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Abstract. In this article, we first consider briefly the basic properties of 
the non-rotating Schwarzschild black hole and the rotating Kerr black 
hole Rotational effects are then described in static and stationary 
spacetimes with arial symmetry by studying inertial forces, gyroscopic 
precession and gravi-electromagnetism. The results are applied to the 
black hole spacetimes. 
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1. Introduction  
In the last three decades, there has emerged a phenomenal amount of research on 
black holes. This includes studies on their geometrical structure, their physical 
aspects and phenomena occurring in their strong gravitational fields. These studies 
were initially confined to the simpler case of the nonrotating Schwarzschild black 
hole and later on extended to the more complex case of the rotating Kerr black hole. 
The effect of rotation inherent to the Kerr spacetime manifests itself in almost all 
physical phenomena, sometimes in a profound manner. For instance, it is rotation that 
is responsible for the existence of the ergosphere in the Kerr geometry and the 
consequent possibility of energy extraction via the Penrose process. The subject of 
black holes and rotation is quite vast. Here we shall review only a few ideas with 
emphasis on the work my coworkers and I have done over the years. First we shall 
very briefly compare and contrast some of the basic attributes of the Schwarzschild 
and Kerr spacetimes. We shall then discuss the notion of ‘rest frames’ in the two 
geometrics which is quite important in studying physical phenomena. In recent years, 
there has been considerable interest in the general relativistic analogues of inertial 
forces and their possible reversal in the strong gravitational fields of black holes and 
ultra compact objects. At the same time there are two other phenomena apparently 
related to the inertial forces, namely gyroscopic precession and gravito-electro- 
magnetism. We shall demonstrate and discuss how these three aspects of black hole 
spacetimes can be related to one another in a covariant and elegant manner utilizing 
the Killing vector fields. The formalism will be presented at a very general level in 
the context of arbitrary static and stationary spacetimes with obvious application to 
the Schwarzschild and Kerr metrics as specific examples. 

As has been mentioned already, the above topics are but a small part of an 
extensive field. They suffice, however, to illustrate the important role played by 
rotation in black hole physics. 
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2. Basic properties
 
In this section we give a very brief account of some of the basic properties of the 
Schwarzschild and Kerr black holes. These aspects are well known and are given here 
for the sake of completeness. 
 

2.1 Line elements 
 
Schwarzschild: 
 

(1) 
 
where m = MG /c2; Μ = Mass; c = G =1. 
 

Kerr: 
 
 
 
 

(2) 
 
where m = Mass, J = ma = Angular Momentum,     = r2+a2cos2   θ,  Δ=m2– 
2mr + a2 

 
2.2  Spacetime symmetries 

 
Both the Schwarzschild and the Kerr spacetimes admit a globally timelike Killing 
vector field ξ. The Schwarzschild metric is spherically symmetric with three 
rotational Killing vector fields.
 

(3) 
 
satisfying the usual commutation relations [Lx, Ly] = –Lz etc. while ξ and η commute, 
 

[ξ ,η] = 0 
 
Here the coordinates (x, y, z) are related to (r,     ,  φ  ) by the flat space formulae connect-
ing the Cartesian coordinates to polar coordinates. Furthermore ξ η = 0, i.e g03 = 0, 
signifying the absence of rotation. In the case of the stationary, axially symmetric 
Kerr spacetime only LZ ≡ η exists in addition to the timelike Killing vector ξα. They 
satisfy the commutation relation [ξ,η] = 0, but ξ . η= g03 ≠ 0, because of the 

 

inherent rotation.
 

2.3 Source
 
The Schwarzschild spacetime can represent the gravitational field exterior to different 
spherically symmetric sources. These include the static, collapsing or expanding, and
 

∑ 

θ
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oscillating spherical sources. And of course, the Schwarzschild spacetime without a 
material source of finite extension corresponds to the nonrotating, spherical black 
hole. In contrast, no realistic source has been matched on to the Kerr spacetime. 
Because of the unusual multipole structure of the Kerr spacetime involving infinite 
sequence of multipole moments m, ma2 , ma4,... it has been conjectured that no 
material source exists as the interior for the Kerr metric. This fact has not been proved 
but seems to be true. Neverthless, the Kerr spacetime corresponds to the rotating, 
stationary black hole with axial symmetry. 
 

