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fermi fluid. The action has an infinite series expansion in the string coupling,

which to leading order reduces to the previously discussed geometric action for the

classical fermi fluid based on the group w∞ of area-preserving diffeomorphisms. We

briefly discuss the strong coupling limit of the string theory which, unlike the weak

coupling regime, does not seem to admit of a two dimensional space-time picture.

Our methods are equally applicable to interacting fermions in one dimension.

⋆ adhar@tifrvax.bitnet.

† mandal@tifrvax.bitnet.

‡ wadia@tifrvax.bitnet

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291549634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-th/9207011v1


1. Introduction:

Non-relativistic fermions in one dimension have recently been investigated in

connection with models of two-dimensional string theory. The connection proceeds

by realizing that two-dimensional string theory (in flat spacetime and linear dila-

ton background) is perturbatively equivalent to two-dimensional “Liouville grav-

ity” coupled to one-dimensional matter [1-5]. The lattice formulation of the latter

is described by a hermitian matrix model in one dimension [6], which in turn is ex-

actly mapped onto a theory of nonrelativistic fermions in one dimension [7]. There

are various reasons why it is of interest to write down an exact bosonization of this

model. It would provide us with an exact field theory action of two-dimensional

string theory, with manifest invariance principles. It would make possible a de-

scription of stringy non-perturbative behaviour. It would also be of interest from

the viewpoint of condensed matter physics, where this problem was first posed

and approximately solved by Tomonaga [8]. An exactly solvable version of Tomon-

aga’s model was formulated by Luttinger [9] where fermions obey the relativistic

dispersion relation E(k) = ±|k|. This version of the model has been the subject

of much study and elaboration [10,11]. There are also connections with quantum

Hall effect in two dimensions. In a completely different area of activity connected

with the study of the large N limit of matrix models, this problem was studied by

the collective field formulation [12], which was also adopted for the study of two-

dimensional string field theory [13]. A perturbative (low energy) expansion and

a treatment of the turning point problem was given in [14]. In a series of papers

we have studied the nonrelativistic fermion problem from the viewpoint of W∞

symmetry and its classical limit w∞ (= the area-preserving diffeomorphisms in

two dimensions) [15-18]. See also [19]. In [18] we discussed the classical limit as an

incompressible fermi fluid in two dimensions. Using the method of the co-adjoint

orbits of w∞ we presented a geometrical action and a string picture in terms of

the classical phase space of the fermi fluid. We have also made precise statements

about the limitations of the collective field method. In this paper we extend the

results of [18] and give an exact discussion of the bosonization, using the method
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of coadjoint orbits of the group W∞. The nonrelativistic fermions give rise to spe-

cific coadjoint orbits of W∞. These coadjoint orbits are specified by a quadratic

constraint and by the number of particles or equivalently by the fermi level. There

is a close analogy with the problem of an SU(2) spin in a magnetic field, where the

coadjoint orbits of SU(2) are specified by the values of the total angular momen-

tum. In case the spin is formed out of a two-state fermi system, the coadjoint orbit

corresponds to spin half if the number of fermions is one (half filled) and to spin

zero if the number of fermions is zero (unfilled) or two (completely filled). In exact

analogy with the spin problem we present an action functional on those coadjoint

orbits of W∞ (specified by an appropriate set of constraints) which correspond

to non-relativistic fermions in one dimension. This action is manifestly invariant

under the W∞ transformations that are a symmetry of the original fermionic ac-

tion. We emphasize that the symmetry group is W∞ and not w∞. The latter is

obtained only in the limit h̄ (string coupling) → 0. There is a way of writing the

action in terms of a scalar field in 2 + 1 dimensions. This field can be interpreted

as the “phase space” distribution function of the original one-dimensional fermi

fluid. A novel feature of the action is that it can be formally expanded in an infi-

nite series in h̄ or the string coupling. The leading term reduces to the geometric

action presented in [18], which is based on w∞ symmetry. In the strong coupling

limit, h̄ → ∞, however, this picture clearly breaks down. Indeed, it seems that

an interpretation in terms of a two-dimensional target space theory does not exist.

This seems to suggest that the standard reasoning that the dynamical metric on

the world-sheet is equivalent to one conformal (Liouville) mode which in turn gives

rise to one additional target space dimension does not work in the strong coupling

limit.

