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ABSTRACT

Motivation: Starting from linear chains of amino acids, the

spontaneous folding of proteins into their elaborate 3D structures

is one of the remarkable examples of biological self-organization. We

investigated native state structures of 30 single-domain, two-state

proteins, from complex networks perspective, to understand the role

of topological parameters in proteins’ folding kinetics, at two

length scales—as ‘Protein Contact Networks (PCNs)’ and their

corresponding ‘Long-range Interaction Networks (LINs)’ constructed

by ignoring the short-range interactions.

Results: Our results show that, both PCNs and LINs exhibit the

exceptional topological property of ‘assortative mixing’ that is

absent in all other biological and technological networks studied

so far. We show that the degree distribution of these contact

networks is partly responsible for the observed assortativity. The

coefficient of assortativity also shows a positive correlation with the

rate of protein folding at both short- and long-contact scale,

whereas, the clustering coefficients of only the LINs exhibit a

negative correlation. The results indicate that the general topological

parameters of these naturally evolved protein networks can

effectively represent the structural and functional properties required

for fast information transfer among the residues facilitating

biochemical/kinetic functions, such as, allostery, stability and the

rate of folding.

Contact: sinha@ccmb.res.in

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Inside the cell, proteins are synthesized as linear chains of
amino acids, which fold into unique 3D structures (‘native

states’). The wide range of biochemical functions performed by
the proteins are specified by their detailed structures. Despite

the large degrees of freedom, surprisingly, proteins fold into
their native states in a very short time, which is known as

Levinthal’s Paradox (Levinthal, 1969). Although, given suitable
conditions, some small proteins can reach their native state in
a single concerted step, many others fold in stages with

initial conformational events long before the final (‘native’)
structure appears (Anfinsen, 1973). Structural changes and

chemical interactions occur throughout the entire folding
process, and strongly cooperative mechanisms are necessary
to bring the protein in its native conformation within

a very short time period (Maity et al., 2005). The fast fold-
ing is a result of the catalytic effect of the formation of
clusters of residues in contact with each other, which have

high preferences for the early formation of secondary struc-
tures (helices, sheets and loops) in the presence of significant
amounts of long-range tertiary structure interactions
(Nölting and Andert, 2000).

The folding mechanism, kinetics, structure and function of
proteins are intimately related to each other. Misfolding of
proteins into non-native structures can lead to several disorders

(Taubes, 1996). Correlating sequence with structure as well as
understanding of folding kinetics has been an area of intense
activity for experimentalists and theoreticians (Branden and

Tooze, 1999; Fersht, 2002). Among the different theoretical
approaches used for studying protein structure, function and
folding kinetics, the graph theoretical approach, based on

perspectives from complex networks, has been used recently to
study protein structures (Amitai et al., 2004; Aszódi and
Taylor, 1993; Atilgan et al., 2004; Bagler and Sinha, 2005;
Brinda and Vishveshwara, 2005; Dokholyan et al., 2002;

Greene and Higman, 2003; Jung et al., 2005; Rao and
Caflisch, 2004; Vendruscolo et al., 2002).
It is known that folding mechanisms are largely determined

by a protein’s topology rather than its inter-atomic interactions
(Alm and Baker, 1999). With that understanding, we build
graph-theoretical models of protein structures to investigate

various topological properties at two different length scales, and
study their possible role in the kinetics of the protein folding.
We use a coarse-grained complex network model of a protein
structure, namely the Protein Contact Network (PCN), by

ignoring the fine-grained atomic level details, and model the
3D structure as a system constituted of amino acid units, put in
place by non-covalent interactions. Long-range interactions

are known to play a distinct role in determining the tertiary
structure of the proteins (Epand and Scheraga, 1968), as
opposed to the short-range interactions, which could largely

contribute to the secondary structure formations. We consider
the long-range interaction network (LIN) of each protein, which
are subsets of the corresponding PCNs, constructed by ignoring*To whom correspondence should be addressed.
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the short-range interactions. The idea behind studying

LINs is to understand the contribution of the long-range

interactions to the topological properties, and their correlation

to a biophysically relevant property, namely rate of protein

folding.