2.4  Black hole structure 
 
As is well known, the Schwarzschild black hole is located at r = 2m. The global timelike 
Killing vector becomes null on this surface defining the static limit. Furthermore, the 
normal to this surace is also null. Consequently, the light cone is tangential to this surface 
which therefore acts as a one-way membrane. Or equivalently it is the event horizon. In 
other words, the surface r =2m is both the static limit and the event-horizon. 

This is no longer true in the case of the Kerr spacetime, an important effect of 
rotation. The stationary limit, namely the surface on which the global timelike Killing 
vector becomes null, is given by r = m + (m2 – a2 cos2 θ) 1/2 provided α ≤ m. On the 
other hand the null event horizon happens to be the surface r = m + (m2 – a2) 1/2. 
 

The region between the two surfaces is the ergosphere which makes unusual 
phenomena like the Penrose process and super-radiance possible at the cost of the
rotational energy of the Kerr black hole. 

 
2.5 Uniqueness and stability 

 
The Schwarzschild and the Kerr black holes represent uniquely the time independent, 
asymptotically flat, uncharged black holes without and with rotation respectively. 
Stability of the Schwarzschild black hole has been established completely. The Kerr 
black hole has been shown to be stable against all normal modes. However, the 
completeness of the radial modes has not been proved though it may be reasonable to 
assume that this is true. 
 

3. The global rest frame 
 
Within the framework of special theory of relativity, or equivalently in the flat space- 
time, the global rest frame of an inertial observer plays a fundamentally important 
role. The general relativistic analogue of such a frame of reference in stationary, 
axisyrnmetric spacetimes is likewise important in studying physical phenomena in a 
meaningful way. In the case of black holes, the difference between the spacetimes of 
the nonrotating Schwarzschild black hole and the rotating Kerr black hole shows up 
clearly in defining these frames. 

The rest frame in flat spacetime is adapted to the inertial observer following a 
worldline along time t. This is the direction of the timelike Killing vector ξα. The four 
velocity of the observers at different spatial points are orthogonal to the hyperspace 
t = constant. The four velocity is given by
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(4) 
 
and 

(5) 
 
in Cartesian coordinates. Therefore t is the synchronous time for the rest observers. 
The worldlines or the four velocities of the rest observers constitute an irrotational 
congruence. If we define the vorticity of this congruence or that of the vector field 
 

ξa
  by 

 
(6) 

 
then 
 

(7) 
 

Also ua is a geodesic. 
The concept of the global rest frame is directly extended to a static spacetime like 

the Schwarzschild. The four velocity ua defined as in equation (4), is hypersurface 
orthogonal since, 
 

(8) 
 
Once again t is the common synchronous time for the rest observers. Obviously, the 
vorticity  

(9) 
 
and the four velocities form an irrotational congruence. The rest observer's four 
velocity, however, is no longer geodetic. 

Let us now consider the Kerr spacetime. The timelike Killing vector field is no 
longer irrotational and hence the Killing observers following ξ no longer define the 
global rest frame. Nevertheless, consider the vector field 
 

(10) 
 
We notice, 
 

(11) 
 

so that χa is the projection of ξa orthogonal to ηa. Furthermore, it is easy to show that 
the vorticity of the χα - congruence  

(12) 
 
This was first noticed by Bardeen (1970), who called the frames adopted to χα as
locally nonrotating frames (LNRF). It was recognized that the physical phenomena 
in the Kerr spacetime could be studied in a significant manner when referred to 
LNRF. The observers with four velocity 
 

(13) 
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are in fact the ‘rest’ observers and the frames adapted to them form the global rest 
frame since χa is in fact hypersurface orthogonal: 
 

(14) 
 
As before t is the synchronous time for these observers. The apparently paradoxical 
situation is that in order to be ‘rest’ observers, those following χα will have to be 
revolving round the black hole! Properties of the global rest frames were studied in 
detail and generalized to arbitrary stationary, axisymmetric spacetimes by Greene, 
Schucking & Vishveshwara (1975). 