The bosonization technique we have developed here is also applicable to the

case of interacting fermions in one dimension.

The plan of the paper is as follows. In the next section we review some aspects

of the formulation of fermion field theory and W∞ algebra as developed in [15-18].

This will also serve to set up our notation. In Sec. 3 we discuss in detail the analogy
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of the present problem with that of a spin in a magnetic field. Indeed, the problems

are identical, except that the “rotation” group in the present case is W∞. We show

that the bilocal operator, which is the analogue of the spin operator in the present

case, satisfies a constraint that determines the representation to which theW∞ spin

belongs, analogous to the constraint ~S2 = constant for the rotation group which

determines the spin content. We write down the “classical” bosonized action in Sec.

4, in exact analogy with that for a spin in a magnetic field. The group for which

the action is written down is W∞, which is a one-parameter deformation of w∞, the

group of area-preserving diffeomorphisms in two dimensions. The parameter is h̄

and in the present case is identified with the string coupling. The “classical” action

may, therefore, be thought of as an infinite series in string coupling. In Sec. 5 we

discuss solutions to the classical equation of motion which satisfy the constraints

on the bilocal operator. The constraints can be solved only perturbatively in h̄,

the string coupling constant. We show that at the lowest order in h̄ the solutions

are characteristic functions, as one might expect for a classical fermi fluid. In Sec.

6 we discuss how in the h̄ → 0 limit the results of [18] are reproduced. In Sec.

7 we indicate how interacting fermions in one dimension can be treated by our

bosonization technique. Finally, in Sec. 8 we end with some concluding remarks.

2. Fermion Field Theory and W -infinity algebra:

In the gauge theory formulation of [15-16], the action for the fermion field

theory which is equivalent to the c = 1 matrix model, is

S[Ψ,Ψ†, Ā] =

∫
dt 〈Ψ(t)|(ih̄∂t + Ā(t))|Ψ(t)〉 (1)

where Ā(t) is some given background field. The fermion field |Ψ(t)〉 is a ket vector

in the single-particle Hilbert space with components 〈x|Ψ(t)〉 ≡ ψ(x, t) in the

coordinate basis. In the same basis, the matrix elements of Ā(t) will be denoted
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by 〈x|Ā(t)|y〉 ≡ Ā(x, y, t). For the c = 1 matrix model,

Ā(x, y, t) =
1

2
(h̄2∂2

x − V (x))δ(x− y), V (x) = −x2 +
g3√
N
x3 + · · · (2)

In writing (1)-(2) we have chosen the zeroes of the energy and x-axis appropriately

such that the (quadratic) maximum of the potential occurs at x = 0 and Vmax =

V (0) = 0. We have also introduced appropriate rescalings suitable for the double

scaling limit. The parameter N that appears in (2) is the total number of fermions,

N = 〈Ψ(t)|Ψ(t)〉 =

∫
dxψ†(x, t)ψ(x, t) (3)

which is taken to infinity in the double scaling limit. The other parameter that

appears in (1) and (2), i.e. h̄, is the string coupling constant (see e.g [20]). The

quantum theory is defined by the functional integral

Z =

∫
DΨ,DΨ† exp

i

h̄
S(Ψ,Ψ†, Ā) (4)

The action (1) has the background gauge invariance

|Ψ(t)〉 → V (t)|Ψ(t)〉

Ā(t) → V (t)Ā(t)V †(t) + ih̄V (t)∂tV
†(t)

(5)

where V (t) is a unitary operator in the single-particle Hilbert space. For a given

fixed Ā(t), the residual gauge symmetry is determined by

ih̄∂tV (t) + [Ā(t), V (t)] = 0 (6)

with the solution

V (t) = U(t)V0U†(t), U(t) = P exp[
i

h̄

t∫
dτ Ā(τ)]. (7)

Thus the residual symmetry, for any given Ā(t), is parametrized by an arbitrary

constant unitary operator V0. The set of all the V0’s forms the group W∞.
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The W∞ algebra is the algebra of differential operators in the single-particle

Hilbert space [21,22]. A convenient way to describe it is by introducing the gener-

ating function,

ĝ(α, β) ≡ exp i(αx̂− βp̂), [x̂, p̂] = ih̄ (8)

The product law

ĝ(α, β)ĝ(α′, β′) = exp[
ih̄

2
(αβ′ − α′β)]ĝ(α + α′, β + β′). (9)

is a well-known consequence of the Heisenberg algebra. The W∞ algebra is a

straightforward consequence of (9):

