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Summary. A new method of deconvolution is described which
uses our prior knowledge about the solution to derive some of the
information obscured in the data because of the smoothing nature
of convolution and the presence of noise. It uses a regularised
least-squares criterion of agreement with the data, according to
which the computed solution will lead to a minimum variance of
noise and also be smooth in the sense of minimum variance of its
second-differences. * In addition, the present Optimum
Deconvolution Method (ODM) also constrains this solution to
satisfy our prior knowledge about it by using a combination of a
new algorithm for incorporating bounds on the solution like
positivity, and the Lagrange multiplier method for equality-
constraints. The new algorithm is a rapidly converging sequence
of iterations for minimising a weighted sum of squares of the
deviations of the solution from the specified bounds.

For the sake of illustration, ODM is compared with the
conventional method of Scheuer for deconvolving the lunar
occultation data to derive the brightness distribution of a radio
source. The required occultation data have been obtained both
from computer simulations and from the observations of occul-
tations with the Ooty radio telescope. A comparison of the
restorations using the two methods indicates that a) ODM can be
effectively applied even in very noisy situations; b) it leads to a
superresolution, implying an improvement in resolution by about
a factor of two over the conventional method; and ¢) ODM
provides a “clean” output leaving all the effects of noise to the
residuals. A practical procedure has also been discussed for
obtaining the effective resolution and restoring errors from an
analysis of the residuals, particularly their variance and power
spectrum.

Key words: deconvolution — image reconstruction — lunar occulta-
tions

1. Introduction

Many measuring systems used to observe an object q,;(x)
respond to another function r(x') which is a convolution of g,
with a function p(x) characteristic of the instrument. This is true of
any linear space-invariant system like an antenna or any diffract-
ing system. Deconvolution is the process of recovering a solution
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q(x) such that
Hx)=p*q,,; + noise=p*q+e(x’)

with the residuals &(x’) statistically resembling noise. The asterisk
(*) has been used above to denote convolution. In particular, we
refer to situations where the observations can be supplemented by
a priori information regarding the solution. For instance, if it
represents the brightness distribution of a radio source, it must be
positive everywhere.

The special importance attached to prior knowledge is because
even a noise-free deconvolution is an ill-posed problem with no
unique or stable solution. This can be seen from the fact that p(x)
often has vanishing or negligible Fourier components at certain
frequencies leading to a complete loss of information on the
corresponding Fourier components of the solution. For instance,
the finiteness of an antenna results into a critical frequency
beyond which the Fourier transform of p(x) vanishes identically. It
is meaningless to seek an exact solution to an ill-posed problem.
In order to seek a meaningful approximation, one solves a
“regularised” problem which includes a specification of a smooth
transition of the Fourier components to the irrecoverable region.
The conventional linear filter approach implies an ad hoc specifi-
cation of the irrecoverable Fourier components, e.g., by assuming
them to be zero as in the “principal solution” (Bracewell and
Roberts, 1954). The various possible schemes have been discussed
by Tikhonov and Arsenin (1977). However, the solution is often
still unsatisfactory by violating our prior knowledge about it, e.g.,
by including negative values (sidelobes) when it is required to be
positive throughout.

Such unrealistic solutions have been avoided in a new method
— “Optimum Deconvolution Method” (ODM) — which constrains
the solution suitably to ensure a least-squares agreement with
observations as well as being consistent with all our prior
knowledge about it (Subrahmanya, 1975, 1977). The aim of this
paper is to describe this method and its application to the
deconvolution of Fresnel-diffraction curves obtained in the lunar
occultations of radio sources.

A fundamental specification of ODM is to seek a regularised
least-squares solution (RLS) which simultaneously minimises the
variance of residuals (least-squares) as well as the variance of the
second-differences of the solution (regularization). This scheme of
regularization is flexible enough to accept prior knowledge as
externally imposed constraints on the solution. These could be
either equalities (e.g., total intensity being known and specified) or
inequalities [e.g., g(x)=0]. They are handled by using a com-
bination of Lagrange multiplier method for equalities and a new
fast-converging iterative algorithm for the inequalities.
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A detailed description of the method is given in Sects. 2.2-2.4,
and its application to lunar occultations is described in Sect. 3.1.
In order to compare ODM with a classical method, a large
number of noise-contaminated lunar occultation profiles have
been restored by using both ODM and a classical method due to
Scheuer (1962). It is inferred from these comparisons that ODM
can lead to superresolution and also a “clean” output enabling
more objective interpretation than the classical method.