They showed that if the Killing fields ξα and ηa satisfied orthogonal transitivity, 
as in the Kerr spacetime, χα became null on the event horizon similar to ξα in the 
Schwarzschild spacetime. Furthermore, t = constant can be shown to be maximal 
surfaces. 

Physical phenomena can be studied meaningfully in the global rest frames, especially 
since extended systems can be defined only on spatial surfaces of simultaneity like 
t = constant. 

 
4. Rotational effects 

 
There are three important approaches related to the study of rotational effects in time- 
independent, axially symmetric spactimes such as those of black holes. These are 
gravi-electromagnetism, gyroscopic precession and the general relativistic analogues 
of inertial forces. They manifest themselves especially when considering particle 
trajectories. They can be studied elegantly when the trajectories follow Killing vector 
fields as in the case of stationary worldlines or circular orbits. Moreover, the three 
approaches can be synthesised in a very nice way for such trajectories. We shall present 
below the formalism in the general case of the stationary, axisymmetric spacetimes 
and specialize to black holes. These considerations are based on the paper by Nayak & 
Vishveshwara (1998). 

Recently, the two general relativistic phenomena, namely gyroscopic precession and 
inertial forces have been studied in detail. Iyer & Vishveshwara (1993) have given a 
comprehensive treatment of gyroscopic precession in axially symmetric stationary 
spacetimes making use of the elegant Frenet-Serret (FS) formalism. This forms the 
basis for a covariant description of gyroscopic precession. At the same time, a general 
formalism defining inertial forces in general relativity has been presented by 
Abramowicz, Nurowski & Wex (1993). The motivation for this work stemmed from 
the earlier interest in centrifugal force and its reversal. Such reversal in the Schwarzs- 
child spacetime at the circular photon orbit was first discussed by Abramowicz and 
Prasanna (1990) and later in the case of the Ernst spacetime by Prasanna (1991). 
Abramowicz (1990) showed that centrifugal force reversed at the photon orbit in all 
static spacetimes. He argued, on qualitative grounds, that gyroscopic precession should 
also reverse at the photon orbit. Taking the Ernst spacetime as a specific example of 
static spacetimes Nayak & Vishveshwara (1997) have shown that, in fact, both
centrifugal force and gyroscopic precession reverse at the photon orbits. A similar 
study by Nayak & Vishveshwara (1996) in the Kerr-Newman spacetime indicates that 
the situation in the case of stationary spacetimes is much more complicated than in 
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the case of static spacetimes. Neither centrifugal force nor gyroscopic precession 
reverses at the photon orbit. 

The above studies raise some interesting questions. Is gyroscopic precession directly 
related to centrifugal force in all static spacetimes? If so, do they both necessarily 
reverse at the photon orbit? In the case of stationary spacetimes is it possible to make a 
covariant connection between the gyroscopic precession on the one hand and the 
inertial forces on the other, not necessarily just the centrifugal force? Does such a 
connecting formula reveal the individual non-reversal of gyroscopic precession and 
centrifugal force at the photon orbit? We shall consider these and related questions. 
We shall then take up gravi-electromagnetism and show how this is related to 
gyroscopic precession and inertial forces. The case of black holes becomes a specific 
example of this broad-based formalism. 

