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I. THE classical calculus of propositions, found for instance in the Principia
Mathematica, can be interpreted, as is well-known, as a #ruth-value system.
This is done by attributing to each proposition $ a truth-value # () which is
zero or unity according as p is false or true. If now f (p, g, 7, ---) be any
proposition which is formed from the propositions p, g, 7, -+ by the opera-
tions of the calculus (that is, ~, 4+, -, and > ), it is a condition to be satisfied
by any truth-value system that f should be categorical, that is, that the truth-
value ¢ (f) of f should nof depend on the actual propositional arguments
#,q, 7, but only on their truth-values, ¢ (§), £ (g), ¢ (#),--. This is easily
verified by inspection for the propositional calculus; for:

t(p +q) =Max[t(p), ¢ (q)]

t(p-g) =Min.[t(p),¢(g)]

t~vp) =1-1(p)

t(p> q) =Max [1 -1 (p), ¢ (g)]
The laws of the propositional calculus are those propositions f (p, ¢, 7, +++),
which are true whatever be the truth or falsity of 9, ¢, 7, ---.

This idea has been generalised by Lukasiewicz and Tarski who have
constructed a logic of propositions with # + 1 truth-values denoted for

. ——————
) 1 )
)

convenience by 0, ‘}z—’ 2 : 1. The implication-relation C of the calculus

is defined by :
H(pCq) =1itt(p) <tg)
=1-t(p) +1lg) H2()>2(0)
Two propositions $, ¢ are logically equivalent when each implies the other;

from the truth-value ¢ (p C ¢), this can happen only when $ and ¢ have the
same truth-value, since

t(p) <t (@] [t (g) <t (A1 E(8) =¢(a):
Further, negation is defined by :
{(~g) =11 (p)
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Logical addition (\/) and multiplication ( o) of propositions are now defined
by :
pVg=pCqCqDf
P Ag=~(~pV ~q Df
The meaning of the operations C, ~, \/, A thus defined should not be
identified with the broad meaning given to these same operations in the
two-valued calculus. As a matter of fact, \/, A, ~ can not have the ordinary

meanings, or, and, and not, since the law of excluded middle and the law of
contradiction do not hold ; for

t(p V q) =t(pCq-Cgq) by definition.
It (p) <t (), (p Cq) =1, and therefore ¢ (p C 9:Cq) =1 (q).
Hi(p)>1(9),t»Cq =1 —1(p) +1(g) and

t(pCq-Cq=1—[1—t(p) +2(q)]1+12(q) =2(2)
Thus ¢ (p V g )=Max [t ($), ¢ (g) ]. Similarly
tpANQ =1—t(~pV ~q) =1 —Max. [1 —£(p),1 —1¢(g)
= Min [t (p), ¢ (§) .

In particular :

t(pV ~p) =Max[t(p), 1 —2(p)]==1

b A ~p) =Mnl(p), 1 —2(p)]+0.
Thus the laws of excluded middle and contradiction both fail. The actual
meaning to be attached to the operations of the many-valued calculus must
be discovered from considerations of probability.* For, the limiting form
when # becomes infinite, of the ILukasiewicz-Tarski logic is the logic of
probability.

II. The purpose of this paperis not the investigation of the meaning
of the operations of the many-valued calculus. It is on the other hand to
arrive at a view of many-valued logics which is somewhat more general
than that of Lukasiewicz and Tarski, and includes their extension as a
special case. The view which I wish to advance is : the truth-values atiriduted
to propositions in any propositional calculus must be elements of, what 1 shall
call, @ quasi-boolean algebra. By a boolean algebra is meant an algebra which
is constructed on the model of the algebra of all subclasses of a given class.
By a quasi-boolean algebra, I shall mean an algebra which is constructed on
the model of the algebra of all subclasses of a given class contasning groups
of like elemenis. This requires further explanation, as it is not evident as
to what is meant by the algebra of all subclasses of a given class, when the
class contains like elements. The explanation is supplied in what follows.

* For these meanings see Lewis I and II.
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III. The Simple Quasi-boolean Algebra.