2. Description of the Method

The desired solution g(x) is obtained as a set of n quantities
g;=4(x;) which are its values at n successive points x,,x,, ..., . It
is assumed that (x,, x,) is a given range of x, e.g., the field of view
of the instrument outside which the object does not contribute
significantly to the observations. Thus, we can assume that
g(x=x,)=q(x=x,)=0. For simplicity, the expressions given be-
low will correspond to a uniform spacing of x; at an interval 4x.
The observational data are denoted by rm=r(x,), m=1,2,....n,
These measured values include an unknown contribution due to
noise whose statistical properties like the mean and variance are
generally known and must be satisfied by the residuals & =8(x,)
which can be computed from an acceptable solution. Thus the
observational data are given by:

n

= fp(x;n—x)q(x)dx+sm= Z WiDpid; + &y » (1)

i=

where p,,=p(x, —x,) and w, depend on the formula used for
numerical integration (e.g. Dahlquist and Bjorck, 1974, Sect. 7.4).
For instance, for a uniform sampling as stated above, the fre-
quently employed trapezoidal rule gives w,= Ax for all i.

2.1. Regularised Least-squares Solution

Using the second differences 4%g;,=g,, , —2q;+g;_, for defining a
regularisation criterion, we define an RLS as the one minimising

ndq

og)=0c}+yol=Y s,i/n.,+% Y (4%g)?,
1 - i=2

m=

where y is an empirical parameter. g(g) is a weighted sum of the

variances of residuals and second-differences of the solution. This
will simultaneously satisfy the least-squares and smoothness
(regularisation) requirements. This scheme of regularisation was
suggested independently by Phillips (1962) and Tikhonov (1963)
and their methods were subsequently developed and extended by
Twomey (1965) and others (e.g. Tikhonov and Arsenin, 1977). The
parameter y controls the degree of smoothness imposed on the
solution. The proper value has to minimise the ripples in the
solution as much as possible without allowing o2 to depart from
its minimum value. Usually, 62 has a broad minimum and the
exact choice of y is not critical to within about a factor of 5. It is a
slowly decreasing function of signal-to-noise for any given
problem.

The desired RLS is simply obtained by solving the set of
“normal equations” defined by

= 671,[% (rm_ Zi:WiPmi‘Ii)z/nd"")’Z(qz'ﬂ‘2Qi+‘1i—1)2/(n—2) =0
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which can be written in the form
Z (C1)+yH1])q]=Rx7 i=172""9n3 (2)
j=1
where
Cy= Zwipminij/ ng; Ri= Z WDl /Mg (3)

and (H,)), the term obtained by differentiating the variance of the
second-differences, has the form identical to that given by
Twomey (1963), i.e.,

1 =2 1 0 0 00

-2 5 -4 1 000

1 1 -4 6 —4 1 00
(Hy)=-— @

0 1 -4 6 -4 1 0

Although a regularised solution is tailored to be sufficiently
stable, it does not usually conform to all our prior knowledge
about it. In particular, when the solution is a brightness distri-
bution it must be positive everywhere whereas the traditional
regularized solution leads to regions including spurious negative
values (“sidelobes”) and hence violates the positivity requirement.
This is one of the major reasons for departing from the domain of
linear filter theory and seeking new deconvolution methods to
incorporate prior knowledge about the solution. The incorpo-
ration of positivity has been the most fruitful in giving super-
resolution compared to classical methods. The possibility of
achieving super-resolution by using positivity has been demon-
strated by Biraud (1969) and several others (see e.g. Frieden, 1975).
In order to simplify the discussion, we will first describe ODM
with positivity as the only prior knowledge and then consider a
more general problem with other constraints.

2.2. ODM in a Simple Case

The suggested deconvolution method for positivity (g,=0) as the
prior information involves the following two stages:

(i) An initial solution is first obtained which is the RLS
obtained by solving Eq. (2).

(i) This initial solution is used as the first-approximation
(zeroth order iteration) in the “positivity algorithm” described
below which incorporates positivity iteratively retaining con-
sistency with the criterion of RLS.