 

4.1 Gyroscopic precession  

4.1.1 Frenet-Serret description of gyroscopic precession  
The Frenet-Serret (FS) formalism offers a covariant method of treating gyroscopic 
precession. It turns out to be quite a convenient and elegant description of the pheno- 
menon when the worldlines along which the gyroscopes are transported follow 
spacetime symmetry directions or Killing vector fields. In fact, in most cases of 
interest orbits corresponding to such worldlines are considered for simplicity. In the 
FS formalism the worldlines are characterized in an invariant geometric manner by 
defining along the curve three parameters κ the curvature and the two torsions τ1 and τ2 
and an orthonormal tetrad. As we shall see, the torsions τ1 and τ2 are directly related to 
gyroscopic precession. All the above quantities can be expressed in terms of the Killing 
vectors and their derivatives. These considerations apply to a single trajectory in any 
specific example. However, additional geometric insight may be gained by identifying 
the trajectory as a member of one or more congruences generated by combining 
different Killing vectors. For this purpose the FS formalism is generalized to what may 
be termed as quasi-Killing trajectories. For the sake of completeness we summarize
below relevant formulae taken from Iyer & Vishveshwara (1993). 

Let us consider a spacetime that admits a timelike Killing vector ξa and a set of 
spacelike Killing vector η(A) (A = 1,2,...m).Then a quasi-Killing vector may be 
defined as 

(15) 
 
where (A) is summed over. The Lie derivative of the functions ω(A) with respect to χα 

is assumed to vanish, 
 

(16) 
 
We adopt the convention that Latin indices a,b,... = 0 – 3 and Greek indices α 
β, . . .= 1–3 and the metric signature is (+, –, –, –). Geometrized units with 
c = G = 1 are chosen. A congruence of quasi-Killing trajectories is generated by the 
integral curves of χα. As a special case we obtain a Killing congruence when ω(A) are 
 

constants. 
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Assuming χα to be timelike, we may define the four velocity of a particle following 

χa by 
 

(17) 
 
so that 
 

(18) 
and 
 

(19) 
where 
 

(20) 
 
The derivative of ω(A) drops out of the equation. The Killing equation and the equation 
ξα;b;c≡ Rabcd ξd satisfied by any Killing vector lead to 
 

(21) 
 
Now, the FS equations in general are given by 
 
 
 
 
 
 

(22) 
 
As mentioned earlier k,τ1 and τ2 are respectively the curvature, and the first and 
second torsions while e (i) form an orthonormal tetrad. The six quantities describe the 
worldline completely. In the case of the quasi-Killing trajectories one can show that
 

κ ,τ1 and τ2 are constants and that each of e (i) satisfies a Lorentz like equation: 
 

(23) 

(24)  
Further, k, τ1, τ2 and ea

(α)
 can be expressed in terms of ea

(0) and Fab ≡Fa Fa2 … Fan-1b.

 
 
 
 
 

 
(25) 

 
 
 
 
 

(26) 
 

a

a

n a 1
a1
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The above equations were first derived by Honig, Schiicking & Vishveshwara (1974) 
to describe charged particle motion in a homogeneous electromagnetic field. Inter- 
estingly, they are identical to those that arise in the case of quasi-Killing trajectories. 
 Next let us consider an inertial frame of tetrad ( e(0), f (  ) ) which undergoes Fermi-  
Walker (FW) transport along the worldline. The triad f(α) may be physically realized 
by a set of three mutually orthogonal gyroscopes. Then, the angular velocity of the FS 
triad e(  ) with respect to the FW triad f(  ) is given by Iyer & Vishveshwara (1993)

 

 
(27) 

 
Or the gyroscopes precess with respect to the FS frame at a rate given by   (g) = – ωFS. 

In case of the Killing congruence ωFS is identical to the vorticity of the congruence. 
 

4.1.2 Axially symmetric stationary spacetimes 
 
An axially symmetric stationary metric admits a timelike Killing vector ξα and a 
spacelike Killing vector ηa with closed circular orbits around the axis of symmetry. 
Assuming orthogonal transitivity, in coordinates (x0 ≡ t, x3 ≡ φ) adapted to ξα and ηa 
respectively the metric takes on its canonical form 
 

(28) 
 
with gab functions of x1≡ r and x2 ≡θ only. The quasi-Killing vector field 
 

(29) 
 
generates closed circular orbits around the symmetry axis with constant angular 
speed w along each orbit. The FS parameters and the tetrad can be determined either 
by the direct substitution of χa or by transforming to a rotating coordinate frame as 
discussed by Iyer & Vishveshwara (1993). They can be written in terms of the Killing 
vectors and their derivatives as follows.  

