mathcal{A})$$

 $\cong K_1(S\mathcal{A}) \cong K_0(\mathcal{A}).$

Therefore we have $K_*(\mathcal{A}) = K_*(\mathcal{A}_q)$. This completes the proof of Theorem 3.1.

In [9], Blackadar and Cuntz have developed an abstract theory of differential structure in a C^* -algebra based on the notion of differential seminorm. Next we investigate the properties of C^* -spectrality and spectral invariance of the Fréchet algebra defined by a differential seminorm as a typical application of Theorem 2.11 and Theorem 3.1.

Let \mathfrak{A} be a *-algebra and $\|\cdot\|$ a C^* -seminorm on \mathfrak{A} . Let $\mathcal{A} = (\mathfrak{A}, \|\cdot\|)^{\sim}$ be the Hausdorff completion of \mathfrak{A} . Following [9], a map $T: \mathfrak{A} \to l^1(\mathbb{N})$ is said to be a differential seminorm on \mathfrak{A} if $T(x) = (T_k(x))_0^{\infty} \in l^1(\mathbb{N})$ satisfies the following (i)–(iv):

- (i) $T(x) \ge 0$, i.e. $T_k(x) \ge 0$ for $\forall x, \ \forall k$.
- (ii) $T(x+y) \leqslant T(x) + T(y)$ for $\forall x, y \in \mathfrak{A}$; $T(\lambda x) = |\lambda| T(x)$ for $\forall \lambda \in \mathbb{C}$, $\forall x \in \mathfrak{A}$.
- (iii) $T(xy) \leqslant T(x)T(y)$ (convolution) for $\forall x,y \in \mathfrak{A}$, i.e. for $\forall k \in \mathbb{N}$ we have $T_k(xy) \leqslant \sum\limits_{i+j=k} T_i(x)T_j(y)$.
 - (iv) There exists some constant c > 0 such that $T_0(x) \leq c||x||$ for $\forall x \in \mathfrak{A}$.
- By (ii) each T_k is a seminorm. We say that T is a differential *-seminorm if further

(v)
$$T_k(x^*) = T_k(x)$$
 for $\forall x \in \mathfrak{A}, \ \forall k \in \mathbb{N}$.

T is said to be a differential norm if T(x)=0 implies x=0, i.e. $(T_k)_0^\infty$ is a separating family of seminorms. Following [9], the total seminorm of T is $T_{\text{tot}}(x)=\sum_{k=0}^\infty T_k(x), \ x\in\mathfrak{A}$. Throughout this section we assume that T is a differential *-norm. Then T_{tot} is a *-norm. Let $\mathfrak{A}_T=(\mathfrak{A},T_{\text{tot}})^\sim$ be the completion of \mathfrak{A} with respect to T_{tot} . \mathfrak{A}_T is a Banach *-algebra. We construct a Fréchet *-algebra as follows. For each $k\in\mathbb{N}$, we put $p_k(x)=\sum_{i=0}^k T_i(x), \ x\in\mathfrak{A}$. Then each p_k is a submultiplicative *-seminorm. On \mathfrak{A} , we have

$$p_0 \leqslant p_1 \leqslant p_2 \leqslant \cdots \leqslant p_k \leqslant p_{k+1} \leqslant \cdots,$$

and $(p_k)_0^{\infty}$ is a separating family of submultiplicative *-seminorms on \mathfrak{A} . Let τ be a locally convex *-algebra topology defined on \mathfrak{A} by $(p_k)_0^{\infty}$. We denote $\mathfrak{A}_{\tau} = (\mathfrak{A}, \tau)^{\sim}$ the completion of \mathfrak{A} with respect to τ and $\mathfrak{A}_{(k)} = (\mathfrak{A}, p_k)^{\sim}$ the completion od \mathfrak{A} with respect to p_k . \mathfrak{A}_{τ} is a Fréchet *-algebra and $\mathfrak{A}_{(k)}$ is a Banach *-algebra. Then we have

$$\mathfrak{A}_T = b(\mathfrak{A}_\tau) : \text{the bounded part of } \mathfrak{A}_\tau = \{x \in \mathfrak{A}_\tau : T_{\text{tot}}(x) = \sup_{n} p_n(x) < \infty\}.$$