Positivity Algorithm. Positivity is incorporated iteratively in an
RLS by minimising at each stage a weighted sum of those values
of g; which were negative (and hence violated the positivity
constraint) in the previous iteration. More precisely, the normal
equations for the k'™ iteration are written as:

Ya,[C+7H,+ 05, /0% =R, , s)
J

where

w§0) =0; w§k+ 1) _ w;k) - h(jk) (62)
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and
SHO, k=1
Qb=2! 6
YHD,  k>1 6b)
j
with
0 q¥=0
(k) — £ =
= {(qg"’)z, 4P <0. 2

These equations are much simpler than they appear at first
sight. The constraint-violating (negative) values of the solution are
controlled in the iterations by penalty terms which affect only the
diagonal elements of the normal equation matrix, (C;;+ ...). The
definition of h‘j") ensures that there is no penalty corresponding to
the regions where the solution was already non-negative. In each
iteration, the diagonal elements are incremented by an amount
proportional to the constraint-violation as decided by the last
term in the left-hand side of Eq. (5). The choice of weights is not
unique and good results could be obtained even with a choice:
Q=1 and of*Y—0w¥P=1/n or 0 depending respectively on
whether ¢{ was negative or not. However, we found that the
iterations converged particularly rapidly for the choice suggested
above.

The role of Q® is simply to provide a scaling factor for the
weights, and their changes during the iterations are incorporated
through w{. However, for a rapid convergence, it is preferable to
define Q® from the solution in the first iteration as done above,
instead of the initial solution.

The criterion for convergence of iterations should be chosen
according to the nature of the problem. For instance, if one has a
rough estimate of the expected mean error in g(x), then the
iterations can be stopped when the rms of the negative values is
significantly less than this expected error. However, in the case of
lunar occultations to which we have applied ODM, one has an
estimate of the rms error on the occultation curve which cor-
responds to that of the flux (occultation step) of the source. Since
the flux is proportional to the area of the brightness profile, this
means that one has an estimate of the error (say, o) in the area
under the solution. In this case the iterations can be stopped when
the total contribution to the area by the negative values of the
solution becomes <0.5¢.

Since the successive iterations alter only the diagonal elements
of the normal equation matrix, the matrix as a whole has to be
computed only once. The equations are linear and can be easily
solved by standard methods. The fact that the matrix is symmetric
can be used to reduce the computation time for solving the system
of equations. Considerable saving is also possible by using
iterative methods for linear equations like Gauss-Seidel method
(Dahlquist and Bjork, 1974, Sect. 5.6) which will converge very
fast except perhaps for the initial solution.

2.3. ODM in a General Situation

The general formulation of a deconvolution problem should
consider two aspects. First, all the systematic effects due to the
instrument and observing conditions should be properly in-
troduced. Secondly, the solution should be consistent with all our
prior knowledge about it. These points will be elaborated below in
order to explain the suggested ODM for a general problem.

2.3.1. Instrumental Effects

In general, there may be several instrumental effects like the beam
shape, bandpass, time constant, etc., which independently con-
volve the incoming signal with their respective characteristic
functions. The effective point-source response of the system is then
a convolution of all such functions. Henceforth it will be assumed
that p(x) denotes this composite function. Most observing con-
ditions also lead to continuous changes in the background like the
baseline drifts or the spectral continuum. These can usually be
expressed linearly in terms of a few, say K parameters {o}, i.c., by

a function of the form Y f(x)a, eg, a polynomial with

s
f{x)=x"1. Thus, a general representation of the observational
values r,, is given by:

P =

K
Wi+ ), (X )+ -
s=1

M=

1

i=1

For simplicity, we rewrite this equation in the form

N
T = Z fmlql+8m 4
=1

where
N=n+K’ qn+s=as
and
_ wlp ml> lé n
Joi= {f,_n(x'mx I>n. ®
The RLS will now have to minimise
ng N 2
00= 5 (ra= ¥ fua) [m+rZ@ari0-2) o
m=1 1=1 i

which has N unknowns g,.

2.3.2. Prior Knowledge

Prior information should now be introduced as constraints on the
minimisation of g(q). These constraints can be either equalities like
F(g)=0, or inequalities like the bounds: u;=<g(q,)<v,
i=1,2,...,n. Without any loss of generality we will consider one
example for each of these forms and explain how they are
incorporated in ODM.