This study aims to address the question—can general network

parameters, derived from native-state structures of proteins,

uncover features about the relationship of the structural

properties to the folding kinetics of the proteins? To study

this, we choose single domain, two-state folding proteins that

belong to different structural classes (Murzin et al., 1995) for

which the kinetic parameter of rate of folding, (kF) is available.

Our analysis of the coarse-grained network representations of

protein structures uncover the exceptional topological property

of a high degree of assortative mixing at both length scales

(PCN and LIN) in these naturally occurring, evolutionarily

selected, biological networks. Assortative mixing in LINs

indicates that this feature in PCNs is independent of short-

range interactions. The coefficient of assortativity (Newman,

2002), a measure of assortative mixing, are also found to be

considerably high for both PCNs and LINs. By constructing

appropriate control networks, we further demonstrate that the

degree (connectivity) distribution of the PCNs alone can

partially account for the presence of assortativity in these

networks.
To enumerate the contribution of these global parameters

obtained from the coarse-grained network model of protein

structures to their biophysical properties, we show that the

coefficient of assortativity of PCNs and LINs tend to have

positive correlation with the experimentally determined rate of

folding of these proteins. This implies that assortative mixing,

that tends to connect highly connected residues to other

residues with many contacts, may assist in speeding up of the

folding process. In contrast, the average clustering coefficients

of LINs show a good negative correlation with the rate of

folding, indicating that clustering of amino acids, that

participate in long-range interactions, into cliques, slows

down the folding process. Interestingly, the average clustering

coefficients of PCNs show negligible correlation, thereby

implying that the short range interactions can reduce the

negative effect on their folding kinetics.
Three parameters—CO (contact order) (Plaxco et al., 1998),

LRO (long range order) (Gromiha and Selvaraj, 2001) and

TCD (total contact distance) (Zhou and Zhou, 2002)—based

on sequence distance per contact and/or total number of

contacts per residue of the proteins, have also been shown to

have negative correlation to their rate of folding (Gromiha and

Selvaraj, 2001; Plaxco et al., 1998; Zhou and Zhou, 2002). The

accuracy of prediction of the rate of folding, with parameters

LRO and TCD, remain unchanged if short-range interactions

are not included in the calculation. Here, along with delineating

the role of long-range interactions, we have attempted to show

that general network parameters, such as, clustering coefficient

and assortativity, that are widely used in networks of diverse

origins (technological, biological and social), can not only give

an insight into their structural properties, but can also be used

as indicators of specific biophysical processes, such as, of

protein folding.

2 METHODS

2.1 Construction of PCN, LIN, and their random controls

The PCN was modeled from the native-state protein structures as

available in PDB (Berman et al., 2000). The C� atom of each amino acid

was considered a ‘node’, and any two amino acids were said to be in

spatial contact (‘link’) if there existed a threshold distance (Rc � 8Å)

between their C� atoms.

The LIN of a PCN was obtained by considering, other than the

backbone links, only those ‘contacts’ which occur between amino acids

that are ‘distant’ (i.e. separated by 12 or more amino acids) from each

other along the backbone. Thus formed, a LIN is a subset of its PCN

with same number of nodes (nr) but fewer number of links due to

removal of the short-range contacts.

Two types of random controls were created for the PCNs of the

proteins. The polypeptide backbone connectivity was kept intact in

both the random controls, while randomizing the non-covalent

contacts. For every protein, 100 instances of each type of random

control were generated from its PCN. Average of all the instances were

used as a representative of the parameters and properties, and

compared with that of the PCNs and their LINs.

Type I: this random control network has the same number of residues

(nr) and number of links/contacts (nc) as those of the PCN, except that

the contacts were created randomly by avoiding duplicate and self

contacts.

Type II: apart from maintaining the number of nodes (nr) and

contacts (nc), the connectivity distribution of PCNs was also conserved

in this control network. To ensure adequate randomization, the pattern

of pair-connectivity was randomized 2000 times.

The details of methods of construction with illustration is given in

Supplementary Material.