[ĝ(α, β), ĝ(α′, β′)] = 2i sin[
h̄

2
(αβ′ − α′β)]ĝ(α + α′, β + β′). (10)

The ĝ(α, β) form an “orthogonal” basis for the W∞ algebra. That is,

tr[ĝ(α, β)ĝ(α′, β′)] =
2π

h̄
δ(α + α′)δ(β + β′) (11)

This can be easily proved, for example by evaluating the trace in the coordinate

basis and by using the fact that the matrix elements of ĝ(α, β) are

〈x|ĝ(α, β)|y〉 = δ(x− y + h̄β) exp(iα
x+ y

2
) (12)

The notation ‘tr’ in (11) stands for integration over x, y etc.

A general element Θ of W∞ algebra may, therefore, be written as

Θ =

∫
dα dβ θ(α, β)ĝ(α, β) (13)

Since ĝ(α, β) satisfies the hermiticity condition ĝ(α, β) = ĝ(−α,−β), we see from

(13) that for hermitian Θ we must have θ∗(α, β) = θ(−α,−β). Because of this
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hermiticity condition θ(α, β) can be expressed in terms of a real function u(p, q):

θ(α, β) =

∫
dp

2π

dq

2π
u(p, q) exp i(pβ − qα) (14)

Equations (13) and (14) define the Weyl correspondence between functions in phase

space (u(p, q)) and operators (Θ). As we shall see later, the functions u(p, q) will

later turn out to be closely related to the phase space density of the fermion theory.

The unitary operators V0 appearing in (7) may now be constructed by expo-

nentiating the general element of the W∞ algebra in (13). To end this section

we note that the algebra in (10) reduces to the algebra of area-preserving diffeo-

morphisms in two dimensions in the limit h̄ → 0. The W∞ group that we are

dealing with therefore is a quantum deformation of the group of area-preserving

diffeomorphisms in two dimensions, the parameter of deformation being h̄ or the

string coupling.

3. The Bilocal Operator, the Constraint and Analogy with Spin in a

Magnetic Field:

The analogy between the present problem and that of a spin in a magnetic

field has already been pointed out by us in [16] and [18]. In this section we will

elaborate on that analogy further and show that, in fact, the two problems are

closely related. The “rotation” group in this case is W∞.

The appropriate “spin” variable in the present context is [15-17] the fermion

bilocal operator Φ(t) defined as follows

Φ(t) ≡ |Ψ(t)〉〈Ψ(t)| (15)

In the coordinate basis, the xy-component is given by

Φ(x, y, t) ≡ 〈x|Φ(t)|y〉 = Ψ(x, t)Ψ†(y, t) (16)

Under W∞ “rotations” of the fermion field, the bilocal operator, which is gauge-
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covariant by construction, transforms by the adjoint action of the group:

|Ψ(t)〉 → V |Ψ(t)〉 ⇒ Φ(t) → VΦ(t)V † (17)

We may expand Φ(t) in the basis ĝ(α, β) provided by the Heisenberg-Weyl group.

We have,

Φ(t) =
h̄

2π

∫
dα dβW (α, β, t)ĝ(α, β) (18)

where the fermion bilocal operator

W (α, β, t) ≡
∫
dxψ(x+

1

2
h̄β, t)ψ†(x− 1

2
h̄β, t) exp(iαx) (19)

provides a field theoretic representation of W∞ algebra:

[W (α, β, t),W (α′, β′, t)] = 2i sin[
h̄

2
(αβ′ − α′β)]W (α+ α′, β + β′, t) (20)

Finally, using the equation of motion for the fermion ket |Ψ(t)〉, which can be

obtained by varying action (1), one can easily obtain the equation of motion for

Φ(t):

ih̄∂tΦ(t) + [Ā(t),Φ(t)] = 0. (21)

Equations (18), (20) and (21) are exactly like the corresponding equations for a

spin in a magnetic field. Let Si(t) be the spin variable, T i the generators of SU(2)

(in the appropriate representation). Then, the operator S(t) =
∑

i S
i(t)T i is like

Φ(t), Si(t) being like W (α, β, t) and T i like ĝ(α, β). The algebra of W (α, β, t)’s is

like the spin algebra [Si(t), Sj(t)] = iǫijkSk(t). The equation of motion ∂tS
i(t) =

(1/i)[ ~B.~S, Si] = ǫijkBjSk(t) can be rewritten in terms of S(t) and B ≡
∑

iB
iT i

and reads i∂tS(t) = [B, S(t)], which is like (21)with B playing the role of −Ā.