By the difinitions, there exist continuous surjective *-homomorphisms $\varphi_k : \mathfrak{A}_{(k)} \to \mathcal{A}, \ \varphi : \mathfrak{A}_{\tau} \to \mathcal{A}$. Notice that even if each p_k is a norm on $\mathfrak{A}, \ p_k$ need not be a norm on \mathfrak{A}_{τ} . Also, the identity map $\mathfrak{A} \to \mathfrak{A}$ extends uniquely as continuous surjective *-homomorphism $\varphi_k : \mathfrak{A}_{(k+1)} \to \mathfrak{A}_{(k)}$ such that

$$\mathfrak{A}_{(0)} \xleftarrow{\varphi_0} \mathfrak{A}_{(1)} \xleftarrow{\varphi_1} \mathfrak{A}_{(2)} \xleftarrow{\varphi_2} \mathfrak{A}_{(3)} \longleftarrow \cdots$$

is a dense inverse limit sequence of Banach *-algebras. Hence by the abstract Mittag-Laffer theorem (e.g. [18]), the projections $\mathfrak{A}_{\tau} = \varprojlim \mathfrak{A}_{(k)} \to \mathfrak{A}_{(k)}$ have dense ranges. We summarize above discussion in the following.

Proposition 3.2. Let T be a differential *-norm on a C^* -normed algebra $(\mathfrak{A}, \|\cdot\|)$. The following hold:

- (i) \mathfrak{A}_{τ} is a Fréchet *-algebra and $\mathfrak{A}_{\tau} = \lim \mathfrak{A}_{(k)}$;
- (ii) the projections $\mathfrak{A}_{\tau} \to \mathfrak{A}_{(k)}$ have dense ranges;
- (iii) if $T_0(x) = c||x||$ for $\forall x \in \mathfrak{A}$, then $\mathfrak{A}_T = b(\mathfrak{A}_\tau)$ is dense in \mathfrak{A}_τ .

Proof. (i) and (ii) were shown in the above. We prove (iii) only. Since each p_k is a norm, \mathfrak{A} is dense in $\mathfrak{A}_{(k)}$ for $\forall k$. Hence if $\pi_k : \mathfrak{A}_{\tau} \to \mathfrak{A}_{(k)}$ be the projections, then $\overline{\pi_k(\mathfrak{A}_T)} = \mathfrak{A}_{(k)}$ by above. Hence \mathfrak{A}_T is dense in $\bigcap_k \pi_k^{-1}(\overline{\pi_k(\mathfrak{A}_T)}) = \mathfrak{A}_{(k)}$

 $\bigcap_k \pi_k^{-1}(\mathfrak{A}_{(k)}) = \mathfrak{A}_{\tau}. \text{ Therefore } \mathfrak{A}_T \text{ is dense in } \mathfrak{A}_{\tau}. \text{ This completes the proof.} \quad \blacksquare$

We define

$$\mathcal{I}_k = \{ x \in \mathfrak{A}_{(k)} : \varphi_k(x) = 0 \},$$

$$\mathcal{I} = \{ x \in \mathfrak{A}_\tau : \varphi(x) = 0 \},$$

$$\mathcal{I}_{\text{tot}} = \{ x \in \mathfrak{A}_T : \varphi_T(x) = 0 \},$$

where $\varphi_T = \varphi \lceil_{\mathfrak{A}_T}$.

THEOREM 3.3. Let $(\mathfrak{A}, \|\cdot\|)$ be a C^* -normed algebra and \mathcal{A} the completion of $(\mathfrak{A}, \|\cdot\|)$. Let \mathcal{B} denote $\mathfrak{A}_{(k)}$ or \mathfrak{A}_{τ} with respective topologies. The following hold:

- (i) B is a hermitian Q-algebra;
- (ii) $E(\mathcal{B}) = \mathcal{A}$;
- (iii) \mathcal{B} is C^* -spectral and spectrally invariant;
- (iv) $K_*(\mathcal{B}) = K_*(\mathcal{A}) = K_*(\mathfrak{A}_{(k)})$ for all k.