The simple quasi-boolean algebva may be defined to be an algebra
constructed on the model of the algebra of all subclasses of a class, all of
whose elements are alike. To study this algebra, consider a class C, com-
posed of n like elements. Since the elements of C, are indistinguishable,
two subclasses of C,, containing the same number 7 of elements are indis-
tinguishable from one another. Hence C, has precisely » + 1 subclasses,
containing respectively 0, 1, 2, ---, n# elements. Thus the subclasses are
in (1, 1) correspondence with the integers <#, and are in linear order.

The sum and product of two subclasses ¢, ¢’ are defined generally as
the classes containing the elements of ¢, ¢/, and the elements common to
¢, ¢’, respectively. 'These definitions would however be ambiguous if
applied to two subclasses ¢,, ¢, containing respectively 7, s elements of C,,.
To remove the ambiguity we consider the extreme cases of indetermination.
We shall say that ¢,, ¢, are in the position of maximum incidence, when they
have as many common elements as possible, and in the position of minimum
tncidence, when they have as few common elements as possible. The sum
and product of ¢,, ¢, in the position of maximum incidence are defined to
be their quasi-boolean sum and product. It follows from this definition,
that if » « s,

Cr -+ ¢ = ¢y
Cp Cy = C,4.
Hence also :
Co T Cz = Cz; CoCz = Co
Cn + Cp =2Cy; CnCp = Cp.

The associative and commutative laws hold for these two quasi-boolean
operations, as well as the existence of zero and the unit. Further, just as in
boolean algebra, each of these quasi-boolean operations distributes the othey.

For

¢ (cs +¢;) =cz; k2 =Min [7, max (s, )]
Cr s + ¢, = Cp; p = Max [min (7, §), min (7, £)].
We easily verify :

Min [», max (s, £)] = Max [min (7, s), min (7, {)], for any three integers
7, S, i.

Thus this distributive law and similarly the other distributive law are seen to
hold.

The negative ¢, of the quasi-boolean element ¢, is defined to be the sub-
class which remains when ¢, is removed from C,. It is clear that ¢, =¢,,,,
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and ¢, = ¢, as in boolean algebra. Further with this definition of the
negative, the principle of duality holds just as in boolean algebra. For,

(¢, +¢) = = Cpp; B =max (7, 5)

ey G = Cpy*Cpmg = Cpopp SiCE . — kB =min (n — 7, n—s),

Thus (¢, L ¢,) = ¢, ¢, ; similarly (¢c,-¢) = ¢, + ¢,
However, the two boolean laws ¢, + ¢,=1, ¢,+¢, =0 mno longer hold.
We have in fact,

¢, +¢ =C +Cpy=0Cp; k =max (r,n —7)

Crey = CpCpyy = C;; 0 =min (v, n — 7).
Further, in the simple quasi-boolean algebra we can define the relation
“ contained in’, ( <) as follows :

¢, < Cymeans ¢, + ¢, = ;.

Then, just as in boolean algebra, we can define the two quasi-boolean
operations + and X in terms of the relation < and its converse > ; namely,
¢, = ¢, is the element which contains ¢, and ¢, and which is contained in
every element containing ¢, and ¢,; with a similar definition for ¢, c;,.
By means of the relation <, the simple quasi-boolean algebra is linearly
ordered.

IV. The Group-operation of the Simple Quasi-boolean Algebra.

We shall now shew that if we take the subclasses c,, ¢, in their position
of minimum incidence, then the formation of their sum and product can be
effectively combined into a single operation, which is a group-operation of the
simple quasi-boolean algebra, and exhibits it as a cyclic group of order # -+ 1.

For, if r + s > #, the classes, ¢,, ¢, have no common element in their
position of minimum incidence, hence ¢, + ¢, = ¢,y ¢,-c, = ¢,; while if
7 — s >n, the classes will have » + s — % common elements in minimum
incidence, so that ¢, +¢ =c¢,; ¢, ¢, =c,,, , Discarding the trivial
results ¢, and ¢, we see that sum and product in the position of minimum
incidence can be combined into a single operation R such that :

¢, Rc; =cp; k=Ileast positive residue of » +smod (n + 1).