2.2 Data

Except for Figure 1, all studies have been done on 30 single-domain,

two-state folding, globular proteins, whose experimental rate of folding

(ln(kF)) are available. The data include 5 all-�, 13 all-ß and 12 �ß class

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

Clustering Coefficient (C)

C
ha

ra
ct

er
is

tic
 P

at
h 

Le
ng

th
 (

L)

PCNs
LINs
(Type I) Random Controls of PCNs
LINs of (Type I) Random Controls

Fig. 1. L-C plot for 110 proteins from different structural classes: PCNs

(open square), LINs (open diamond), Type I Random Controls of

PCNs (filled circle) and LINs (filled triangle). Error—bars in the

random controls data indicate SDs in L and C for each protein

computed over 100 instances.
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of proteins. The natural logarithms of rate of folding (ln(kF)) of these

proteins vary between �1.48 and 9.8 and have a range for the time of

folding (1/kF) of the order of 105 s. Sizes (nr) of these proteins range

from 43 to 126 amino acids. The structural data for these studies

were obtained from the Protein Data Bank (Berman et al., 2000).

The preliminary network analysis (shown in Fig. 1) was done on 110

proteins (43 5 nr 5 2359) from the major structural classes, which

include the 30 single domain proteins mentioned above.

2.3 Network parameters

The following parameters were studied for the PCN, LIN and their

random controls.

Shortest path length and characteristic path length Shortest path

length (Lij) between any pair of nodes i and j is the number of links that

must be traversed between them by the shortest route. The average of

all shortest path lengths, known as ‘characteristic path length’ (L), is an

indicator of compactness of the network, and is defined as (Watts and

Strogatz, 1999),

L ¼
2
Pnr�1

i¼1

Pnr
j¼iþ1 Lij

nrðnr � 1Þ
;

where nr is the number of residues in the network.

Clustering coefficient Clustering coefficient is the measure of

cliquishness of the network. Clustering coefficient of a node i, Ci, is

defined (Watts and Strogatz, 1999) as the Ci ¼ 2 * n/ki(ki – 1), where n

denotes the number of contacts amongst the ki neighbors of node i.

Average clustering coefficient of the network (C) is the average of Cis of

all the nodes in the network and is referred to as ‘clustering coefficient’

unless specified otherwise.

Degree and remaining degree Degree (k) is defined as the total

number of neighbors a node is connected to. Degree is one of the

measures of ‘centrality’ of a node in the network—the larger the degree

more important it is. Remaining degree is one less than the total degree

of a node (Newman, 2002). Other measures, based on degree, are

maximum degree, kmax, average degree, hki, and the average degree of

nearest neighbors, hknn(k)i.

Assortative mixing and coefficient of assortativity A network is

said to show assortative mixing, if the high-degree nodes in the network

tend to be connected with other high-degree nodes, and ‘disassortative’

when the high-degree nodes tend to connect to low-degree nodes. The

coefficient of assortativity (r) measures the tendency of degree

correlation. It is the Pearson correlation coefficient of the degrees at

either end of a link and is defined (Newman, 2002) as,

r ¼
1

�2
q

X

jk

jkðejk � qjqkÞ;

where r is the coefficient of assortativity, j and k are the degrees of

nodes, qj and qk are the remaining degree distributions, ejk is the joint

distribution of the remaining degrees of the two nodes at either end of a

randomly chosen link and �q is the variance of the distribution qk.

3. RESULTS

3.1 Clustering coefficients of PCNs and LINs

PCNs from a large set of proteins have earlier been shown

(Atilgan et al., 2004; Bagler and Sinha, 2005; Greene and

Higman, 2003; Vendruscolo et al., 2002) to have high degree of

clustering, which contributes to their ‘‘small-world’’ (Watts and

Strogatz, 1999) nature. To study if the PCNs and their
corresponding LINs of proteins have similar topological

properties, such as, characteristic path length (L) and clustering

coefficient (C), we plotted the L versus C graph in Figure 1

for 110 proteins from the four major structural classes

(i.e. �, ß, � þ ß and �/ß). The figure also shows their

corresponding Type I random controls. The Type II random

controls were found to be indistinguishable from the Type I

controls and not shown in Figure 1.
The results indicate two major differences between the

topological properties of the PCNs and their corresponding

LINs. The PCNs of these proteins have high clustering

coefficients (CPCN ¼ 0.562 � 0.029) compared to their

random controls, whereas the LINs show distribution in

C over a range (CLIN ¼ 0.259 � 0.109), even though their
random controls were almost indistinguishable from

