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LIMITS OVER CATEGORIES OF EXTENSIONS

ROMAN MIKHAILOV AND INDER BIR S. PASSI

Abstract. We consider limits over categories of extensions and show how certain well-known
functors on the category of groups turn out as such limits. We also discuss higher (or derived)
limits over categories of extensions.

1. Introduction

Let k be a commutative ring with identity, and let C be one of the following categories:
the category Gr of groups, the category Ab of abelian groups, the category Assk of associative
algebras over k. Given an object G ∈ C, let ExtC(G) be the category whose objects are the
extensions H ֌ F ։ G in C with G as the cokernel, and the morphisms are the commutative
diagrams of short exact sequences of the form

H1
� � //

��

F1
// //

��

G

H2
� � // F2

// // G.

It is clearly natural to consider also the full subcategory FextC(G) of ExtC(G) which consists of
the short exact sequences H ֌ F ։ G where F is a free object in C. The category ExtGr(G)
has been studied extensively from the point of view of the theory of cohomology of groups (see,
for example, [6], [7]). The general question which we wish to address here can be formulated
as follows: how can one study the properties of objects G ∈ Ob(C) from the properties of the
category FextC(G)?

Let C be a small category and F : C −→ C a covariant functor. The inverse limit lim
←−

F

of F, by definition, consists of those families (xc)c∈C in the direct product
∏

c∈C F(c) which
are compatible in the following sense: For any two objects c, c′ ∈ C and any morphism
a ∈ HomC(c, c′), we have F(a)(xc) = xc′ ∈ F(c′). Let F, G be two functors from C to the
category C. Then a natural transformation η : F −→ G induces a homomorphism

lim
←−

η : lim
←−

F −→ lim
←−

G,

by mapping any element (xc)c∈C ∈ lim
←−

F onto (ηc(xc))c∈C ∈ lim
←−

G. In this way, lim
←−

itself

becomes a functor from the functor category C
C to the category C.

Our aim in this paper is to consider the categories ExtC(G), FextC(G) and limits lim
←−

F for

functors FG : ExtC(G) → Gr, FG : FextC(G) → Gr. Suppose these functors are natural in the
following sense:

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291551482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0904.0634v2


2 ROMAN MIKHAILOV AND INDER BIR S. PASSI

Given a morphism α : G1 → G2 in C, every commutative diagram of the form

H1
� � //

��

F1
// //

��

G1

α

��

H2
� � // F2

// // G2

induces a homomorphism of groups

FG1
{H1 ֌ F1 ։ G1} → FG2

{H2 ֌ F2 ։ G2},

compatible with morphisms in ExtC(G1) and ExtC(G2), i.e., every commutative diagram of the
form

(1) H ′1
� � //

~~~~
~~

~~
~~

F ′1

����
�
�
�
�
�

// // G1

α

~~~~
~
~
~
~
~
~

H ′2

��

� � //

��

F ′2

��

// //

��

G2

H1
� �

~~||
||

||
||

// F1

~~}}
}
}
}
}
}

// // G1

α

~~||
||

||
||

H2
� � // F2

// // G2

induces the following commutative diagram of groups

(2) FG1
{H ′1 ֌ F ′1 ։ G1} //

��

FG1
{H1 ֌ F1 ։ G1}

��

FG2
{H ′2 ֌ F ′2 ։ G2} // FG2

{H2 ֌ F2 ։ G2}.

In that case the limit of the functors over categories of extensions defines a functor C→ Gr

by setting G 7→ lim
←−

FG.

To clarify our point of view further, let us recall some known examples which have motivated
our present investigation. Let C = Gr, G a group, Z[G] its integral group ring and M a Z[G]-
module. For n ≥ 1, define the functor

(3) Fn : FextC(G)→ Ab

by setting
Fn : {R ֌ F ։ G} 7→ (Rab)

⊗n ⊗Z[G] M,

where Rab denotes the abelianization of R, the action of G on R⊗n
ab is diagonal and is defined

via conjugation in F . It is shown by I. Emmanouil and R. Mikhailov in [4] that lim
←−

Fn is
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isomorphic to the homology group H2n(G, M):

(4) lim
←−

Fn ≃ H2n(G, M).

For any group G and field k of characteristic 0 viewed as a trivial G-module, the homology
groups Hn(G, k), n ≥ 2, appear as inverse limits for suitable natural functors defined on the
category ExtGr(G) (see [5] for details).