Equality constraints are introduced by the classical method of
Lagrange multipliers which can be summarised as follows.
Minimisation of g(g) under the constraint F(q)=0 is achieved by
minimising the augmented function

2.g)=0(g)+AF(g) ,

where A is a Lagrange multiplier, obtained along with the desired
solution by solving the set of N+ 1 equations

aQa/aql=0 s

and

i=1,...,N

F(g)=0
which will all be linear if F(g) is linear in g.
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Inequality constraints are typically encountered when one specifies
upper and/or lower bounds on the solution or an arbitrary
function of it, g{(q;), i=1,...,n. These can be incorporated by a
straightforward generalization of positivity algorithm which is
obtained by simply redefining the terms h® occurring in Eq. (6) as
follows:

0’ ui égi é vi
hgk) =1 (;— gi)Z’ g;<u; (10
(U,'_gi)za g;>1;,

where we have written g, for g,(¢™) for brevity. The specification of
bounds on the solution itself would correspond to g,(q,)=g;.

For the sake of completeness we will now summarise our
statement of the general problem and the suggested ODM for it.

Problem. Obtain an RLS for
r"‘=;fmlql+8ma m=1,...,nd
subject to

ui é qi é Ui

and

M:

t,g;=t

1]

i=1

Solution. The solution is obtained through iterations as before
and the equations for the k'® iteration can be written as:

ﬁlA?j)qg‘)+/1t,.=Ri, i=1,...,N (11)
i=

and

Zl =t (12)
where

R;= anlfmirm, i=1,..,N, (13a)
®_ gf”"f'"" oyt ef6,/20, Lisn (13b)

Yy Jmifmj otherwise
m

and o, Q® are given by Egs. (6a), (6b), and (10) with the
substitution g,=¢® in Eq. (10).

2.4. Computational Simplifications

The major computations in ODM arise from the evaluation of the
symmetric matrix (C;;) and the iterations involving the solution of
N linear equations. If both the input data and the solution are
sampled at the same interval Ax, the computation of (C;) is
simplified by the following relation:

1 ..
w.+1w_.+1 1,41 Wcij+pn+ 1,iPn+1,j 7 P1iP1j LI<N.

i Jj i)

Then the major burden arises from the solution of N linear
equations. For this, the time taken is oc N for direct methods, but

o«c N? for iterative methods like Gauss-Seidel method (see e.g.
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Dahlquist and Bjorck, 1974, Sect. 5.6). Further, in many sit-
uations, p(x) decreases with x fast enough (e.g. in Fraunhoffer
diffraction) so that it can be neglected in comparison with noise
for large x. In these cases, (C;;) will essentially have a band
structure, with all the significant values concentrated in a narrow
band parallel to the main diagonal. Many computer systems offer
library packages with special routines to handle such band
matrices leading to a considerable saving of computer time.

It may be remarked here that since n=range/4x, computation
in ODM is essentially oc1/4x? Thus one should choose 4x as
large as possible for minimum computation. This may sometimes
conflict with Eq. (1) which assumes that a sampling of p(x) at
intervals Ax is close enough to justify the summation formula
used for evaluating the convolution integral. Such an artificial
lower limit on Ax set by p(x) can be overcome in several ways. For
instance, one can retain the n values of g; separated at Ax as the
unknowns in the equations, but in addition, define intermediate
values of the solution in terms of g; through a suitable in-
terpolation formula. In other words, an interpolation formula is
used to define an auxiliary set of values of g(x) sampled at a closer
interval Ax,,, <A4x in terms of the n basic unknowns g, When
these are used in Eq. (1) to reduce the errors of integration
formula, the basic form of the equation remains unchanged, but
the coefficients of g; will be different from w,p,,;. All the subsequent
equations are also valid after the new coefficients are used. The
artificial dependence of Ax on p(x) is also avoided in the specifi-
cation of resolution as in the next section.