those of PCNs. L and C of random controls of PCNs were

2.621 � 0.411 and 0.0557 � 0.0476 and that of their LINs were

3.256 � 0.056 and 0.075 � 0.012. The LINs also have a little

higher characteristic path lengths (LLIN ¼ 8.72 � 4.564) than

PCNs (LPCN ¼ 5.818 � 2.826) owing to their reduced number

of contacts as compared to those in PCNs. This indicates that

the differences in CLINs may assign specificity to the protein

networks at this length scale, which is otherwise lost with the

short range contacts in PCNs, rendering the generic property of
high clustering and compactness. The role, if any, the

differential extent of clustering in the PCN at the two

length scales may play in their kinetics of folding process is

shown later.

3.2 Degree distributions of PCNs and LINs

The distribution of degrees in a network is an important

feature, which reflects the topology of the network, and is also a

possible indicator of the processes by which the network has

evolved to attain the present topology. The networks in which

the links between any two nodes are assigned randomly have a

Poisson degree distribution (Bollobás, 1981) with most of the

nodes having similar degree.
Figure 2 shows the normalized degree distributions of PCNs

and LINs of the 30 proteins studied. The frequencies of nodes

were scaled with the largest degree (kmax) in the network (PCN

or LIN) to obtain the P (k) of a given protein, so that proteins

of different sizes can be compared. As seen in Figure 2a, the

PCNs have Gaussian degree distribution that best fits the

equation

yðxÞ ¼
A

w
ffiffiffiffiffiffiffiffi
�=2

p exp
�2ðx� xcÞ

2

w2

with A ¼ 5.538, w ¼ 6.265 and xc ¼ 9.373.
On the other hand, Figure 2b shows that the degree

distribution of LINs is significantly different than those of

PCNs. In LINs, most nodes were populated in the low-degree

region and very few of them have high degrees. The best-fit for

the LINs represent a single-scale exponential function (Greene

and Higman, 2003), P (k) � k�� exp (–k/kc), with � ¼ 0.24 and

kc ¼ 4.4. The nodes of degree 1 in LINs’ degree distributions,

are the N- and C-terminal amino acids that are at the either end

of the protein backbone. As expected (Bollobás, 1981), the
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Type I random controls of the PCNs (Fig. 2a, inset) have a

Poisson degree distribution. LINs of Type I random controls

(Fig. 2b, inset) too have a Poisson degree distribution. The

figure clearly shows that these properties are the same for

proteins irrespective of their functions and structural classifica-

tions (Bagler and Sinha, 2005; Greene and Higman, 2003).

3.3 Assortative nature of PCNs and LINs

The pattern of connectivity among the nodes of varying degrees

can affect the interaction dynamics in the network, and their

degree correlation is used as a measure to compute the strength

and pattern of connectivity in a network. Average degree of the

nearest neighbors, knn(k), of nodes of degree k, is a parameter

by which one can measure and visualize the degree correlation

pattern on a network. In the presence of correlations, knn(k)

increases with increasing k for an ‘assortative network’, and

decreases with k for a ‘disassortative network’ (Pastor-Satorras

et al., 2001).
Figure 3 shows hknn(k)i versus k plots for the PCNs (a) and

LINs (b) and the two types of random controls. The nature of

the curves for the PCNs (open square in Fig. 3(a)) and their

LINs (open diamond in Fig. 3(b)) shows that both networks are

characterized with ‘assortative mixing’, as the average degree of

the neighboring nodes increased with k. The curve shows a

tendency to saturate at larger k—a feature that may be due to
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the steric hindrance experienced by the connecting amino acids

in the 3D structural organization of the protein. This steric

hindrance restricts the position of an amino acid in the three

dimensional conformational space, and results in a maximum

values of degree (kmax) of a node. In comparison, the hknn(k)i

remained almost constant for the Type I random control for

both PCNs (filled circle)) and LINs (filled triangle), indicating

lack of correlations among the nodes’ connectivity in these

controls.
The ‘coefficient of assortativity’ (Newman, 2002), r, is a

global quantitative measure of degree correlations in a network,

and takes values as –1 � r � 1. r is zero for no correlations

among nodes’ connectivity, and takes positive or negative

values for assortative or disassortative mixing, respectively. The

r for both PCNs and LINs of the 30 proteins were found to be

positive, indicating that the networks are assortative. Figure 4

shows the histograms of r of (a) PCNs, (b) LINs, both in

(filled square), and their Type I random controls (open square).

