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Site symmetry and internal strains
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Abstract. The determination of the internal straing on the coupling parameter
approach becomes very involved particularly when the number of atoms per unit’
cell is very large. It is shown in this paper that a knowledge of the site symmetry
of the atoms helps one in determining the number of non-vanishing internal strain
coefficients easily. The internal strain coefficients of two symmetry connected
atoms can also be related. Examples are shown to illustrate these ideas.
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1. Introduction

When a crystal lattice is macroscopically strained, there is a relative displace-
ment between the sublattices. If we indicate a given sublattice by the symbol X,

then the displacement u; (]Ig.) of an atom of this sublaitice in cell L under a

macroscopic strain is given by

() =21 () + W) oo

R .

Here 7, j are component indices, R (_{;) is the position vector of atom ( é) in the
-

unstrained state, n;; are the Lagrangian strain components and W(K) ihe internal

displacement of the Kth sublattice. The 7,, are defined in terms of the defor-

mation components e; = 8x;[dx; (x. are the coordinates of a particle in the

strained state and x; are the coordinates in the unstrained state) by
my =% (e + €t fj xi €)- (1.2)

4 . . . '
The internal displacement W (K) can be expanded as a power series in the macroe
scopic strain 7, as

Wi(K)=2 Ty (K)7p +ﬂ21 T g1yt () M5 M1 (1.3)
ik : Im

However it has been shown by Born and Huang (1968) for second order elastic
constants and piezoelectric constants and by Srinivasan (1966) for third order
elastic constants, that only the first term in the above expansion is important. The
constants I', 4 (K) are determined either by minimising the elastic energy density
with respect to internal displacements in the method of homogeneous defor-
mation or by solving for the first orderequation of motion in the method of long
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waves. However a straightforward application of this method involves the
inversion of a (3n — 3) x (3n — 3) matrix where nis the total number of sublattices
present (i.e.), the number of atoms in the unit cell. This is a very cumbersome
procedure when the number of atoms in the unit cell is large, for example, eight
in V,Si and ten in Calcite.

The internal displacements can be observed by x-ray diffraction. In displacive
transitions a knowledge of the type of internal displacements caused by anisofropic
thermal expansion (if the transition is temperature induced) or by pressure (if
it is pressure induced) is useful.

In this paper it is shown that the site symmetry of an atom completely fixes the
number of non-vanishing coefficients of I, ,, (X) and so one could get useful
information about these internal displacements from symmetry consideration.
A knowledge of the number of non-vanishing coefficients and the way the internal
displacement components of two symmetry connected atoms are related reduces

the labour involved in expressing I, , (K) in terms of the force constants of a
model. '

Section 2 deals with site symmetry and ihe internal strains and relations among
internal strain coefficients I'; ;;, (K) of symmetry related atoms. Section 3 illus-
trates the application of the results in section 2 to a few crystals.

2. Symmetry and internal strain cocfficients I, (K)

The internal strain coefficient I'; , (K) is a third rank polar tensor having the

symmetry I’y (K)==Iy;;(K). This tensor is similar to the piezoelectric

constant tepsor tabulated in Cady (1964) and Nye (1960) for the 32 point groups.

However this tensor will noi depend on the point group of the crystal as a whole

but on the site symmetry of the given atom in the crystal which will be a subgroup

of the point group, For example a crystal like CaF, has the O, point group and

" so the piezoelectric tensor is zero for this crystal. However ihe point group
symmetry at the site of Fis T, and so I';, (F)is not identically zero. So to

find the non-vanishing components of I, ., (K) we have to find the point group

representing the site symmetry at X and then look up the tables of the piezoelectric

tensor for this point group. In particular if ihe site symmetry of an atom involves
a centre of inversion then ihere will be no iniernal displacement for this sublattice

'

Le: S be a symmne'ry operation of the crystal which carries a sublatiice X to
a sublattice K'. If §,; are the elements of the 3 x 3 matrix representing the
transformation S, then,

Pi,,k(K’) = 2§, SmSknFl,mn(K) (2- 1)

lm

This is the law of transforma’ion of a third rank polar tensor. Using this we
may determine the internal strain coefficients of one sublattice from that of
another symmetry related sublattice.