(30) 
(31) 

 
(32) 

 
 
 
 
 
 
 

(33) 
In the above, 
 
 
 

a a

a a

α

αα

 
 Ω 
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(34) 
 
where na is the unit vector along ζa = ξa – (ξbηb) /(ηcηc)  ηa and    Ƭ         i is the unit vector 
along the rotational killing vector ηa. We may note that all the above equations can
be specialized to a static spacetime by setting ξaηa=0 and ζa ≡ ξa 

The above expressions when specialized to the equatiorial planes of black hole
spacetimes are as follows. We have Ƭ2 = 0 so that gyroscopic precession is given by
Ƭ1 alone. 
Kerr: 
 

(35) 
 
 
Schwarzschild: 
 
 

(36) 
 
 

4.2 Inertial forces 
 

4.2.1 General formalism 
 
As has been mentioned earlier, in a recent paper Abramowicz et al. (1993) have 
formulated the general relativistic analogues of inertial forces in an arbitrary space- 
time. The particle four velocity ua is decomposed as  
 

(37) 
 
In the above, na is a globally hypersurface orthogonal timelike unit vector, a is the 
unit vector orthogonal to it along which the spatial three velocity υ of the particle is 
aligned and γ is the normalization factor that makes uaua = 1. 
Then the forces acting on the particle are written down as: 
 

Gravitational force  
Centrifugal force  

Ƭ 
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Euler force  

Coriolis-Lense-Thirring force  (38) 
where 
 
 
 
 (39) 

Here i is the unit vector along  i in the conformal space orthogonal to ni with the 
metric 
 

(40) 
 
One can show that the covariant derivatives in the two spaces are related by 
 

(41) 
 
We shall now apply this formalism to axially symmetric stationary Spacetimes. 

 
4.2.2 Inertial forces in axially symmetric stationary spacetimes 

 
As has been shown by Greene, Schiicking & Vishveshwara (1975), axially symmetric 
stationary spacetimes with orthogonal transitivity admit a globally hypersurface 
orthogonal timelike vector field  
 

(42) 
 
where the fundamental angular speed of the irrotational congruence is 
 

(43) 
 
The unit vector along ζα is identified with n. Further, if ua  follows a quasi Killing 
circular trajectory, then  i is along the rotational Killing vector ηa. In this case it is 
easy to show that V = 0 and hence the Euler force does not exist.  

More specifically, 
(44) 

Then we have 
 
 
 
 
 

(45) 
where 
 

(46) 

From the above relations, we can write down the inertial forces from their definitions 
as follows. 

 
 ~

  Ƭ ·

 Ƭ  Ƭ 
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Gravitational force 

(47) 
 
Centrifugal force 
 

(48) 
 
Coriolis-Lense-Thirring force 
 

(49) 
 
Where  
On the equatorial plane of the Kerr spacetime they reduce to
 

(50) 
 
 

(51) 
 
 

(52) 
 
where 
 
 
 
 
 
 
 
 
 
 

(53) 
 

4.2.3 Specialization to static spacetimes 
 
In a static spacetime the global timelike Killing vector ξα itself is hypersurface  

orthogonal. The unit vector na  is now aligned along ξα, 
 

(54) 
 
Then we have the inertial forces as follows: 
 

Gravitational force
 

(55)
where φ =    In (ξaξa ),½
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Centrifugal force 
 

(56) 
 
Coriolis-Lense-Thirring force is identically zero, 
 

57) 
In the specific example of the Schwarschild spacetime we have: 
 
 

(58) 
 

(59) 
 
 

4.3 Covariant connections 
 
In the preceding section we have derived expressions for τ1 and τ2 which give gyros- 
copic precession rate in terms of the Killing vectors. Similarly, inertial forces in an 
arbitrary axisymmetric stationary spacetime have also been written down in terms of 
the Killing vectors. All these quantities have been defined in a completely covariant 
manner. We shall now proceed to establish covariant connections between gyroscopic 
precession, i.e. the FS torsions  1 and  2, on the one hand and the inertial forces on 
the other. First, we shall consider the simpler case of static Spacetimes.
 