Proof. We have the following diagram:

$$\mathfrak{A}_{(k)} \quad \stackrel{j}{\longrightarrow} \quad E(\mathfrak{A}_{(k)})$$

$$\uparrow \qquad \searrow^{\varphi_k} \qquad \downarrow$$

$$\mathfrak{A} \qquad \hookrightarrow \qquad \mathcal{A}$$

$$\downarrow \qquad \nearrow^{\varphi} \qquad \uparrow$$

$$\mathfrak{A}_{\tau} \qquad \longrightarrow \qquad E(\mathfrak{A}_{\tau})$$

$$\mathfrak{A}_{T} \qquad \longrightarrow \qquad E(\mathfrak{A}_{T}).$$

Case 1. Assume that T is of finite order, say n, so that $T_i(x)=0$ for $\forall x\in\mathfrak{A}, \forall i>n$. Then $T_{\mathrm{tot}}=p_n$. Hence $\mathfrak{A}_{\tau}=\mathfrak{A}_{(n)}$ is a Banach *-algebra denoted by \mathfrak{A}_T . Since $\mathcal{I}=\ker \varphi=\{z\in\mathfrak{A}_T:T_0(z)=0\},\,\mathcal{I}^n=\{0\}$ by [9]. Then \mathcal{I} is a nilideal, hence $\mathcal{I}\subset\mathrm{rad}\,\mathfrak{A}_T$. Thus $\psi:\mathfrak{A}_T/\mathcal{I}\to\mathfrak{A}_T/\mathrm{rad}\,\mathfrak{A}_T,\,\psi(x+\mathcal{I})=x+\mathrm{rad}\,\mathfrak{A}_T,$ is a well defined *-homomorphism. By standard Banach algebra arguments, for any $z\in\mathfrak{A}_T$,

$$\operatorname{Sp}_{\mathfrak{A}_T}(z) = \operatorname{Sp}_{\mathfrak{A}_T/\operatorname{rad}\mathfrak{A}_T}(z + \operatorname{rad}\mathfrak{A}_T) = \operatorname{Sp}_{\mathfrak{A}_T/\mathcal{I}}(z + \mathcal{I}) = \operatorname{Sp}_{\operatorname{Image}\varphi}(\varphi(z)).$$

Now let $\mathcal{K} = \mathfrak{A}_T/\mathcal{I}$, and let $\widetilde{\varphi} : \mathcal{K} \to \mathcal{A}$ be the surjective *-homomorphism induced by $\varphi : \mathfrak{A}_T \to \mathcal{A}$. Since T is of finite order, T_{tot} is analytic (p. 264, [9]), hence the

quotient norm α on \mathcal{K} is also analytic (p. 264, [9]). Further (\mathcal{K}, α) is a Banach algebra and is dense in \mathcal{A} via $\widetilde{\varphi}$. Since $(\mathfrak{A}, \|\cdot\|)$ is assumed to be a C^* -normed algebra, Proposition 3.12 in [9] applies showing that \mathcal{K} is spectrally invariant in \mathcal{A} via $\widetilde{\varphi}$. This with above equalities implies that $\operatorname{Sp}_{\mathfrak{A}_T}(z) = \operatorname{Sp}_{\mathcal{A}}(\varphi(z))$ for $\forall z \in \mathfrak{A}_T$.