Consider the category C = AssQ of associative algebras over Q, the field of rationals. For
integers n ≥ 1, and an associative algebra A over Q, consider the functors

Fn : ExtC(A)→ Q-modules

given by setting

(5) Fn : {I ֌ R ։ A} 7→ R/(In+1 + [R, R]),

where [R, R] is the Q-submodule of R, generated by the elements rs − sr with r, s ∈ R. It
has been shown by D. Quillen in [11] that the inverse limit lim

←−
Fn is isomorphic to the even

cyclic homology group HC2n(A, Q):

(6) HC2n(A, Q) ≃ lim
←−

Fn.

Furthermore, the Connes suspension map S : HC2n(A, Q)→ HC2n−2(A, Q) can be obtained
as follows:

HC2n(A, Q)

S

��

lim
←−

Fn

��

HC2n−2(A, Q) lim
←−

Fn−1

where the right hand side map is induced by the natural projection

R/(In+1 + [R, R])→ R/(In + [R, R]).

The motivation for our investigation should now be clear from the above examples: one takes
quite simple functors, like (3) and (5), on the appropriate categories of extensions and asks
for the corresponding inverse limits. It is then also natural to consider the derived functors

lim
←−

i : Ab
Fext(G) → Ab

of the limit functor. Every functor F : FextC(G)→ Ab which is natural in the above-mentioned
sense (see diagrams (1) and (2)) determines a series of functors C → Ab by setting G 7→
lim
←−

i
F ∈ Ab, i ≥ 0.

We now briefly describe the contents of the present paper. We begin by recalling in Section
2 two properties of the limits given in [4] and [5]. The first (Lemma 2.1) provides a set of
vanishing conditions for lim

←−
F while, the second states that lim

←−
F embeds in F(c0) for every

quasi-initial object c0. In Section 3 (Theorems 3.1 and 3.4) we show how the derived functors
in the sense of A. Dold and D. Puppe [3] of certain standard non-additive functors on Ab, like
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tensor power, symmetric power, exterior power, are realized as limits of suitable functors over
extension categories. In Section 4 we discuss higher limits and prove (Theorem 4.4) that for
the functor

F : FextGr(G)→ Ab, (R ֌ F ։ G) 7→ R/[F, R],

lim
←−

1F is non-trivial if G is not a perfect group. We conclude with some remarks and possi-

bilities for further work in Section 5.

2. Properties of limits recalled

Recall that the coproduct of two objects a and b in a category C is an object a ⋆ b which is
endowed with two morphisms ιa : a −→ a⋆ b and ιb : b −→ a⋆ b having the following universal
property:

For any object c of C and any pair of morphisms f : a −→ c and g : b −→ c,
there is a unique morphism h : a ⋆ b −→ c, such that h ◦ ιa = f and h ◦ ιb = g.
The morphism h is usually denoted by (f, g).

We recall from [4] the following Lemma which provides certain conditions which imply the
triviality of the inverse limit.

Lemma 2.1. [4] Let C be a small category and F : C −→ Ab a functor to the category of
abelian groups, and suppose that the following conditions are satisfied:

(i) Any two objects a, b of C have a coproduct (a ⋆ b, ιa, ιb) as above.

(ii) For any two objects a, b of C the morphisms ιa : a −→ a ⋆ b and
ιb : b −→ a ⋆ b induce a monomorphism

(F(ιa), F(ιb)) : F(a)⊕ F(b) −→ F(a ⋆ b)

of abelian groups.

Then, the inverse limit lim
←−

F is the zero group.

Indeed, let (xc)c∈Ob(C) ∈ lim
←−

F be a compatible family and fix an object a of C. We consider

the coproduct a ⋆ a of two copies of a and the morphisms ι1 : a −→ a ⋆ a and ι2 : a −→ a ⋆ a.
Then, we have

F(ι1)(xa) = xa⋆a = F(ι2)(xa)

and hence the element (xa,−xa) is contained in the kernel of the additive map

(F(ι1), F(ι2)) : F(a)⊕ F(a) −→ F(a ⋆ a).

In view of our assumption, this latter map is injective and hence xa = 0. Since this is the case
for any object a of C, we conclude that the compatible family (xc)c∈Ob(C) vanishes, as asserted.