The analogy between the two cases is therefore complete. In the case of the SU(2)

spin the problem is completely specified by further specifying the representation to
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which the spin belongs. This may be done, for example, by specifying the value of∑
i[S

i(t)]2. This is equivalent to giving a quadratic equation for the matrix S(t),

as may be easily verified. Another way of specifying the representation to which

the spin belongs is by giving an explicit representation for Si(t) in terms of more

elementary objects. For example, the spin 1/2 (and spin 0) representation can be

constructed in terms of a spin-1/2 fermi system. Let us study this representation

in more detail since this is what happens for the W∞ spin that is of interest to us

in this work.

Let us assume that the spin variable Si(t) has a more microscopic representa-

tion in terms of spin 1/2 fermions ψa(t) (a = 1, 2):

Si(t) = ψ†(t)
σi

2
ψ(t) (22)

where σi are the Pauli matrices satisfying

[
σi

2
,
σj

2
] = iǫijk

σk

2

{σ
i

2
,
σj

2
} =

1

2
δij

(23)

Using equal-time fermion anticommunication relations it is easy to verify that (22)

satisfies [Si(t), Sj(t)] = iǫijkSk(t). Further, it can be easily verified, using the

identity

∑
i

(
σi

2
)ab(

σi

2
)a′b′ =

1

2
(δab′δa′b −

1

2
δabδa′b′) (24)

that the Si(t) are characterized by the relation

∑
i

[Si(t)]2 =
3

4
nf (2 − nf ) (25)

where nf =
∑

a ψ
†
a(t)ψa(t) is a Casimir operator (since it commutes with all Si(t)).

It simply measures the total number of filled levels in any state, which is a fixed
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number for all the states of the system and equals the total number of fermions.

So, in this simple case of a two-level system we are led to the constraint (25).

For half-filling, nf = 1, we find [Si(t)]2 = 3/4, which is the correct value of the

Casimir for spin 1/2. This accords with the fact that in this case of a two-level

system, half-filling corresponds to a two-state system—one, the fermi vacuum in

which the lower of the two states is occupied, and the other one is the excited

state in which the fermion in the vacuum is excited to the higher level. For no

filling (or equivalently complete filling) there is only the fermi vacuum and no

excited states. Therefore,
∑

i[S
i(t)]2 = 0 is appropriate for this case. So, we

see that information regarding which spin representation the system belongs to is

contained in the constraint (25) (which follows from the representation (22)) and

depends only on the filling of the fermi sea. An identical situation arises in our

present case of interest of W∞ spin. Before we discuss that, note that in the SU(2)

case the constraint (25) is equivalent to a quadratic equation for S(t). In fact, one

can show that 4S(t)2 + S(t) =
∑

i[S
i(t)]2. We have mentioned this because there

are an infinite number of Casimirs for W∞. Since the above type of quadratic

equation contains information about all of them, it is easier to deduce this type of

relation in this case.

The above line of argument can be applied identically to the present case of

W∞ spin. The “spin variable” Φ(t) has a microscopic representation in terms of

fermions (15). Thus,

〈x|[Φ(t)]2|y〉 =

∫
dz〈x|Φ(t)|z〉〈z|Φ(t)|y〉

=

∫
dz ψ(x, t)ψ†(z, t)ψ(z, t)ψ†(y, t)

= 〈x|Φ(t)|y〉(1 +N),

i.e.

(Φ(t))2 = (1 +N)Φ(t) (26)

where now N =
∫
dxψ†(x, t)ψ(x, t) and is again a Casimir since it commutes with

all W (α, β, t). It is the total number of filled levels in any state, that is, the total
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number of fermions. The constraint (26), together with the constraint on total

number of fermions, fixes the representation to which the W∞-spin Φ(t) belongs.