Now let $|z| = \|\varphi(z)\|$ with $z \in \mathfrak{A}_T$ be the C^* -seminorm induced by φ on \mathfrak{A}_T . Then $|\cdot|$ is continuous in T_{tot} . Further, let q be any C^* -seminorm on \mathfrak{A}_T , and let $\pi_q: \mathfrak{A}_T \to \mathcal{B}(\mathcal{H})$ be the *-representation defined by q identifying $(\mathfrak{A}_T/\ker q, \|\cdot\|_q)^\sim$ with an operator algebra on an appropriate Hilbert space \mathcal{H} . Then for $\forall z \in \mathfrak{A}_T$,

$$q(z)^{2} = q(z^{*}z) = \|\pi_{q}(z)^{*}\pi_{q}(z)\| = \gamma_{\mathcal{B}(\mathcal{H})}(\pi_{q}(z)^{*}\pi_{q}(z))$$

$$\leqslant \gamma_{\operatorname{Image}\varphi}(\pi_{q}(z^{*}z)) \leqslant \gamma_{\mathfrak{A}_{T}}(z^{*}z) = \gamma_{\mathcal{A}}(\varphi(z)^{*}\varphi(z))$$

$$= \|\varphi(z)\|^{2} = |z|^{2}.$$

It follows that $|\cdot|$ is the greatest C^* -seminorm on \mathfrak{A}_T (the Gelfand-Naimark pseudo-norm) and $\operatorname{srad} \mathfrak{A}_T = \ker \varphi$. Hence $E(\mathfrak{A}_T) = \mathcal{A}$.

Case 2. Let $T=(T_i)_0^\infty$ be not necessarily of finite order. For each $k\in\mathbb{N}$, let ${}^{(k)}T'=(T_0,T_1,T_2,\ldots,T_k,0,0,\ldots)$ which is a differential *-seminorm of order k, for which ${}^{(k)}T'_{\text{tot}}=p_k$, hence $\mathfrak{A}_{(k)T'_{\text{tot}}}=(\mathfrak{A},p_k)^\sim=\mathfrak{A}_{(k)}$. By the Case 1, $\mathfrak{A}_{(k)}$ is spectrally invariant in \mathcal{A} via φ_k and $E(\mathfrak{A}_{(k)})=\mathcal{A}$. Thus $\mathfrak{A}_{(k)}$ is a hermitian Banach *-algebra and $E(\mathfrak{A}_{(k)})=C^*(\mathfrak{A}_{(k)})=\mathcal{A}$. Therefore the C^* -seminorm induced on $\mathfrak{A}_{(k)}$ by φ_k is a spectral C^* -seminorm. Now $\mathfrak{A}_{\tau}=\lim_k \mathfrak{A}_{(k)}$. Hence $\operatorname{Sp}_{\mathfrak{A}_{\tau}}(z)=\bigcup_k \operatorname{Sp}_{\mathfrak{A}_{(k)}}(\varphi(z))$ for $\forall z\in\mathfrak{A}_{\tau}$, and $E(\mathfrak{A}_{\tau})=\lim_k E(\mathfrak{A}_{(k)})=\mathcal{A}$. Thus \mathfrak{A}_{τ} is spectrally invariant in \mathcal{A} via φ , srad $\mathfrak{A}_{\tau}=\ker\varphi$ and \mathfrak{A}_{τ} is a hermitian Q-algebra. That \mathfrak{A}_{τ} is a Q-algebra follows from the fact that on \mathfrak{A}_{τ} , the C^* -seminorm $|\cdot|$ induced by the complete C^* -norm $|\cdot|$ on \mathcal{A} is spectral, because for any $z\in\mathfrak{A}_{\tau}$,

$$\gamma_{\mathfrak{A}_{\tau}}(z) = \gamma_{\mathcal{A}}(\varphi(z)) \leqslant ||\varphi(z)|| = |z|,$$

and also from the fact that $|\cdot| \leq$ the Fréchet topology on \mathfrak{A}_{τ} . We also have, for $\forall z \in \mathfrak{A}_{\tau}$,

$$\operatorname{Sp}_{\mathfrak{A}_{\tau}}(z) = \operatorname{Sp}_{\mathfrak{A}_{(k)}}(\pi_k(z)) = \operatorname{Sp}_{\mathcal{A}}(\varphi(z)) = \operatorname{Sp}_{\mathcal{A}}(\varphi_k(z)).$$

This prove (i) and (ii). Then Theorem 2.11 and Theorem 3.1 imply (iii) and (iv). This completes the proof. ■

It ought to be true, in the notations of Theorem 3.3, that \mathcal{B} is closed under the C^{∞} -functional calculus of \mathcal{A} in the sense that given $h=h^*$ in \mathcal{B} and a C^{∞} -function f on $\mathrm{Sp}_{\mathcal{A}}(\varphi(h))$, there exists $y \in \mathcal{B}$ such that $f(\varphi(h)) = \varphi(y)$. However, we leave it open.