We next mention another property of the limit functor. Recall that an object c0 of a
category C is called quasi-initial if the set HomC(c0, c) is non-empty for every object c of C.
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Lemma 2.2. [5] Let C be a category with a quasi-initial object c0. Then, for any functor
F : C −→ Ab, the natural map

lim
←−

F→ F(c0)

is injective, whereas its image consists of those elements x ∈ F(c0) which equalize any pair of
maps F(fi) : F(c0)→ F(c), i = 1, 2, where f1, f2 ∈ HomC(c0, c) (i.e., F(f1)(x) = F(f2)(x)).

Observe that given the category C and an object G ∈ Ob(C), the category FextC(G) consists
of quasi-initial objects.

3. Derived functors of certain functors on Ab

In this section we study the limits lim
←−

F for certain functors F ∈ Ab
FextAb(A) for abelian

groups A.

To fix notation, let ⊗n : Ab → Ab, n ≥ 1, be the n-th tensor power functor A 7→ A⊗n :=
A⊗ · · · ⊗ A
︸ ︷︷ ︸

n terms

. The symmetric group Σn of degree n acts naturally on A⊗n :

(7) σ(x1 ⊗ · · · ⊗ xn) = xσ(1) ⊗ · · · ⊗ xσ(n), xi ∈ A, σ ∈ Σn.

We thus have the n-th symmetric power functor SP n : Ab→ Ab with SP n(A) = A⊗n modulo
the subgroup generated by the elements σ(x1⊗· · ·⊗xn)−xσ(1)⊗· · ·⊗xσ(n), xi ∈ A, σ ∈ Σn.
The n-th exterior power functor Λn : Ab → Ab is defined by A 7→ A⊗n modulo the subgroup
generated by the elements x1 ⊗ . . .⊗ xn with x1, . . . , xn ∈ A and xi = xi+1 for some i. The
n-th divided power functor Γn : Ab → Ab is defined, for A ∈ Ab, to the n-th homogeneous
component of the graded group Γ∗(A) generated by symbols γi(x) of degree i ≥ 0 satisfying
the following relations for all x, y ∈ A:

(i) γ0(x) = 1

(ii) γ1(x) = x

(iii) γs(x)γt(x) =

(
s + t

s

)

γs+t(x)

(iv) γn(x + y) =
∑

s+t=n

γs(x)γt(y), n ≥ 1

(v) γn(−x) = (−1)nγn(x), n ≥ 1.

In particular, the canonical map A → Γ1(A) is an isomorphism. It is known that, for a free
abelian group A, there is a natural isomorphism

Γn(A) ≃ (A⊗n)Σn, n ≥ 1

where the action of the symmetric group Σn on A⊗n is defined as in (7).

Let n ≥ 0 be an integer, and T an endofunctor on the category Ab of abelian groups. The
doubly indexed family LiT (−, n) of derived functors, in the sense of Dold-Puppe [3], of T are
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defined by

LiT (A, n) = πiTN−1P∗[n], i ≥ 0, A ∈ Ab,

where P∗[n]→ A is a projective resolution of A of level n, and N−1 is the Dold-Kan transform,
which is the the inverse of the Moore normalization functor

N : S(Ab)→ Ch(Ab)

from the category of simplicial abelian groups to the category of chain complexes (see, for
example, [10], pp. 306, 326; or [12], Section 8.4). For any functor T , we set

LiT (A) := LiT (A, 0), i ≥ 0.

For abelian groups B1, . . . , Bn, let the group Tori(B1, . . . , Bn) denote the i-th homology
group of the complex P1⊗· · ·⊗Pn, where Pj is a Z-flat resolution of Bj for j = 1, . . . , n. We
clearly have

Tor0(B1, . . . , Bn) = B0 ⊗ · · · ⊗Bn, Tori(B1, . . . , Bn) = 0, i ≥ n.

It turns out from the Eilenberg-Zilber theorem that the derived functors of the n-th tensor
power can be described as

Li ⊗
n (A) = Tori(A, · · · , A

︸ ︷︷ ︸

n terms

), 0 ≤ i ≤ n− 1.

We will use the following notation:

Tor[n](A) := Torn−1(A, · · · , A
︸ ︷︷ ︸

n terms

), n ≥ 2.

Theorem 3.1. For n ≥ 2, there is an isomorphism of abelian groups

Tor[n](A) ≃ lim
←−

(F⊗n/H⊗n), A ∈ Ab,

where the limit is taken over the category FextAb(A) of free extensions H ֌ F ։ A in the
category Ab.

To proceed with the proof, we first recall the following result which is well-known.