4. The Action

The most elegant way of arriving at an action for this problem is to follow

Kirillov’s method of coadjoint orbits [23]. We will briefly outline the procedure first

for the case of spin in a magnetic field. (For details see [18]). The configuration

space here is the space of classical spins which we describe by three-dimensional

vectors of a given length (the length ultimately gets related to the Casimir of

the SU(2)-representation). This space is naturally embedded in R3; we consider

the latter to be the dual space, Γ, to the Lie algebra su(2) under the following

scalar product. Let {xi} label the points of R3 and let
∑3

i=1 a
iT i denote the

elements of su(2) Lie algebra where T i are generators of su(2). We define a natural

scalar product between the two:
∑

i x
iai. Equivalently, in the matrix notation

X ≡
∑

i x
iT i, A ≡

∑
i a

iT i, we may write the scalar product as tr(XA).

The above scalar product has a natural interpretation in terms of expectation

value of the spin operator in a coherent state. Consider a coherent state of SU(2),

|~x〉, belonging to the spin-s representation, which satisfies the well-known property

〈~x|Si|~x〉 = −sxi. (27)

Here Si are the components of the quantum spin operator in the spin-s represen-

tation. The above scalar product can then be interpreted as expectation value of

the operator
∑

i a
iSi in the coherent state |~x〉.

Using the above scalar product one can define the coadjoint action of SU(2)

on Γ. This simply rotates the vector {xi}. Hence, the coadjoint orbits of SU(2)

in R3 are spheres of different radii. In terms of the matrix X this means X2 =

constant. We may now write down the action by Kirillov’s construction:

S[X] = i

∫
ds dt tr(X[fs, ft]) +

∫
dt tr(XB) (28)

where ft and fs are two tangent vectors on some given coadjoint orbit at the point
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X(t, s) and may be computed from

∂tX = [ft, X], ∂sX = [fs, X]. (29)

The ft and fs are easily obtained from (29) using the constraint X2 = constant.

If we rescale X for convenience to cast the constraint in the form X2 = 1, then we

find that

ft =
1

4
[∂tX,X], fs =

1

4
[∂sX,X] (30)

so that the action can be rewritten as

S[X] =
i

4

∫
ds dt tr(X[∂tX, ∂sX]) +

∫
dt tr(XB), X2 = 1 (31)

Quantization is done by the path integral

Z ∼
∫

DX(t)
∏
t

δ[X(t)2 − 1] exp[iλS[X]] (32)

where λ is a constant. It is well-known that for the path-integral to be well-

defined λ must be quantized. Different values of λ correspond to different spin

representations. The theory then knows about the underlying fermionic structure

by the specific choice of λ corresponding to the spin-1/2 representation. Note that

in the limit λ→ ∞, the semiclassical method is exact.

The above procedure can be followed step-by-step for the present case of W∞

spin. The natural dual space, Γ, is the W∞-algebra itself, which is the set of

single-particle operators, or equivalently, is the space of (generalized) functions

on the phase space related in a one-to-one fashion to the operators by the Weyl

correspondence (13) and (14). Let us denote the points in Γ by φ. Let us explicitly
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write it out in terms of the Heisenberg-Weyl basis

φ =

∫
dα dβ ũ(α, β) ĝ(α, β) (33)

where

ũ(α, β) =

∫
dp

2π

dq

2π
ei(pβ−qα)u(p, q) (34)

The analogy with the SU(2) spin case is that ĝ(α, β) are like the generators T i, and

ũ(α, β) (or u(p, q)) are like the components xi of the point ~x in R3, and φ is like the

matrix X. Moreover, φ can be interpreted in terms of the expectation value of the

bilocal operator Φ in a coherent state of theW∞ algebra, just like the interpretation

of xi as the expectation value of the spin operator in an SU(2)-coherent state.

Just like in the SU(2) case, there is a natural scalar product between the points

φ and elements Θ ((13) and (14)) of W∞ Lie algebra. This scalar product is

〈φ|Θ〉 = tr(φΘ) (35)

Under this scalar product, the coadjoint action on φ is defined in the standard

way. That is, corresponding to the infinitesimal transformation δǫΘ = i
h̄
[ǫ,Θ], φ

transforms as δǫφ = − i
h̄
[ǫ, φ]. The compatibiliy of this coadjoint action with the

scalar product is obvious.