TT@S ¢, Rc, is the sum of ¢,, ¢, in the position of minimum incidence if
res<m 1 .and is ot.herwme the largest proper subclass of the product
of ¢,, ¢; (in minimum incidence). It is clear that R is a group-operation of

period # + 1, and that the simple quasi-boolean is a cyclic group with respect

"w R. Contrary to thlt happens in boolean algebra, R cannot be expressed
in terms of the quasi-boolean operations.
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The definition of R is slightly more simple when # is infinite ; namely
¢rRe; =¢, +¢;0r ¢, ¢, in the position of minimum incidence, according
as Measure (c,) + Measure (c,) < or « Measure (c,,).

V. The General Quasi-boolean Algebra.

The general quasi-boolean algebra may be defined as the vector com-
pound of any number of simple quasi-boolean algebras, S,, S,, ---. If s;is
an element of §;, the quasi-boolean operations for the vectors

| o = (Sg, Sy, ++); 0 =(sy, 8% ")
are defined by :
o= (51,8, )0+ 0 = (s 5,8 +5), )
o0’ = (8, 8,', §385, ).
It is clear that o > o' only if each s; > s;/.

A simple example of the finite quasi-boolean algebra is the algebra
(which has been known for a long time) of divisors of a number
N = py1 py#2 « - -p,#r, where the p’s are distinct primes. The quasi-boolean sum
and product of two divisors d,, d, of N, are respectively their greatest common
divisor and their least common multiple. The quasi-boolean negative of

any divisor 4 is the conjugate divisor ZZI\_T . The divisors of N represent in

fact subclasses of a class with #, like elements p,, #, like elements p,, -+ -, #,
like elements p,. It may be shewn that the number of elements in the general
finite quasi-boolean algebra must be of the form d (N) (= number of divisors
of N) and that the algebra is identical with the algebra of divisors of N.

More generally, it may be shewn that a set of elements with a reflexive
transitive relation <, and a negation operation (), is a quasi-boolean algebra,
if the following postulates hold :

VHa<bb<as :a=hb

(2) a <b-> b <ua.

(3) a=a

(4) For any two elements a, b there exists a unique element x, such that :

a<x:b<xa<chb<c:?~x<e.

We write x =a +b.
(5) There exists two distinct elements 0, 1, such that
0 < x < 1{or every element x.

—————

(6) @ (b + ¢) = ab + ac, where the product is defined by xy = (x + ).
(7) A postulate for ensuring that the elements of a simple quasi-boolean
algebra are in linear order.
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The quasi-boolean algebra may be split up into its simple quasi-boolean com-
ponents, by a theory of minimal elements as in the case of the boolean algebra.

VI. The Truth-value System.

Consider a logic of propositions with an implication-operation C.
Whatever be the meaning of implication, the relation of implication must
be reflexive and transitive, and must be related to dewial in such a way
that p Cq is logically equivalent to ~ ¢ C ~ .  Assume further two logical
operations \/ and A (corresponding to o7, and and), with the properties :

pCpVag;9CpVy;
pCrqCr:Cp VvV qCr;

(with similar properties of A). In the Lukasiewicz-Tarski logics p V ¢ is
defined in terms of C as » C ¢-Cy.

If we attribute to the propositions p of the calculus, a system of truth-
values [f (p)], we have to require that the logical relations and operations
should be exactly imaged in corresponding relations and operations in the
system [Z (p)] of truth-values. Hence the system [ (p)] admits a reflexive
transitive relation < corresponding to C,a wunary operation of mnegation,
corresponding to demial, and standing in such relation to < that #; << ¢, 1s

equivalent to ¢, << t,, and further two operations + and x, which can be
defined in terms of <<, by means of :

P<pH+qg;9<p+gq;

Ifp <rvand g <7 thenp + ¢ <7,
with similar definitions for 4 .g.

These facts shew that the general features of the structure of the system of
truth-values, are such as to render the system a quasi-boolean algebra.

When the quasi-boolean algebra is a simple one, we have the truth-value
system of Lukasiewicz and Tarski.

When the quasi-boolean algebra reduces to a two-element boolean
algebra (which is a particular case of the simple quasi-boolean algebra),
we have the ordinary or classical two-valued logic.
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