Lemma 3.2. Let A = F1/H1, B = F2/H2, where F1, F2 are free abelian groups. Then there
is an isomorphism of abelian groups

Tor(A, B) =
(H1 ⊗ F2) ∩ (F1 ⊗H2)

H1 ⊗H2
,

where the intersection is taken in F1 ⊗ F2.

Indeed, the above result follows directly from the exact sequence of abelian groups

0→ Tor(A, B)→ H1 ⊗ B → F1 ⊗B → A⊗B → 0

and isomorphisms H1 ⊗B ≃ (H1 ⊗ F2)/(H1 ⊗H2), F1 ⊗B ≃ (F1 ⊗ F2)/(F1 ⊗H2).
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Lemma 3.3. Let A = F/H, where F is a free abelian group. Then, for every n ≥ 2, there is
an isomorphism of abelian groups

Tor[n](A) ≃

⋂n

i=1(H
⊗i−1 ⊗ F ⊗H⊗n−i)

H⊗n

where the intersection is taken in F⊗n.

Proof. Observe that

(8) Tor[n](A) ≃ Tor(Tor[n−1](A), A), n ≥ 3.

To see (8), one can apply the Künneth formula to the tensor product of the chain complexes
P ⊗ · · ·⊗P (n− 1 times) and P , where P is a projective resolution of A. The Lemma follows
by inductive argument and Lemma 3.2. �

Proof of Theorem 3.1. Given A = F/H, where F is a free abelian group, consider the following
exact sequence of abelian groups:

(9) 0→ Tor[n](A)→ F⊗n/H⊗n → F⊗n/
n⋂

i=1

(H⊗i−1 ⊗ F ⊗H⊗n−i)→ 0.

The sequence (9) is natural in the following sense: any morphism in FextAb(A), say
f : (F1, π1) → (F2, π2) (with H1 = ker(π1), H2 = ker(π2)) implies the commutative dia-
gram

0 // Tor[n](A) // F⊗n
1 /H⊗n

1
//

��

F⊗n
1 /

⋂n

i=1(H
⊗i−1
1 ⊗ F1 ⊗H⊗n−i

1 )

��

0 // Tor[n](A) // F⊗n
2 /H⊗n

2
// F⊗n

2 /
⋂n

i=1(H
⊗i−1
2 ⊗ F2 ⊗H⊗n−i

2 )

Since the inverse limit functor is left exact in Ab
FextAb(A), we obtain a natural monomorphism

(10) Tor[n](A) →֒ lim
←−

F⊗n/H⊗n, n ≥ 2.

Given a free presentation A = F/H in Ab, consider the two morphisms in FextAb(A)

(11) 0 // H //

��

F //

f1, f2

��

A // 0

0 // F ⊕H // F ⊕ F // A // 0

given by setting:

f1 : g 7→ (0, g), g ∈ F,

f2 : g 7→ (g, g), g ∈ F.
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Let α ∈ F⊗n/H⊗n be an element which belongs to the equalizer of the maps

f ∗1 , f ∗2 : F⊗n/H⊗n →
(F ⊕ F )⊗n

(F ⊕H)⊗n

induced by f1, f2 respectively. Express α as a coset

α = (
∑

i

gi
1 ⊗ · · · ⊗ gi

n) + H⊗n, gi
j ∈ F.

Identifying (F⊕F )⊗n

(F⊕H)⊗n with
⊕

(i1, ..., in)∈{0, 1}n
F⊗n

Ci1
⊗···⊗Cin

where C0 = F and C1 = H , we can

describe f ∗i (α), i = 1, 2, as

f ∗1 (α) = (0, . . . , 0,
∑

i

gi
1 ⊗ · · · ⊗ gi

n)

f ∗2 (α) = (
∑

i

gi
1 ⊗ · · · ⊗ gi

n, . . . ,
∑

i

gi
1 ⊗ · · · ⊗ gi

n)

Since α lies in the equalizer of f ∗1 and f ∗2 , we conclude that

∑

i

gi
1 ⊗ · · · ⊗ gi

n ∈
n⋂

i=1

(H⊗i−1 ⊗ F ⊗H⊗n−i).

The category FextAb(A) clearly consists of quasi-initial objects; hence Lemma 2.2 implies that
the natural map (10) is an isomorphism and the theorem is proved. �

Theorem 3.4. For every abelian group A and integer n ≥ 2, there are natural isomorphisms

Ln−1SP n(A) ≃ lim
←−

Λn(F )/Λn(H)(12)

Ln−1Λ
n(A) ≃ lim

←−
Γn(F )/Γn(H)(13)

where the limits are taken over the category FextAb(A) of free extensions H ֌ F ։ A.