The r values of both PCNs as well as LINs of all the proteins

show significantly high positive values (range: 0.095 r5 0.52

for PCNs and 0.12 5 r 5 0.58 for LINs) when compared to

other networks of diverse origins (Newman, 2002). Thus, the

networks modeling the native protein structures are clearly

characterized by high degree of assortative mixing at both

short and long contact scales. The Type I random controls in

Figure 4 a and b, for both PCNs and their LINs, are distributed

around zero, confirming the observation of lack of degree

correlations of the controls, made in Figure 3.

These properties of positive r and assortative degree

correlations were also observed (data not shown) for a large

number of protein structures performing various cellular

functions and belonging to diverse structural categories

(used in Bagler and Sinha, 2005). This conclusively proves

that the assortative mixing in PCNs and LINs is a generic

feature of protein structures. The role, if any, the assortative

nature of the PCN at both length scales may play in their

kinetics of folding process is shown later.

3.4 Degree distribution partially accounts for

assortativity

To investigate whether the patterns of connectivity in the PCNs

and LINs of the 3D structures of the proteins contribute

towards the observed assortativity, we studied the assortative

mixing and the ‘coefficient of assortativity’ of Type II random

controls, in which the degree distribution of the PCNs were

preserved while randomizing the pair connectivities. Figure 3c

and d show the degree correlation plots of the Type II random

controls of PCN (open circle) and their LINs (open triangle). It

is clear that, unlike Type I random controls, the average degree

of the neighboring nodes increased with k in Type II random

controls, as seen for the PCNs and LINs.
The histograms of the ‘coefficient of assortativity’ (r) of

Type II random controls (open square) are shown in Figsure 4 c

and d. Here also, it can be seen that the assortativity is partially

recovered in the Type II random controls for both PCNs and
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their LINs. Thus degree distribution partially explains the

observed assortative mixing. It implies that preserving the

degree distribution of PCN, even while randomizing the pair-

connectivities, is important to partially restore the assortative

mixing in the random controls of PCNs as well as their LINs.

The recovery of assortative mixing in the LINs by Type II

random controls of PCNs is even more surprising, as the degree

distribution of LINs (Fig. 2b) is very different compared to the

PCNs (Fig. 2a). This is especially significant in the light of the

observation (Xulvi-Brunet and Sokolov, 2004) that one can

rewire the links in a (scale-free) network to obtain assortativity

or disassortativity, to any degree, without any change in the

degree distribution.

3.5 Correlation of protein network parameters to

protein folding rates

The general network parameters (e.g. L, C and r) have been

used to shed light on the topology, growth and dynamics of

widely different networks—physical, social and biological.

Here, we show the relationship of these general topological

parameters (specifically, C and r) obtained from our coarse-

grained model of protein structures (the PCNs and LINs), to a

biophysical property underlying the organization of the 3D

structure of the protein chains, i.e. with the kinetics of protein

folding. Below, we have correlated the available experimental

data on the rate of folding of the 30 proteins with the two

network parameters, C and r of the PCNs and their LINs.

3.5.1 Average clustering coefficient and rate of folding Figure 1

shows that the PCNs and their LINs differ in their clustering

coefficients (C), with PCNs having similar but high C, and their

LINs having C distributed over a range from low to medium

values. We did not find any significant relationship between the

clustering coefficient of the PCNs (CPCN) and the ln(kF) for

all the 30 proteins (correlation coefficient ¼ �0.2437; p50.2).

On the other hand, ln(kF) showed a high negative correlation

with the average clustering coefficient of the corresponding

LINs (CLIN). Since the clustering coefficient depends on the

degree of the node, we plot, in Figure 5, the CLIN * kmax with

ln(kF) of all the proteins. The plot shows significantly high

negative correlation (correlation coefficient ¼ –0.7712;

p 50.0001) between the CLINs and the rate of folding for

these single-domain, two-state folding proteins. Figure 5 also

shows that neither Type I nor Type II random controls

show any correlation with the rate of folding of the

corresponding LINs.
CLIN enumerates number of loops of length three in the LIN.