4.3.1 Static spacetimes 
 

We have derived in equation (31) and (32), the FS torsions   1 and    2 for a stationary 
spacetime. As has been mentioned earlier, for a static spacetime ξaηa= 0 and ζα =ξα 

 in the above equations as well as in the expressions for inertial forces. With this 
specialization; centrifugal force can be written from equation (56) as
 

(60) 
 
Substituting equation (60) in equations (31) and (32) we arrive at the relations 
 

(61) 
 
and 
 

(62) 
 
where 
 

(63) 
 
 
The equations above relate gyroscopic precession directly to the centrifugal force
The two torsions  1 and 2 , equivalent to the two components of precession, are

Ƭ Ƭ 

Ƭ Ƭ 

Ƭ Ƭ 
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respectively proportional to the scalar and cross products of acceleration and the 
centrifugal force. We shall discuss the consequences of these relations later on.
 

4.3.2 Stationary spacetimes
 
From equation (34) we have 
 
 
 
 
We decompose the angular speed ω with reference to the fundamental angular speed
of the irrortational congruence
 

(64) 
 
Then we have
 
 

(65) 
Similarly, we get 
 
 

(66) 
 
where 
 

(67) 
 
or equivalently 
 

(68) 
 
From equations (34), (65) and (66) we can show 
 
 
 

(69) 

Further, it is easy to see that Ca is directly proportional to Ca, 
 

(70) 
 
where Ca is the Coriolis-Lense-Thirring force. Then equation (69) takes on the form 

 

where Za is the centrifugal force. 
 

(71) 
 
where Za is the centrifugal force. 
  Substituting this in equation (31) for      we get the relation,
 

(72)

ω0 = – (ξa ηa)/ (ηaηa), 

Ƭ  2 1
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where 
 
 
 

(73) 
 
Again, from equation (32), we obtain the expression 
 
 

(74) 
 
These relations are more complicated than those we have derived in the static case 
Nevertheless, they closely resemble the latter with the centrifugal force replaced by 
the combination of centrifugal and Coriolis forces (Za +   1Ca). The static case 
formulae are obtained from those of stationary case by setting the Coriolis force to 
zero. 

A formula for gyroscopic precession in the case of circular orbits in axially 
symmetric stationary spacetimes was derived by Abramowicz, Nurowski & Wex (1995) 
within a different framework. We note that gyroscopics precession does not involve the 
gravitational force. In case of geodetic orbits, total force is zero but not the centrifugal 
and Coriolis force individually. Therefore gyroscopic precession is also nonzero even 
for geodetic orbits.

 

4.4 Reversal of gyroscopic precession and inertial forces 
 
The condition for the reversal of gyroscopic precession is given by 
 

(75) 
 

Since  and are linearly independent vector fields at each point, this condition 
is the same as requiring 
 

(76) 
 
In the case of static spacetimes,   1 ans   2  are directly related to the centrifugal force 
Zk. Therefore gyroscopic precession and centrifugal force reverse simultaneously. It 
can be shown that this happens at a photon orbit as borne out by the Schwarschild 
spacetime. In the case of stationary spacetimes there is no such correlations. This is
true in the case of the Kerr spacetime.

 

5. Gravi-electric and Gravi-magnetic fields 
 
Gravi-electric and gravi-magnetic fields are closely related to the idea of inertial 
forces. These fields with respect to observers following the integral curves of na can be 
defined as follows. 
 