Proof. Given a free extension

0→ H
f
→ F → A→ 0

the Koszul complexes

(14) 0→ Λn(H)
κn→ Λn−1(H)⊗ F

κn−1

→ · · ·
κ2→ H ⊗ SP n−1(F )

κ1→ SP n(F )

and

(15) 0→ Γn(H)
κn

→ Γn−1(H)⊗ F
κn−1

→ · · ·
κ2

→ H ⊗ Λn−1(F )
κ1

→ Λn(F )

represent models of the objects LSP n(A) and LΛn(A) in the derived category (see [9], Propo-
sition 2.4 and Remark 2.7). In these complexes, the maps

κk+1 : Λk+1(H)⊗ SP n−k−1(F )→ Λk(H)⊗ SP n−k(F ), k = 0, . . . , n− 1

κk+1 : Γk+1(H)⊗ Λn−k−1(F )→ Γk(H)⊗ Λn−k(F ), k = 0, . . . , n− 1



LIMITS OVER CATEGORIES OF EXTENSIONS 9

are defined by setting:

κk+1 : p1 ∧ · · · ∧ pk+1 ⊗ qk+2 . . . qn 7→

k+1∑

i=1

(−1)k+1−ip1 ∧ · · · ∧ p̂i ∧ · · · ∧ pk+1 ⊗ f(pi) qk+2 . . . qn

p1, . . . , pk+1 ∈ H, qk+2, . . . , qn ∈ F.

and

κk+1 : γr1
(p1) . . . γrk

(pk)⊗ q1 ∧ . . . ∧ qn−k−1 7→

k∑

j=1

γr1
(p1) . . . γrj−1

(pj) . . . γrk
(pk)⊗f(pj)∧q1∧. . .∧qn−k−1, p1, . . . , pk ∈ H, q1, . . . , qn−k−1 ∈ F

In particular, the homology groups of complexes (14) and (15) are isomorphic to the derived
functors LiSP n(A) and LiΛ

n(A) respectively. If f : H → F is the identity map and A = 0,
the complexes (14) and (15) are acyclic complexes. The commutative diagram

H
� � f //

� _

f

��

F

F F

implies the following diagrams with exact columns:

(16) Λn(H)
� _

��

� � κn // Λn−1(H)⊗ F
� _

��

κn−1 // . . . κ2 // H ⊗ SP n−1(F )
� _

��

κ1 // SP n(F )

Λn(F )

����

� � // Λn−1(F )⊗ F //

����

. . . // F ⊗ SP n−1(F )

����

// SP n(F )

Λn(F )
Λn(H)

// Λn−1(F )
Λn−1(H)

⊗ F //// . . . // A⊗ SP n−1(F ),

(17) Γn(H)
� _

��

� � κn
// Γn−1(H)⊗ F

� _

��

κn−1

// . . . κ2

// H ⊗ Λn−1(F )
� _

��

κ1

// Λn(F )

Γn(F )

����

� � // Γn−1(F )⊗ F //

����

. . . // F ⊗ Λn−1(F )

����

// Λn(F )

Γn(F )
Γn(H)

// Γn−1(F )
Γn−1(H)

⊗ F //// . . . // A⊗ Λn−1(F ).
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Since the middle horizontal sequences in the diagrams (16) and (17) are exact, we obtain the
following exact sequences:

0→ Ln−1SP n(A)→
Λn(F )

Λn(H)
→

Λn−1(F )

Λn−1(H)
⊗ F(18)

0→ Ln−1Λ
n(A)→

Γn(F )

Γn(H)
→

Γn−1(F )

Γn−1(H)
⊗ F(19)

Since the inverse limit functor is left exact, we obtain the following natural sequences:

0→ Ln−1SP n(A)→ lim
←−

Λn(F )

Λn(H)
→ lim

←−

Λn−1(F )

Λn−1(H)
⊗ F(20)

0→ Ln−1Λ
n(A)→ lim

←−

Γn(F )

Γn(H)
→ lim

←−

Γn−1(F )

Γn−1(H)
⊗ F(21)

where the limits are taken, as usual, over the category of extensions H ֌ F ։ A. We claim
that for n ≥ 2, and every k ≥ 1,

(22) lim
←−

(
Λn−1(F )

Λn−1(H)
⊗ F⊗k

)

= lim
←−

(
Γn−1(F )

Γn−1(H)
⊗ F⊗k

)

= 0.