As shown in the proof of Theorem 3.3, we have the following

Corollary 3.4. The following equalities hold:

- (i) $\operatorname{rad} \mathfrak{A}_{(k)} = \operatorname{srad} \mathfrak{A}_{(k)};$
- (ii) rad $\mathfrak{A}_{\tau} = \operatorname{srad} \mathfrak{A}_{\tau}$.

Following [9], a seminorm α on \mathfrak{A} is *closable* if for any sequence (x_k) in \mathfrak{A} such that $||x_k|| \to 0$ as $k \to \infty$, $\alpha(x_k) \to 0$ as $k \to \infty$.

COROLLARY 3.5. Suppose $T_0(x) = c||x||$ for $\forall x \in \mathfrak{A}$. The following hold:

- (i) The following statements are equivalent:
 - (1) T is closable (in the sense that each T_k is closable);
 (2) I = {0};
 (3) Ω_τ ⊂ A;
 (4) Ω_τ is semisimple.

In this case, $\{\mathfrak{A}_{(k)}\}$ is an increasing sequence of Banach *-algebras and $\mathfrak{A}_{\tau}=$

- (ii) If T is closable, then T_{tot} is closable.
- (iii) $\mathcal{I} \subset \operatorname{rad} \mathfrak{A}_{\tau}$.

Proof. (i) It is clear that p_k is closable if and only if $\mathcal{I}_k = \{0\}$ if and only if $\mathfrak{A}_{(k)} \subset \mathcal{A}$ for $\forall k$. From this it follows that T is closable if and only if $\mathcal{I} = \{0\}$ if and only if $\mathfrak{A}_{\tau} \subset \mathcal{A}$. That \mathfrak{A}_{τ} is semisimple if and only if $\mathfrak{A}_{\tau} \subset \mathcal{A}$ we shall prove

(iii) Let $x \in \mathcal{I}$. Then $x \in \mathfrak{A}_{\tau}$ and $\varphi(x) = 0$. Hence there exists a sequence $(x_n) \subset \mathfrak{A}$ such that $x_n \to x$ in τ . Therefore for all $k \in \mathbb{N}$, $p_k(x_n - x) \to 0$. Hence $\pi_k(x_n) \to \pi_k(x)$ in $\mathfrak{A}_{(k)}$. Then

$$\widetilde{T_0}(\pi_k(x)) = \lim_n T_0(\pi_k(x_n)) = \lim_n T_0(x_n) = c \lim_n \|x_n\| = c \|\varphi(x)\| = 0,$$

where $\widetilde{T_0}$ is the extension of T_0 to \mathfrak{A}_{τ} . Hence for $\forall k, \, \pi_k(x) \in \mathcal{I}_k \subset \operatorname{rad} \mathfrak{A}_{(k)}$. Therefore $x \in \bigcap_k \pi_k^{-1}(\operatorname{rad} \mathfrak{A}_{(k)}) \subset \operatorname{rad} \mathfrak{A}_{\tau}$. Thus we have $\mathcal{I} \subset \operatorname{rad} \mathfrak{A}_{\tau}$.