2.5. Resolution

The question of resolution poses a fundamental problem in
methods like ODM which use known properties of the solution
itself while deriving it. A classical deconvolution scheme is
equivalent to the convolution of observed data with a prede-
termined “restoring function”, and one can identify the “resolu-
tion” as a property of the restoring function. However, with the
use of prior knowledge, the linear relation between the obser-
vations and the solution can no longer be maintained, and the
conventional “resolution” is too gross a term to characterise such
a method in which the derived solution is influenced by its own
properties. Thus, in order to interpret the observed widths
properly, one needs a new criterion which should be determined, a
posteriori, from the derived solution. This is as yet an unsolved
problem facing the use of prior knowledge in deconvolution. In
the absence of an analytical procedure, it is worthwhile investigat-
ing the statistics of residuals for empirical clues regarding this
aspect. Admittedly, this may not solve the problem fully since it is
not clear if the residuals reflect properly the influence of quantities
like Ax, y and positivity which all contribute to the final solution
obtained. However, their use is amplified below because of the
possibility of an a posteriori definition of resolution which is
rigorously valid in a linear method. The procedure is still being
investigated through extensive numerical studies and further
details will be published in due course.

2.5.1. Power-spectrum of Residuals and Resolution

It is usually possible to anticipate the general behaviour of the
power-spectrum of observational noise by examining the noise in
a typical region well away from the signal. If the solution obtained
for a given deconvolution problem is indeed the best fit to the
observations, one can expect that the power-spectrum of residuals

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980A%26A....89..132S

YAH

FTOBDAGA - -89 1

136

should resemble that of the typical noise. But, in practice, one may
find that even a broad resemblance in shape exists only upto a
certain frequency v, and that the power spectrum of residuals is
quite erratic at higher frequencies. One can then hope that the
Fourier components of the solution, too, have been recovered
reasonably faithfully upto v, and may not be reliable at higher
frequencies. The effective resolution can then be inferred as being
ocl/v,, with the constant of proportionality decided by the
general shape of the power-spectrum and convention followed in
defining the term “resolution”. For instance, if one defines resolu-
tion as the half-power-width of a restoring beam, and the noise
has an approximate Gaussian power-spectrum, then the equiva-
lent resolution is ~1/v,. A more detailed investigation of this
procedure for an a posteriori inference of the effective resolution is
in progress and the results will be published in due course.

We wish to emphasize here that such a procedure is only
intended to obtain a correction to the measured widths for
resolution effects. In particular, no claim has been made for any
inference of the shape of the restoring beam or its effects on the
details of the restored profile. However, we feel that this can
provide a uniform criterion for defining the angular size of a radio
source from its restored profile which is important in any
statistical investigation of the sizes as for cosmological studies.

2.5.2. Resolution Specification

Subject to a limiting resolution determined mainly by p(x), noise,
and possibly by the nature of the solution itself, one can restore a
profile with any specified resolution. This simply implies a
smoothing of the observed data to enhance the signal-to-noise
ratio for the coarse properties of a source like itg flux or centroid.
Restoration with several specified resolutions has been found
convenient in a commonly followed practical procedure for a
routine reduction of lunar occultations of radio sources by a
conventional method due to Scheuer (1962). In this way, one tries
to obtain various parameters of a source by restoration with the
optimum resolutions with respect to the relative errors with which
the parameters can be determined. For instance, the intensity
(area) is best determined by a coarse resolution whereas for
estimating the size of a component, one would prefer a resolution
of the order of the size itself, provided, of course, it is feasible
under the given observing conditions (von Hoerner, 1964).

It is possible to allow a specification of resolution even in
ODM provided it does not amount to surpassing the resolution
limit mentioned above. A possible warning against such an
attempt to specify an unattainable resolution may be obtained in
a situation where the resolution inferred from the power-spectrum
of residuals turns out to be much different from the specified
value.

For convenience, we assume that the desired restoring beam is
Gaussian such that the solution g(x) with a resolution f, is g+ G,
where G, is a Gaussian of width f,. At a first glance, one may like
to recover it using pre-smoothed data r*G,. However, a modifi-
cation will be suggested below which will improve the com-
putational efficiency considerably in many cases.