For n = 2, the functor

{H ֌ F ։ A} 7→ A⊗ F⊗k

satisfies the conditions of Lemma 2.1 and the assertion follows. Now assume that (22) is
proved for a fixed n ≥ 1. Consider the tensor products of sequences (18) (for n + 1) and (19)
with F⊗k:

0→ LnSP n+1(A)⊗ F⊗k →
Λn+1(F )

Λn+1(H)
⊗ F⊗k →

Λn(F )

Λn(H)
⊗ F⊗k+1

0→ LnΛn+1(A)⊗ F⊗k →
Γn+1(F )

Γn+1(H)
⊗ F⊗k →

Γn(F )

Γn(H)
⊗ F⊗k+1

By induction,

lim
←−

(
Λn(F )

Λn(H)
⊗ F⊗k+1

)

= lim
←−

(
Γn(F )

Γn(H)
⊗ F⊗k+1

)

= 0

and the functors

{H ֌ F ։ A} 7→ LnSP n+1(A)⊗ F⊗k

{H ֌ F ։ A} 7→ LnΛn+1(A)⊗ F⊗k

satisfy the conditions of Lemma 2.1. Hence (22) follows. The statement of the theorem now
follows from sequences (20) and (21). �
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4. Higher limits

Let C be a small category. The first derived functor

lim
←−

1 : Gr
C → pointed sets

can be defined via cosimplicial replacement in the category Gr
C described in [2]. Given F ∈ Gr

C,
define a cosimplicial replacement

∏∗
F, a cosimplicial group, with

∏n

F =
∏

u∈In

F(i0), u = {i0
α1← · · ·

αn← in}

and coface and codegeneracy maps induced by

d0 : F(i1)
F(α1)
→ F(i0),

dj : F(i0)
id
→ F(i0), 0 < j ≤ n,

sj : F(i0)
id
→ F(i0), 0 ≤ j ≤ n.

One can check that there is a natural isomorphism (see [2])

lim
←−

F = π0
∏∗

F.

The derived functor of the inverse limit can be defined as

lim
←−

1
F = π1

∏∗
F ∈ pointing sets.

We then have the following:

Proposition 4.1. Let 1 be an identity functor in Gr
C and let

1→ F1 → F2 → F3 → 1

be a short exact sequence in Gr
C. There is a natural long exact sequence of groups and pointed

spaces:

(23) 1→ lim
←−

F1 → lim
←−

F2 → lim
←−

F3 → lim
←−

1
F1 → lim

←−

1
F2 → lim

←−

1
F3.

In the case of the category Ab
C, the functor lim

←−

1 has values in Ab and the sequence (23)

is a long exact sequence of abelian groups. In this case there is a cochain complex of abelian
groups defined by

∏•
F :

∏0
F

δ0

→
∏1

F
δ1

→ . . .

with

δn(an){i0
α1← · · ·

αn+1

← in+1} =

F(i0
α1← i1)a

n{i1
α1← · · ·

αn+1

← in+1}+
n+1∑

j=1

(−1)jan{i0
α1← · · · ← îj ← · · ·

αn+1

← in+1},

an ∈
∏n

F,
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such that the derived functors of the inverse limit are the cohomology groups:

lim
←−

n
F = Hn(

∏•
F), n ≥ 0

(see [8], Theorem 4.1). Clearly,

lim
←−

F = lim
←−

0
F = ker(δ0).

The question of vanishing of higher limits of functors defined on small categories in general
reduces to the computation of local cohomology of nerves of these categories. We give a simple
condition for the vanishing of lim

←−

1.

Proposition 4.2. Let C be a category with a quasi-initial object and F : C −→ Ab a functor.
Suppose that every pair of morphisms in C has a coequalizer, i.e., for every pair of morphisms
ε1, ε2 : I1 → I0, I1, I0 ∈ Ob(C) there is a morphism ε : I0 → I(I0, I1) in C such that the
following diagram is commutative

I(I0, I1) I0
εoo I1

ε◦ε1

{{
ε1

xx

ε◦ε2

cc ε2ff ,

i.e., ε ◦ ε1 = ε ◦ ε2 and the induced map F(ε) : F(I0) → F(I(I0, I1)) is injective. Then
lim
←−