3. Application of the above results to a few crystals

(i) NaC! and CsCl structures

Here the metal and chlorine ions are both situated at centres of inversion
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symmetry. So the internal strain coefficients are zero for both sublattices. In
these crystals a macroscopic strain does not cause any internal displacements.

(ii) Germanium structures

There are two atoms in the unit cell Ge (1) and Ge(2). The site symmetry of
the germanium atomis T;. From the tables of the piezoelectric constants in Cady,
the only non-vanishing internal strain coefficients are

I’n,n (K) = I’u,n (K) = Fz,au (K)

where K =1 or 2. This shows that a shear strain 7,, causes a displacement of
the germanium atom along the x axis. Since Ge (1) sublattice is carried to Ge 2
sublattice by inversion about a point midway between the Ge (1) and its neares
neighbour Ge (2),

T @) =—T 5 1) 3.1

So there is only one internal strain coefficient to be determined in this case. This
is in agreement with the lattice dynamical calculations on germanium by Srini-
vasan (1967).

(iii) CaF, structure

As already pointed out Ca is at a centre of inversion symmeiry and each of th®
two fluorine sublattices have a site symmetry T;. The sublattice F, is carried
to the sublattice F, by inversion at calcium. So

Ty (F) = — Ty (Fp) (3-2)
and the only non-vanishing coefficient of I, , (Fy) is I, ,, (F;) and
I’aﬂll (Fl) = Fu,zz (FI) = Fz,au (Fl) (3 3)

This is in agreement with Srinivasan’s (1968) resulis on CaF,.

(iv) V,Si structure

This lattice is cubic. It ‘has eight atoms in the unit cell. Si (1) is located at the
corners of a cube while Si (2) is at the body centre. V(1) and V(2) are situated
on either side of the centre of the (100) face of the cube at a distance a,/2 from
the centre on a line parallel to the y axis. V (3) and V (4) are similarly situated
on the (010) face on a line parallel to the z axis and V (5) and V (6) are situated
on the (001) face on a line parallel to the x axis.

The position coordinates of the ions are given in table 1 for reference. The site
symmetry at Si(l) and Si(2) has a centre of inversion symmetry. So

Ty (Si(1) = T (S1(2) =0 (3-4)

The silicon atoms suffer no internal displacement on applying a macroscopic
strain. The site symmetry at the site of V(1) is C,, with the two fold axis along
y and mirror planes yz and yx. From Cady’s tables we have

Py (V (1), Ty (V (D), Ly (V- (1)) Ty (V (1)), Ty (V (1))

as the only non-vanishing coefficients. Also we get V (2) from V (1) by inversion

\.
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Table 1, Position coordinates of the atoms in V,Si

Atom Position

Si(1) a,(0,0,0)

Si(2) “ap (1,1, 1)

V(1) a, (0, 1/2, 1)
Y (2 aq (0, 3/2, 1)
V@3 a, (1,0, 1/2)
V(4 a, (1, 0,3/2)
V(5) ay(1/2,1,0)
V (6) 2,(3/2, 1, 0)

2a, is the lattice constant of the crystal.

at a point midway between them. So
(V@) =—Tpn (VD) (3.5)

i.e., for a given strain the sublattices V (1) and V (2) will be displaced in oppo-
site directions by an equal amount. So also for V (3) and V (4), V (5) and V (6).
The non-vanishing elements of the internal strain coefficients for V (3) and V (5)
can be obtained from those for V (1) by finding the symmetry operations which
carry the V (1) sublattice.to the V (3) and V (5) sublattices respectively. The
symmetry operation is a rotation by 120 and 240° about the three-fold axis along
the (111) direction. This gives the following relations:

Ps,w (V (1)) = Py,w (V (3)) = -Pz,nx (V (5))

Pﬂ,u (V (1)) = Pz,z/y (V (3)) = Fc,u (V (5))

I B (V (1)) =T £,88 (V (3)) =T ¢,%a (V (5))

Py,az v (1)) = Fz,n (V (3)) = Pa,w v (5)) _

Tops V(1)) =Ty (V3) = T,y (V (5). (3.6)