Thus CLIN essentially correlates to the number of ‘distant’

amino acids (nodes), those separated by a minimum of 12 or

more other amino acids along the backbone, brought in mutual

‘contact’ with each other in the native state structure of the

protein. Understandably, more the number of such long-range

mutual contacts are required to be made in order to achieve the

native state, more is the time taken to fold, and hence slower is

the rate of folding. Interestingly, our result shows that this

feature is completely neutralized through the short-range

contacts in the PCNs. It may be mentioned that a comparable

correlation (– 0.7574; p50.0001) is observed between the (CO)

of these 30 proteins with their ln(kF). It is interesting to note

that despite dissimilar quantities that CO and CLIN measure,

the similar correlation coefficients essentially indicate the

important role of long-range contact formation in the rate of

folding.

3.5.2 Coefficient of assortativity and rate of folding Unlike the
clustering coefficients, the protein networks show high coeffi-

cient of assortativity (r) at both length scales (i.e. for the PCNs

and their LINs). In Figure 6, the rate of folding of the proteins

are plotted as a function of the coefficient of assortativity of

their LINs. There is an increasing trend of ln(kF) with increase

in r. The five � proteins, all having high rate of folding, do not

follow the trend very well. The correlation coefficient between

the rate of folding (ln(kF )) and r of their LINs, excluding the
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five � proteins, is 0.6981 (p50.0005). The same for the PCNs is
calculated to be 0.5943 (p 5 0.005). The result implies that,
along with showing assortative mixing, the PCNs and their

LINs both show significant positive correlations with the rate
of folding. Thus, the generic property of assortative mixing in
proteins tends to contribute positively towards their kinetics of

folding, and is fairly independent of the short- and long-range
of interactions. Here also the Type I random controls, due to
their coefficient of assortativity being clustered around zero

(Fig. 4b), do not show any correlation with the rate of folding.
As is expected from Figures 3 and 4, the Type II random
controls, on the other hand, are scattered owing to the partial

gain in assortativity, though they do not show any definite
trend with the rate of folding.

4 DISCUSSION

In recent years, much interest is seen in the study of structure

and dynamics of networks, with application to systems of
diverse origins such as, society, technology and biology, etc.
(Albert and Barabási, 2002; Dorogovtsev and Mendes, 2002).

The aim of these studies has been to identify the common
organizational principles within these wide variety of systems,
and identify general network parameters that can correlate to

the structure, function and evolution of each of the specific
processes. Of these, biological networks are of special interest

as they are products of long evolutionary history. The PCN is
exclusive among other intra-cellular networks for their unique
method of synthesis as a linear chain of amino acids, and then

folding into a stable 3D structure through short- and long-
range contacts among the residues. In this study, our aim is to
understand if the general network parameters can offer any clue

to the biophysical properties of the existing 3D structure of a
protein, thereby reflecting the commonalities in network
organization in general.

Our coarse-grained complex network model of protein
structures uncovers, for the first time in a naturally evolved
biological system, the interesting, and exceptional topological

feature of assortativity at both short- and long- length scale of
contacts. The assortative nature is found to be a generic feature
of protein structures. We show that the assortativity positively

correlates to the folding mechanisms at both length scale. This
feature corroborates the known fact that the folding mechan-

isms are largely independent of the finer details of the protein
structure (Alm and Baker, 1999). Since strongly cooperative
mechanisms are necessary to bring the protein in its native

conformation within a very short time (Maity et al., 2005), we
have shown that assortative mixing contributes positively
towards speeding up the folding process at different contact-

length scales. The generality of assortative mixing in PCNs
assume greater importance in the light of the debate on whether
protein folding kinetics is under evolutionary control (Larson

et al., 2002; Mirny et al., 1998; Scalley-Kim and Baker, 2004).
Given the genetic basis and mode of formation of protein
chains, the signature of assortativity as an indicator to the rate

of folding is clear.
We also delineate the difference in the property of clustering

of the nodes in the native structure at short- and long-length

scales. The PCNs have high degree of clustering, which

contributes to their ‘small-world’ nature helping in efficient
and effective dissipation of energy needed in their function
(Atilgan et al., 2004; Bagler and Sinha, 2005). Our results show