Gravi-electric field: 
(77) 

 

β

Ƭ Ƭ 
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Gravi-magnetic field: 
 

(78) 
where Fab  is the dual of Fab, 
 

(79) 
 
In the above, as before, Fab = eψ(  a;b+      ηa;b)The equation of motion is 
 

(80) 
 
Projecting onto the space orthogonal to na with hab = gab — ηαηb and decomposing ua 
as given in (44), we get 
 

(81) 
 
where 7 is the normalization factor. This equation can be written in the form 
 

(82) 
 
or 
 

(83) 
 
We can therefore define 

Gravi-electric force:  
(84) 

 
Gravi-magnetic force: 
 

(85) 
 

5.1 Relations among gravi-electric, gravi-magnetic and inertial forces
 

5.1.1 Static case
 

We have defined the gravi-electric field Ea by 
yEa = yFacnc 

 
 
 

(86) 
So, 
 

(87)
 
Here Ga is the gravitational force. Similarly we have for the gravi-magnetic field

 

~

ωξ

If we substitute for F ab = e  (   a;b +      a;b), we getψξ ωη
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The second term in this equation is identically zero because the Killing vector field ξα 

and ηa commute and we get 
 
 
 

(88) 
 
The above relation clearly shows the connection between the gravi-magnetic force on 
the one hand and the gravitational and centrifugal forces on the other. 
 

5.1.2 Stationary case 
 
In the stationary case, na is given by equation (45). As before we decompose 

where ω0 is given by (43). Then a straightforward computation gives 
the expression for the gravi-electric field. 
 

(89) 
 
and the gravi-electric force, 
 

(90) 
 
This shows the relation of gravi-electric field or force to both gravitational and centri- 
fugal forces. In the stationary case also we have 
 

(91) 
 
Then it follows 
 
 
 
 

(92) 
 
Hence gravi-magnetic force is related to all the three inertial forces—gravitational,
centrifugal and Coriolis.  

 
5.2 Gravi-electric and Gravi-magnetic fields with respect to comoving frame

 
In the previous section we have defined gravi-electric and gravi-magnetic fields with
respect to the irrotational congruence. Similarly these fields can be defined with 
respect to the four velocity ua of the particle as follows.
 

Gravi-electric field: 
 

(93) 
Gravi-magnetic field: 
 

(94) 
Where Fab   is dual to Fab as before. The equation of motion takes the form 
 

(95) 

~

ω= ϖ +ω0
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Precession frequency can be written simply as
 

(96) 
 
Following Honig, Schücking & Vishveshwara (1974), Frenet-Serret parameters κ, 1  

 

and   2 can be expressed in terms of gravi-electric and gravi-magnetic fields. 
 

(97) 
 
where 
 

(98) 
 

(99) 
 
where 
 

(100) 
 

(101) 
and 
 

(102) 
 
Frenet-Serret tetrad components can also be expressed in terms of
 
 
 
 

(103) 
 
 
 
In reference (Honig, Schücking & Vishveshwara 1974), these expressions had been 
derived for charged particle motion in a constant electromagnetic field. We have now 
demonstrated the exact analogues in the case of gravi-electric and gravi-magnetic 
fields. The one-to-one correspondence is indeed remarkable. 

All this can be translated easily to the specific example of black holes since the 
required expressions have been given already. 

 

6. Conclusion 
 
The geometric structure and the physical phenomena associated with black holes offer 
a striking example of the general relativistic effects engendered by strong gravitational 
fields. Furthermore, rotation plays a pivotal role in distinguishing the properties of 
the Kerr black hole from those of the Schwarzschild black hole. In comparing and 
contrasting their properties and the consequent effects, the Killing fields admitted by

Ƭ 

Ƭ 
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the two spacetimes provide an elegant, simple and yet a powerful basis for detailed 
analysis. This is utilized in defining fundamental concepts and formalisms as in the 
definition of the global rest frame. Again, the Killing symmetries provide a covariant 
method for treating gravi-electromagnetism, gyroscopic precession and inertial forces. 
They are interrelated and can be synthesized in an appealing manner. There are many 
other topics in black hole physics that carry the stamp of rotation: radiation, 
thermodynamics, Mach’s principle, astrophysical applications such as accretion and so
on. All this is way beyond the scope of the present article.
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