So we see that symmetry considerations tell us that out of the 144 possible internal
strain coefficients only five are non-zero and independent. Recently Prabhakaran
Nayar and Viswanathan (1975) have calculated the internal strain coefficients of
V,Si by the method of long waves on a model using the DeLaunay’s central and
non-central force constants for nearest neighbour V-V and Si-V interactions and
the results obtained by them are in complete agreement with the symmetry relations
obtained above. In fact irrespective of the model used the above relations among
the internal strain coefficients should be satisfied. The long wave method as
mentioned in the introduction is cumbersome and involves the inversion of matrices
of large order. However the same internal strain coefficients can be calculated
from a knowledge of the relations derived from symmetry above and using the
homogeneous deformation method of Born and Huang. The strain energy density
will now involve only the five independent internal strain coefficients which can
be obtained by minimising the strain energy with respect to the corresponding
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internal displacements, The internal displacements in V,Si have been calculated
by us using the above procedure and the expressions are in complete agreement
with those of Prabhakaran Nayar and Viswanathan (1975).

(v) Calcite structure

Calcite belongs to the trigonal system and has a point group symmetry D,,. The
z-axis is a three-fold axis of symmetry and there are ten atoms in the rhombohedral
unit cell, two calciums, two carbons and six oxygens. Figure 1 shows the arrange-
ment of atoms in the unit cell. We choose the x-axis to be along C (1)-O (3).
The site symmetries at various sites are as follows: (@) The two calciums are
located at sites of inversion symmetry. So

Tip (C2(1)) =Ty (C2(2)) =0 ' 3.7

They do not undergo any internal displacements when the lattice is strained. )
The C (1) has a site symmetry of D,. From Cady’s tables for the piezo-electric
tensor we have the following non-vanishing coefficients:

Tm,l!a; (C (1)) = '—"Pa,w (C (1)) = "—Pu,zu (C (l)) (3 .8)

Lo CW)=—T,,(C(1). | (3.9)
So to describe the internal displacement of C (1) we need only two independent

"~ constants.

We also see that C (1) and C(2) are related by inversion about Ca (1). So

IPpC)=—TI4(C(®2) (3.10)
(c) The oxygen O (3) lies along the x-axis on a two-fold axis of symmerty. Its
site symmetry is C,. We have therefore

Tays (0 (3)): I'y,0a (O (3))s Ty (O (3))s L' (O (3)), Iy, (O 3))
Ty,00 (O (3)) Ta,2 (O (3)); Ty,as (O(3)).
From O (3) we may go to O (2) by a 120° rotation about the three-fold axis through

S ()
X 0Ol O

Figure 1, Unit cell of calcite,
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C(1). The law of transformation leads to the non-vanishing constants of O (2)
in terms of the constants for O (3). We give below two such relations:

Fw O @)= 9:(1’ 2 (OGN =371, (00) (3-11)
Il (0(2) = ( 0 (O () +30,, (0B)+61,,,000) (3-12)

The internal strain coefficients I'; , (O (1)) can be obtained similarly. The internal
strain coefficients of O (4), O (5) and O (6) can be obtained by inverting O (1)
O (2) and O (3) through Ca(l). So

Ly (O (1) = — iz (0 (4)); T (0@2) = —Tiy (O (5)
Typ (0 (3) = —TI'; (O (6)). (3:13)

Thus in calcite the number of non-vanishing independent internal strain coeffi-
cients are ten.

The above examples suffice to illustrate the usefulness of the symmetry argu-
ments. There is one point to be made here. If an atom lies at a special posi-
tion in the lattice, then a hydrostatic stress willnot move the atom from this special
position. So we must expect the I ;, (K) for such atomsto satisfy the condition
% T, ;(K)=0. This may actually be apparent from the coefficients deduced
i

by the application of symmetry. For example, C (1) in calcite for which
lowC)=—T,,CWM) and I,,(CL)=0. (3.14)

On the other hand there will be cases where this condition is in addition to that
demanded by symmtery. For example in V,Si

I'il,w (V (1)) + I v,a0 (V (1)) + [ U8 (V (1)) =0 (3 . 15)

because V(1) is at a special position in the lattice. In fact any calculation of
these coefficients from a force constant model must satisfy the above condition.
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