that, in contrast, the corresponding LINs have significantly
lower and distributed clustering coefficients (Fig. 1), and they
show a negative correlation with the rate of folding of the

proteins (Fig. 5). This indicates that clustering of amino acids
that participate in the long-range interactions, into ‘cliques’ can
slow down the folding process—possibly due to the backbone

connectivity and steric factors. However, the clustering
coefficient of PCNs do not have any significant correlation to
the rate of folding, clearly indicating that the short-range

interactions may be playing a constructive and active role in the
determination of the rate of the folding process by reducing the
negative contribution of the LINs. Our results thus show that

the separation of the types of contacts in the PCNs and LINs
clearly delineate the length scale of contacts that play crucial
role in protein folding. It was recently shown that the CO of the
transition state ensemble (TSE) is highly correlated to that of

their native state structure, and they both correlate equally well
with their rate of folding (Paci et al., 2005). This has been
attributed to the fact that the long-range contacts are mainly

located in the structural core that are formed early in the
folding process, and the formation of such contact networks
leads to the inverse correlation with the folding rates. Our

results with general parameters of the LIN (CLIN and rLIN)
corresponding to the native PCNs also reflect the crucial role
that long-range interactions play in their rate of folding.

After the synthesis in the cell, folding of the amino acid chain
is important for attaining the structure required to reach a
functional state as soon as possible. This happens through

inter-residue non-covalent interactions at many length and time
scales. The folded structure have to confer stability, regions for
binding of ligands of specific shapes and sizes, transmit the

information of binding/unbinding to other parts of the protein,
scaffold for retaining the functional regions along with the
shape suitable for the protein function. It is likely that many of

these properties may require opposing features to operate at
different time and space scales. For example, the ‘small-world’
nature (high clustering) in the native protein structure is useful

in inter-residue signaling required for its function on binding
and allostery. On the other hand, the LIN have reduced
clustering, which may facilitate communication among distant

residues in the native structure to some extent, but such a
feature can also increase the folding time as it requires distant
residues in the chain to come closer during the folding process.

Thus, the evolved native structure of the proteins show
differential levels of clustering at two length scales. The
assortative mixing, on the other hand, helps in enhancing the

folding process at both length scales.
A large number of networks of diverse origin have been

found (Newman, 2002) to be of disassortative nature, and

questions regarding the origin of this property and whether this
is an universal property of complex networks, has been
adjudged as ‘one of the ten leading questions for network

research’ (Amaral et al., 2004). Our discovery of assortativity
in the amino acid networks in protein structures at short- and
long-contact scales questions the invoked generality of the

property in natural networks. The assortative nature of the

G.Bagler and S.Sinha

1766

 by guest on July 7, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


social networks has been claimed to be originating from their
unusually high clustering coefficients and community structure
(Newman, 2003). In proteins, LINs have high assortativity
without necessarily having high clustering coefficients. It would

be interesting to study if the secondary structures provide any
role in shaping the ‘community structure’ in these molecular
networks that help in conferring assortative mixing at both

contact length scales (Newman, 2003; Palla et al., 2005).
Disassortative mixing observed in certain biological

networks (metabolic signaling pathways network, and gene

regulatory network) is conjectured to be responsible for
decreasing the likelihood of crosstalk between different func-
tional modules of the cell, and increasing the overall robustness

of a network by localizing effects of deleterious perturbations
(Maslov and Sneppen, 2002). In contrast to these two networks,
PCNs are not disassortative. For the PCN, one may put
forward the possibility of the backbone chain connectivity as

a means of conferring greater robustness against perturbations.
From computational studies, it has been observed (Newman,

2002; Xulvi-Brunet and Sokolov, 2004) that assortative net-

works percolate easily, i.e. information gets easily transferred
through the network as compared to that in disassortative
networks. Protein folding is a cooperative phenomenon, and

hence, communication amongst nodes is essential, so that
appropriate non-covalent interactions can take place to form
the stable native state structure (Maity et al., 2005). Thus,
percolation of information is very much essential and could

lead to the observed cooperativity and fast folding of the
proteins. Hence, assortative mixing observed in proteins could
be an essential prerequisite for facilitating folding of proteins.
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