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Abstract

Let M be a compact complex manifold of complex dimension two with a smooth Kahler

metric and D a smooth divisor on M. If E is a rank 2 holomorphic vector bundle on M with

a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on

E' = E|M\D compatible with the parabolic structure, and whose curvature is square integrable.

MIRAMARE - TRIESTE

January 2000



1 Introduction

Let M be a compact Kahler manifold of complex dimension 2, let ω be a Kahler metric on M.

Let D b e a smooth irreducible divisor in M, and let M = M\D. The restriction of Ω to M gives

a Kahler metric on M. For simplicity, we assume in this paper that E is a rank 2 holomorphic

vector bundle over M and let E' = E|M be the restriction of the bundle E to M.

We define [LN] the notion of a stable parabolic structure on E (along D) and the notion

of a Hermitian-Einstein metric on E' with respect to the restriction of the Kahler metric Ω to

M. We proved in [LN] that there exists a Hermitian-Einstein metric on E' compatible with

the parabolic structure. We prove in this paper that there exists in fact a Hermitian-Einstein

metric on E' (compatible with the parabolic structure) with the property that the curvature of

the metric is square integrable (Theorem 2.2). In the case of a projective surface, the square

integrability was proved by Biquard [B (4.2)] using a result of Simpson, while our proof is valid

with the Kahler case also.

Once we know the curvature of the H-E metric is in L2, it is in fact in Lp for p > 2 (Remark

2.4), and hence the metric defines a parabolic bundle on M as in [B, Theorem 1.1]. Since the

metric is also compatible with the given parabolic structure, both parabolic structures are the

same. Therefore proving the result that the curvature form of the H-E metric is in L 2 completes

our earlier paper and this is the motivation for this note.

2 The existence of a H-E metric

In this section we shall prove our main theorem. See [LN] for the definitions, such as Hermitian-

Einstein metrics, parabolic bundles, etc.

We need the following result proved in [LN], regarding the initial metric K0 on E'.

Lemma 2.1 ([LN] Lemma 5.2 and Proposition 6.6) Let (E,D,α1,α2) be a parabolic bundle.

Then there exists a Hermitian metric K0 on E' = E|M such that

a) the curvature form of K0, FK0 satisfies that |FK0|K0 S LP(M) for any 1 < p < p0 where

p0 = m i n l ^ 2 , ^ , ^ ^ } and |trFK0| e L

b) par deg E* = the analytic degree d(E, K0) and (E, D, α1, α2) is parabolic stable if and only

if (E, K0) is analytic stable.

Theorem 2.2 Let M be a compact Kahler manifold of complex dimension 2 and D a smooth

irreducible divisor of M. Let E be a rank 2 holomorphic vector bundle on M with a parabolic

structure E* = (E,D, α1,α2). If E* is parabolic stable there exists a Hermitian-Einstein metric

H on E' compatible with the parabolic structure and whose curvature form is square integrable

over M.

We shall modify Proposition 7.2 in [LN] and its proof to prove the theorem. The main



additional point is the derivation of an L 2 estimate for the curvature of the metrics arising in

the heat flow.

Proposition 2.3 Let (E, D, α1, α2) be a parabolic bundle. Then there exists a Hermitian metric

K G AK0 on E1 = E|M satisfying the heat equation

and det K = det K
0

on M, with \\\FK\K\\L2{M) < C, | | | A F ^ | X | | L P ( M ) < | | | A i ^ o | X o | | L P ( M ) , and \KFK\K e L°°(M)

for any t > 0, 2 < p < p0, where K0 is the metric constructed in Lemma 2.1, p0 is the constant

in Lemma 2.1, C > 0 is a constant depending only on K0.

Proof: Let Mβ = {x G M \ σ(x)| > β}, where 0 < β < 1, and consider the above

heat equation on Mβ with Neumann boundary condition. More precisely, we consider, writing

h = KQ1K, the equation

d ,— ± — - _x

^ Ko ~ Wr ~ K°~ Ko

on Mβ with h|t=0 = I, deth = 1, and -§^h\dMp = 0, where A^ o = — V—TA<9<9xo> §^ denotes the

differentiation in the direction perpendicular to the boundary using the operator 8K0-

In [LN] we used the Dirichlet boundary condition. We use Neumann boundary condition

here so that we have the fact that -§^_AF^\QM^ = 0, obtained by applying ^ to both sides of

the heat equation; this fact will enable us to apply the Stokes theorem for deriving the relation

(2) below.

It was proved in [S] that this heat equation with Neumann boundary condition has a solution

for all time. We denote the solution by Kβ for each β. Let hβ = KQ1K^.

By an argument similar to the one used in the proof of Proposition 7.2 in [LN], we can

show that, there exist a sequence βi ^ 0 and a Hermitian metric K G AK0 such that for any

relatively compact open subset Z', any δ > 0, and any R > 0, Kβ i^ K in Lp

2/1(Z x [δ, R]) for

any 1 < p < oo. By the Sobolev embedding, we have Kβ —> K in C1/°(Z x [δ, R]). Therefore

the limit K satisfies the heat equation on M x (0, oo) and thus belongs to C°°(M x (0, oo)). We

can also show that | | | A F ^ | K | | L P ( M ) < HlAi^ol^olUrCM) and \AFK\K e L°°(M) for any t > 0,

2 < p < p0, as we did in [LN].

Now we derive the L2 bound of the curvature.

By the formula dxp = 9K0 + hZlcJKohp and the fact that ^AF^IQM^ = 0 we can see that

d

driR
= 0 (1)

where ^ - denotes the differentiation in the direction perpendicular to the boundary using the

operator



Because det hβ = 1, we have trFKβ = trFK0 for all t, and

Using the above identity we get

d

KβdV

2Re (ddKf)AF£ F£)Kf)dV
J Ma

Mp

= -2Re I Vi{Fk,)i\l • Vk{Fkp)S\jdV (by (1) and Stokes theorem)
•J Mp

= -2Ref Vi{Fkp)-rS\r V^F^^dV (by Bianchi identity)
J Mp

< 0, (2)

Letting β —>• , using Fatou's lemma, we get

/ \Fk\2

KdV<f \FkfKodV.
J K KM

Since |trFK0| e L°°(M) and trFK = trFK0, we have

/ \FK\2

KdV<C.
M

This completes the proof of the proposition.

Proof of the main theorem: As in the proof of Theorem 7.3 in [LN], the metric K(t)

converges to a Hermitian-Einstein metric H (as t —> ) compatible with the parabolic structure.

On the other hand, by Proposition 2.3 we have IH-FVIKIIL^M) < C. It follows from Fatou's lemma

that |FH|H e L 2 (M).

Remark 2.4 Once we know that the curvature form of the H-E metric is in L2, then it belongs

in fact to Lp, for p > 2, as implied by the result of Sibner-Sibner [SS Theorem 5.1 and Theorem

5.2] (see [B (4.2)]).

Remark 2.5 Conversely, if E1 is a holomorphic vector bundle over M and admits a Hermitian-

Einstein metric H with \\\FH\H\\LP(M) < °°; for some p > 2, one can show (cf. [B], Theorem

1.1) that E' can be extended to a holomorphic vector bundle E over M with a parabolic structure

along D and such that H is compatible with the parabolic structure. Moreover E is parabolic

poly stable (cf. [B] and [LN]).

Remark 2.6 We can use our existence theorem to derive a Bogomolov Chern number inequality

for parabolic bundles (cf. [L]). For the case of projective varieties see Biswas [Bs].
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