1
F = 0.

Proof. Let a1 ∈
∏1

F =
∏1

i0←i1
F be a 1-cocycle, i.e.,

(24) δ1a1(i0 ← i1 ← i2) = F(i0 ← i1)a
1(i1 ← i2) + a1(i0 ← i1)− a1(i0 ← i2) = 0

for every diagram i0 ← i1 ← i2. Given two morphisms ε1, ε2 : i1 → i0, consider a morphism
ε : i0 → I(i0, i1), such that F(ε) : F(i0) → F(I(i0, i1)) is a monomorphism of abelian groups
and ε ◦ ε1 = ε ◦ ε2. The cocycle condition (24) implies that

F(ε)a1(i0
ε1← i1) = a1(I(i0, i1)

ε◦ε1← i1)− a1(I(i0, i1)
ε
← i0)

F(ε)a1(i0
ε2← i1) = a1(I(i0, i1)

ε◦ε2← i1)− a1(I(i0, i1)
ε
← i0)

and, therefore,
F(ε)a1(i0

ε1← i1) = F(ε)a1(i0
ε2← i1)

in F(I(i0, i1)). Since F(ε) is a monomorphism, we conclude that

(25) a1(i0
ε1← i1) = a1(i0

ε2← i1)

in F(i0). Now we can take a quasi-initial object i ∈ Ob(C) and define an element a0 ∈
∏0

F

by setting
a0(i0) = a1(i0 ← i)

for arbitrary map i0 ← i (such a map exists, since i is a quasi-initial object). The equality
(25) implies that this is a well-defined element. By definition, we have

−a1(i0 ← i1) = F(i0 ← i1)a
0(i1)− a0(i0) = δ0a0(i0 ← i1),
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and the proof is complete. �

At the moment we are not able to compute higher limits over categories of free extensions.
We present here an approach towards this problem and illustrate it with an application. In
particular, we show that higher limits ‘cover’ certain homology functors.

Given a category C, object G ∈ Ob(C), and the category of free extensions FextC(G), suppose
we have two pairs of functors

H1, H2 : C→ Ab

F1, F2 : Fext(G)→ Ab

such that, for every α ∈ FextC(G), there is a natural 4-term exact sequence

(26) 0→ H2(G)→ F1(α)→ F2(α)→H1(G)→ 0

which is natural in the sense that every morphism β → α in FextC(G) induces the commutative
diagram

H2(G) � � // F1(β) //

��

F2(β) // //

��

H1(G)

H2(G) � � // F1(α) // F2(α) // // H1(G)

.

Suppose further that

(27) lim
←−
F2 = 0.

The condition (27) implies the following exact sequences of abelian groups:

(28) lim
←−

1F1

��

H1(G)

f

&&LLLLLLLLLLLL

� � // lim
←−

1

α∈FextC(G)
C(α) //

��

lim
←−

1F2 // lim
←−

1H1(G)

lim
←−

2H2(G)

where C(α) = coker{H2(G)→ F1(α)} = ker{F2(α)→H1(G)}, α ∈ FextC(G).

For every α ∈ FextC(G), fix sections sα : H1(G) → F2(α) and tα : C(α) → F1(α). To
describe the map f , let a ∈ H1(G) and let γ → β → α be a diagram in FextC(G) . Consider
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the following diagram

H2(G) � � // F1(γ) //

F1(γ→β)
��

F2(γ) // //

F2(γ→β)
��

H1(G)

H2(G) � � // F1(β) //

F1(β→α)
��

F2(β) // //

F2(β→α)
��

H1(G)

H2(G) � � // F1(α) // F2(α) // // H1(G)

Define

a2(γ → β → α) := F1(β → α)tβ(F2(γ → β)sγ(a)− sβ(a))−

tγF2(β → α)(F2(γ → β)sγ(a)− sβ(a))

The 2-cocycle condition can be checked directly; moreover, note that the element ξ ∈ lim
←−

2H2(G)

defined by the cocycle a2(γ → β → α) does not depend on the choice of sections sα, tα. The
map f : H1(G)→ lim

←−

2H2(G) is thus the one given by a 7→ ξ.

We are interested in finding conditions which imply the triviality of the map f .

Proposition 4.3. Suppose we have functors

F3, F4, F : FextC(G)→ Gr

such that the following conditions are satisfied:
(1) There is a natural diagram

(29) H2(G) � � // F1(α) // F3(α)

����

// // F4(α)

����

H2(G) � � // F1(α) // F2(α) // // H1(G)

.