As pointed out in Sect. 3.4, it is computationally advantageous
to overcome the upper limit on x set by p(x). One should be able to
choose it entirely on the basis of the required resolution say
Ax~0.258,. If this is too large to be allowed by the nature of p(x),
one can handle the situation without unduly sacrificing accuracy
by pre-smoothing p(x) with a Gaussian G, of width §,<f,. The
input data also need to be pre-smoothed to the extent given by

rxG,=(p*G,)*(q*G,)+exG;,,

where G,=G,*G, is now a Gaussian of width B, =(8}+ p3)"/2
This can be written as

rs=ps*qs+8s

which is identical in form to Eq. (1) with r, p, ¢ and g replaced by
the corresponding smoothed quantities r,=r*G,, etc. Hence the
procedure for ODM described in the previous sections can be
used for this revised problem. It is clear that the choice of §, or 8,
is not unique, although B, imposes an upper limit on f§,. An
extreme but convenient choice would be: Ax=0.258,; and §, =34x,
implying f;=54x.

3. Comparison with Other Methods

3.1. Application to Lunar Occultations

An evaluation of ODM will now be made by comparing it in
detail with an established linear method for the specific case of
Iunar occultations of radio sources. This example has the particu-
lar advantage that the attainable resolution by a classical method
is only limited by noise and not by the form of p(x).

3.1.1. Lunar Occultations and thé Classical Method

During the occultation of a radio source by the Moon (distant D
from the observer), the lunar limb can be well-approximated by a
straight edge diffracting the radio waves from the source. For the
present discussion, we will assume monochromatic observations
at a wavelength 1, =0.92 m, corresponding to an observation with
the Ooty Radio Telescope (Swarup et al., 1971a). The obser-
vations can be considered as the result of a one-dimensional scan
across the source with a point-source-response p(f) given by the
Fresnel diffraction curve:

pO)=3{[5+C(6/05)) + [5+5(6/60)1%} ,

where

(15)

C(x)= fcos(nu2/2)du, S(x)= j’fsin(nuz/Z)du
o 0

and 0 is an angular variable along the line of scan with a scale
factor 6,=(A,/2D)"/*=7.2arcs. It was shown by Scheuer (1962)
that the restoration with a resolution f, is simply obtained by
convolving the observed occultation curve with a restoring
function

2

d
o o p(—0)+G,(6)

and that the attainable resolution is limited only by the obser-
vational noise. Further details about the lunar occultation obser-
vations and the restoring techniques can be found in a review by
Hazard (1976). We will assume that the restoring function is
normalised such that the ideal occultation curve of a point source
would be restored with a peak amplitude equal to its flux, F. As in
any other linear method, the effects of noise are inseparably
superposed on the restored output. If the rms-noise on the
occultation curve is ¢, for an integration over 1arcs, it can be
shown (von Hoerner 1964) that the rms-noise o, on the restored
output with a resolution f, is given by

al=1.4260/]/ﬁ_1. (16)
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Fig. 1. Comparison of restorations of simulated occultations
using ODM and Scheuer’s method

By setting F/g, =5 in this relation von Hoerner (1964) defined the
limiting resolution attainable for an unresolved source in
Scheuer’s method as f,=52(a,/F)*.

3.1.2. Comparison of ODM with Scheuer’s Method for Simulated
Occultations

In a non-linear method like ODM, the resolution depends on the
nature of the solution itself in addition to the observing con-
ditions. Hence one cannot define a limiting resolution in ODM
corresponding to f; for Scheuer’s method. This makes it difficult
to assess theoretically the improvement obtained by ODM over
Scheuer’s method or any other deconvolution method. Hence a
comparison was attempted earlier (Subrahmanya, 1977) by sim-
ulating about 150 noisy occultation curves of standard single and
double Gaussian sources. Noise was represented by means of
random numbers with standard normal distribution. Each of
these simulations was analysed by ODM as well as Scheuer’s
method. This was done at an early stage in the development of
ODM and the solution obtained was an RLS with positivity
constraint as in Sect.2.2. In particular, no attempt was made
either to incorporate a specified resolution or to evaluate it from
the residuals as in Sect. 2.5. However, this drawback was com-
pensated by a detailed comparison of the distribution of the
observed widths f,, (i.e. uncorrected for resolution effects) in both
ODM and Scheuer’s method. Instead of repeating the results on
all the 150 simulations in this paper, we will confine ourselves to a
representative set (called “D” in Subrahmanya, 1977) which
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corresponds to the simulations of 25 independent occultations of a
source with two equal Gaussian components of width 1arcs and
amplitude 2.5 (ie., flux F=area=2.65) situated at §= t+1.5arcs.
The data were sampled at 0.25arcs and corresponded to a value
of F/o,=5.3 and f,=1.9arcs. Restorations were performed with
ODM without specifying resolution, and an output-sampling
interval of 0.25arcs was used. However, the measured total
widths of all the 50 components averaged to f,,=1.2arcs with an
rms-deviation of 4f,,=0.5arcs. Since the true width of each
component is 1 arcs, the ideal value of the measured width would
be (82+1)'/2, where B, is the resolution in ODM. In the absence
of a better estimate of the resolution, we will assume
B2=p%—1+AB2, which gives a value of 8,=0.8arcs. Thus, the
effective resolution in the ODM-restorations is about twice better
than the limiting resolution 8,=52(c,/F)*=19arcs for Scheuer’s
method. It is remarkable that such a super-resolution has been
achieved in ODM without any sacrifice in the accuracy of any
other parameter of the source. For the 25 cases, rms-fluctuations
of the measured values of flux and position were respectively
AF=0.5 and 46=0.25arcs, compared to the expected values, 0.7
and 025 respectively for Scheuer’s method at its limiting
resolution.