- (i) We prove \mathfrak{A}_{τ} is semisimple if and only if $\mathfrak{A}_{\tau} \subset \mathcal{A}$. Let \mathfrak{A}_{τ} be semisimple. Then rad $\mathfrak{A}_{\tau} = \{0\}$. Hence $\mathcal{I} = \{0\}$ and so $\mathfrak{A}_{\tau} \subset \mathcal{A}$. Conversely let $\mathfrak{A}_{\tau} \subset \mathcal{A}$. Then $(\mathfrak{A}_{\tau})^- = \mathcal{A}$. Now \mathfrak{A}_{τ} is a hermitian Fréchet Q-algebra having $E(\mathfrak{A}_{\tau}) = \mathcal{A}$. Hence $\operatorname{Rep} \mathfrak{A}_{\tau} = \operatorname{Rep} \mathcal{A} \text{ for } *\text{-representations.}$ Therefore $\operatorname{srad} \mathfrak{A}_{\tau} = \mathfrak{A}_{\tau} \cap \operatorname{srad} \mathcal{A} = \{0\}$ as \mathcal{A} is a C^* -algebra. Hence rad $\mathfrak{A}_{\tau} = \{0\}$ as rad $\mathfrak{A}_{\tau} \subset \operatorname{srad} \mathfrak{A}_{\tau}$. Thus \mathfrak{A}_{τ} is semisimple.
 - (ii) follows from the definition. This completes the proof.

Acknowledgements. Thanks are due to the referee for his suggestions.

REFERENCES

- 1. G.R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. **15**(1965), 399-421.
- 2. G.R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. 17 (1967), 91-114.
- 3. W. ARVESON, Discretized CCR algebras, J. Operator Theory 26(1991), 225–239.
- 4. S.J. Bhatt, Topological *-algebras with C^* -enveloping algebras. II, $Proc.\ Indian$ Acad. Sci. Math. Sci. 111(2001), 65–94.
- 5. S.J. Bhatt, A. Inoue, H. Ogi, Admissibility of weights on non-normed *-algebras, Trans. Amer. Math. Soc. **351**(1999), 183–203.
- 6. S.J. Bhatt, A. Inoue, H. Ogi, On C*-spectral algebras, Rend. Circ. Math. Palermo **56**(1998), 207–213.

- 7. S.J. Bhatt, A. Inoue, H. Ogi, Unbounded C^* -seminorms and unbounded C^* spectral algebras, J. Operator Theory 45(2001), 53–80.
- 8. S.J. Bhatt, D.J. Karia, Topological algebras with C^* -enveloping algebras, Proc.Indian Acad. Sci. Math. Sci. 102(1992), 201–215.
- 9. B. BLACKADAR, J. CUNTZ, Differential Banach algebra norms and smooth subalge-
- bras of C^* -algebras, J. Operator Theory **26**(1991), 255–282. 10. F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin– Heidelberg-New York, 1973.
- 11. A. Connes, Non-Commutative Geometry, Academic Press, 1994.
- 12. J. DIXMIER, C^* -Algebras, North-Holland Publ. Comp., Amsterdam 1977.
- 13. T.W. Palmer, Spectral algebras, Rockey Mountain J. Math. 22(1992), 293–327.
- 14. T.W. Palmer, Banach Algebras and General Theory of *-Algebras, vol.1-2, Cambridge Univ. Press., 1995, 2001.
- 15. N.C. PHILLIPS, K-theory for Fréchet algebras, Internat. J. Math. 2(1991), 77–129.
- 16. R.T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. **21**(1971), 85–124.
- 17. C.E. RICKART, General Theory of Banach Algebras, Van Nostrand, New York 1960.
- 18. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Birkhäuser-Verlag, Basel-Boston-Berlin, 1990.
- 19. L.B. Schweitzer, A short proof that $M_n(A)$ is local if A is local and Fréchet, Internat. J. Math. 3(1992), 581–589.

S.J. BHATT

Department of Mathematics Sardar Patel University Vallabh Vidyanagar 388120 INDIA

E-mail: sjb@spu.ernet.in

A. INOUE

Department of Applied Mathematics Fukuoka University Nanakuma, Jonan-ku Fukuoka 814-0180 JAPAN

E-mail: a-inoue@fukuoka-u.ac.jp

CURRENT ADDRESS

Department of Mathematics and Statistics Case Western Reserve University Cleveland, Ohio 43403

H. OGI

Department of Functional Materials Engineering Institute of Technology Wazirohigash, Higashi-ku Fukuoka 811-0295 JAPAN

E-mail: ogi@fit.ac.jp

Received February 13, 2001; revised March 5, 2002.