(2) The natural map

lim
←−
F4 →H1(G)

is an epimorphism.
(3) For every α ∈ FextC(G), there is a natural monomorphism

F1(α)→ F(α)

and natural short exact sequences

1→ F1(α)→ F(α)→ F4(α)→ 1

1→H2(G)→ F(α)→ F3(α)→ 1.
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Then the natural map

lim
←−
F4 → lim

←−

2H2(G)

is the trivial map and therefore the map

f : H1(G)→ lim
←−

2H2(G)

is the zero map.

Proof. The proof follows from the functoriality of the considered constructions and the fol-
lowing natural commutative diagram:

H2(G) H2(G)
� _

��

0 // F4(α)
� _

��

F4(α)

H2(G) // F(α) // F3(α)⊕ F4(α)
(0, id)

// F4(α)

H2(G) � � // F1(α)
?�

OO

// F3(α)
?�

OO

// // F4(α)

.

�

We next give examples of functors satisfying (26).

Examples.

1. Let G be a group, n ≥ 1, {R ֌ F ։ G} ∈ FextGr(G), then there is a natural exact
sequence of abelian groups (see [4]):

(30) 0→ H2n(G)→ H0(F, R⊗n
ab )→ H1(F, R⊗n−1

ab )→ H2n−1(G)→ 0.

2. Let A be an associative algebra over Q, n ≥ 1, {I ֌ R ։ A} ∈ FextAssQ
(A). There is a

natural exact sequence (see [11]):

0→ HC2n(A)→ HH0(R/In+1)→ H1(R, R/In)→ HC2n−1(A)→ 0.

Lemma 2.1 implies that, for the example 1 above, the condition (27) is satisfied for the
functor

{R ֌ F ։ G} 7→ H1(F, R⊗n−1
ab )

for n ≥ 1 (see [4] for details), hence there is an isomorphism H2n(G) ≃ lim
←−

H0(F, R⊗n
ab ). For

the simplest case, namely for n = 1, functors from the exact sequence (30), the diagram (29)



16 ROMAN MIKHAILOV AND INDER BIR S. PASSI

can be chosen to be the one given below (with the obvious maps):

H2(G) � � // R/[R, F ] // F/(R ∩ [F, F ])

����

// // G

����

H2(G) � � // R/[F, R] // F/[F, F ] // // H1(G)

Proposition 4.3 then implies that the natural map H1(G) → lim
←−

2H2(G) is the zero map.

Consequently, the diagram (28) implies that H1(G) is contained in a group, which is an
epimorphic image of lim

←−

1(R/[F, R]). We have thus proved the following:

Theorem 4.4. If G is not a perfect group, then lim
←−

1(R/[F, R]) is non-trivial.

5. Concluding remarks and questions

Observe that given an object G ∈ Ob(C), one can consider the category Fext2(G) of double
(resp. triple etc) presentations of G. For simplicity, let us assume that we work in the category
of groups. The objects of Fext2(G) are triples (F, R1, R2), where F is a group, R1, R2 normal
subgroups in F , such that F/R1R2 = G. The morphisms in Fext2(G) are the diagrams of the
form

R1 ∩ R2
//

{{ww
ww

ww
ww

w

R2

��

~~}}
}}

}}
}}

R1

��

//

��

F

��

R′
1
∩ R′

2

||xx
xx

xx
xx

x

// R′
2

��~~
~~

~~
~~

R′
1

// F ′

which induce the identity isomorphism F/R1R2 → F ′/R′1R
′
2. It would be of interest to examine

limits of functors over the category Fext2(G). For example, note that, given a group G, there
is a natural homomorphism

H3(G)→ lim
←− (F, R1, R2)∈Fext2(G)

R1 ∩ R2

[R1, R2][F, R1 ∩ R2]
;

for the construction of this map see the homology exact sequence in [1].

In the same way, one can make variations of Quillen’s description (6) of cyclic homology.
Given an associative algebra A over Q, consider the category Fext2(A) whose objects are the
triples (R, I1, I2), where R is a free algebra I1, I2 are ideals in R and R/(I1 + I2) = A. The
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description (6) implies, for example, that for n ≥ 2, n > k ≥ 1, there is a natural morphism

lim
←− (R, I1, I2)∈Fext2(A)

R

In+1−k
1 Ik

2 + Ik
1 In+1−k

2 + [R, R]
→ HC2n(A)

and its investigation may be of interest for cyclic homolgy.

Finally, one now knows how to define even-dimensional homology of groups, Lie algebras,
cyclic homology of associative algebras as limits of certain functors over the categories of
extensions. What can one say about higher limits of the functors yielding this relationship?
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