The visual appearance of a typical ODM-output is striking
and renders the difference between the two methods much more
prominent than the effect of super-resolution. Examples are
shown in Fig. 1, which gives a comparison of the two restorations
for 8 of the 25 cases discussed above. The adjacent curves in these
figures are the restorations of the same data by ODM (left) and
Scheuer’s method. The “cosmetic” improvement in ODM results
mainly from positivity and does not, by itself, imply a quantitative
improvement of a similar order in the restoration. It may be
recalled here that the restoring function of a classical method
simply convolves the noise-contaminated data and thus allows all
the artefacts of restoration and the effects of noise to contaminate
the solution visibly. This means that the accuracy of restoration
can be judged by a visual inspection of the amplitudes of the
ripples or sidelobes in the solution which can be easily recognised
as spurious. On the other hand, the use of least-squares criterion
and positivity make a recognition of the artefacts of an ODM-
restoration much less straightforward on the solution than on the
residuals. Thus, one can be confident about the detection of a
weak feature in the solution only if it is significant above the level
of wiggles in the residuals.

3.1.3. Analysis of Residuals

So far, we have not talked about the nature of residuals. In order
to examine their behaviour, more simultations were performed
and we will now summarize the major inferences drawn on the
basis of this experience. As emphasized earlier, the concept of
resolution is not straightforward in ODM and hence an attempt
to derive an empirical relation like Eq. (16) between ¢,/a, and f3,
is not expected to be successful. Further, since the non-uniqueness
of deconvolution occurs mainly because the convolution is in-
sensitive to the high-frequency Fourier components, a linear
method should be expected to give faithful pictures of the object as
one goes to resolutions coarser than the limiting resolution. Hence
the difference between ODM and Scheuer’s method is expected to
become insignificant gradually for resolutions >pf. As anti-
cipated, our efforts at finding a simple relation analogous to Eq.
(16) were not successful even for f, ~ . The value of o, ]//_3:/00
which is 1.42 for Scheuer’s method, usually ranged between 1.0
and 1.4 for ODM.
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Fig. 2. Restoration of simulated occultations with ODM and
Scheuer’s method. Differentiated residuals are superposed on the
profiles using ODM by dotted lines

The next step is to examine the behaviour of residuals
themselves rather than confining to their variance. It may be
remarked here that the residuals is ODM are similar to those
obtained in any curve-fitting programme. Hence their conven-
tional use to improve the solution is also applicable here. For
instance, if a residual is particularly high (say, >20,), then the
corresponding value in the input can be eliminated from a second
run of ODM to obtain a better solution. However, one cannot
possibly hope to superpose error bars on the solution using the
residuals since they are in a different domain altogether and the
required transformation is again a deconvolution. But we believe
that one can always find a compromise analogous to using the
geometric optics approximation in place of diffraction in order to
get a quick visual feeling for the reliability of a certain feature in
the solution. This can be accomplished in lunar occultations by
using the differentiated residuals, i.e., their first-differences to
depict the errors in the solution domain. This corresponds to
ignoring the fringes in p(x) and regarding it as a step-function. It
must be remembered that these provide only an overestimate of
the actual errors involved since they include contributions both
from an approximation made for p(x) and also from the enhance-
ment of errors in evaluating the numerical differences. Examples
of differentiated residuals are- given in Fig. 2, whieh shows some
restorations with ODM on which the derivatives of residuals are
superposed in dotted line. These are the result of 10 successive
simulations of the occultations of equal double sources with
components of width larcs and separation 6 arcs, and corre-
sponding to a signal-to-noise ratio F/o,=>5. The limiting resolu-
tion in Scheuer’s method is 2 arcs. The restorations in ODM were
performed with a specified resolution of 1.5arcs, but the effective
resolution as inferred from the zero-crossings of residuals aver-
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Fig. 3a and b. ODM and Scheuer’s method for lunar occultations
of a OTL 0500+270 along position angle 116°, and b OTL
1754—276 along 78°

aged to 1.8arcs for the 10 simulations. Restored profiles using
Scheuer’s method for a resolution of 1.5arcs are shown alongside
each ODM profile in Fig, 2. The figure thus illustrates how ODM
can extract out an “optimum” solution and separately provide the
noise distribution.

4.1.4. Comparison for Actual Occultations Observed
with the Ooty Radio Telescope

ODM has also been used successfully on more than 100 lunar
occultations observed with the Ooty radio telescope
(Subrahmanya, 1977; Subrahmanya and Gopal-Krishna, 1980;
Venkatakrishna and Swarup, 1980). This application has led to a
confidence in its general validity and practicality for this case. It is
now being routinely used to supplement the information obtained
from Scheuer’s method for the lunar occultations being currently
observed at Ooty. Examples of these restorations are provided in
Figs. 3 and 4, in which the restorations with ODM are plotted
below the corresponding restorations with Scheuer’s method
(Sch). The specified resolutions (Res.) are indicated alongside each
profile. These profiles have only been given for a visual com-
parison between the two methods. The details on the position,
structure and optical identification of the sources can be found in
the following references:

OTL 1556-260: Swarup et al. (1971b);
2127-157: Kapabhi et al. (1974);
0500-270 and 1754-276:
Subrahmanya and Gopal-Krishna (1980).

The general conclusion drawn from our experience so far is
that the use of ODM for live data does not pose any specific
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Fig. 4a and b. ODM and Scheuer’s method for lunar occultations
of a OTL 1556—260 along position angle 71°, and b OTL
2127157 along 65°

problem. If a particular restored output were to seem unrealistic,
it is usually due to the wrong choice of an empirical parameter
and not because of any limitation of ODM as such. To this end,
some general comments will now be made which will also serve as
guidelines for judging whether a particular output is reliable or
not, and also for improving it if necessary.

Because of the inherent nature of convolution, it may some-
times happen that a quick visual glance at the “clean” output of
ODM may lead to an interpretation of a spurious step resulting
from a local instability in the baseline as a genuine component of
the source. But the suspicious nature of such a feature is usually
evident from a closer examination of the behaviour of noise in the
raw data or the differentiated residuals in the corresponding
region. A good guideline to reject a spurious peak is also provided
by comparing restorations performed with different specifications
of ranges of the input data and the output profiles given by the
solution. A genuine feature is stable and hence inferred equally
significantly from such restorations. Further, it is recommended to
obtain restorations with at least two specified of y, differing from
each other by about of 5 and select one by visual inspection. If the
choice of y is too low, too many marginally significant or
insignificant peaks may appear on the restored profile. When the
choice is too high, the change in the width of components with y is
usually prominent. Very often, a choice of too small a value of y
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leads to components with measured widths narrower than the
specified resolution and such outputs are easily rejected.

The use of second-differences for smoothness does not have
any influence near the extremities, where only one-sided de-
rivatives can be defined. Usually, these do not affect the solution
away from the end-points. Moreover, since the assumed range of
the solution implies that g, =g,=0, one can easily control the
behaviour at the end-points by specifying bounds on such values
so that their absolute value will be small.

If one also wants to find the best-fitting baseline along with the
deconvolution, it is essential to introduce a constraint on the
flux(area) of the source or any of its components. Otherwise, a
vertical shift may occur in the baseline of the restored output.
However, when the baseline is already known beforehand, the
flux-constraint is generally redundant.
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