In terms of the phase space function u(p, q) introduced in (33) and (34), the

coadjoint action is easily deduced using (10) and is given by the Moyal bracket

[24],

δǫu(p, q) = {ǫ, u}MB(p, q) (36)

which is defined by

{A,B}MB(p, q) =
2

h̄
sin

h̄

2
(∂q∂p′ − ∂p∂q′)[A(p, q)B(p′, q′)]p′=p,q′=q (37)

In the h̄→ 0 limit it reduces to the Poisson bracket.
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The specific coadjoint orbits of interest to us will be picked out by imposing

the constraints

φ2 = φ, trφ = N (38)

in the dual space Γ. These constraints reflect an underlying fermionic structure

and can be understood as follows. The “configuration” φ is related to the fermion

bilocal operator Φ as

φ = 〈{φ}|1− Φ|{φ}〉 (39)

where |{φ}〉 is a coherent state of W∞, analogous to the state |~x〉 in the SU(2)

case. The reason for the appearance of 1−Φ instead of just Φ can be traced to the

definition (16), according to which it is the trace of 1−Φ which equals the number

of fermions. This is also the origin of the constraint trφ = N in (38). The origin of

the other constraint, φ2 = φ, can be traced to the operator constraint (26), as can

be seen by analyzing in detail its expectation value in any coherent state. There

is, however, a more direct way to see that φ must satisfy the quadratic constraint.

Let us evaluate the expectation value (39) in the fermi ground state (which is a

coherent state in a trivial sense). The corresponding configuration φ = φ0 is given

by

φ0 =
∑
i≤N

|i〉〈i| (40)

where |i〉, i = 1, 2, · · · ,∞ denote the energy eigenstates of the single-particle hilbert

space. Clearly φ0 satisfies the constraints (38). Moreover, it is clear from (39) that

different configurations φ are related to each other by similarity transformations

(i.e. by W∞-coadjoint transformations). Therefore, once we have shown that one

point of the orbit satisfies (38), we have proved it for the entire orbit. From the

form (40) the fermionic character of our coadjoint orbit is clear.

Now that we know the dual space and characterization of the coadjoint orbits
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of interest, we can apply Kirillov’s method to construct the boson action

S[φ, Ā] =
i

h̄

∫
ds dt tr(φ[ft, fs]) −

∫
dt tr(φĀ) (41)

where ft and fs are the hamiltonians on the coadjoint orbit that lead to the motions

ih̄∂tφ = [ft, φ], ih̄∂sφ = [fs, φ]. (42)

The crucial point is that using the constraint φ2 = φ and equations (42) we can

easily prove that

S[φ, Ā] = ih̄

∫
ds dt tr(φ[∂tφ, ∂sφ]) −

∫
dt tr(φĀ) (43)

This action can be written more explicitly in terms of the phase space function

u(p, q, t, s) defined as in (33) and (34):

S[u, Ā] =

∫
ds dt

∫
dpdq

2πh̄
u(p, q, t, s)[h̄2{∂su(p, q, t, s), ∂tu(p, q, t, s)}MB]

+

∫
dt

∫
dpdq

2πh̄
h(p, q)u(p, q, t)

(44)

where h(p, q) is the classical hamiltonian, h(p, q) = 1
2(p2 + V (q)), obtained from

the background gauge field (2), using the Weyl correspondence. In terms of the

u-variable the constraints read

∫
dpdq

2πh̄
u(p, q) = N (45)

cos
h̄

2
(∂q∂p′ − ∂q′∂p)[u(p, q)u(p

′, q′)]p′=p,q′=q = u(p, q) (46)

At this point we wish to mention that in writing down the action (41) and

in the subsequent manipulations with it, we have made use of the trace identity
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tr(φ1φ2) = tr(φ2φ1). Since φ’s are infinite dimensional matrices, this identity is not

satisfied unless we put some restrictions on them. The simplest statement of the

restriction is in terms of the corresponding phase space functions in terms of which

the trace identity is equivalent to the condition
∫

dpdq
2πh̄

{u1(p, q), u2(p, q)}MB =

0. Since the integrand can be written as a total derivative involving at least

one derivative on the u-function, we can satisfy the above condition by requiring

u(p, q) → constant as p, q → ∞.

5. Classical equation of motion and its solutions:

The most general variation of φ, consistent with the constraints φ2 = φ and

trφ = N , is

φ→ V φV †, V V † = 1. (47)

That is, the independent variables are the W∞ “angles”. To obtain the classical

equation of motion from the action (44), therefore, we make the above variation

(47) in φ, with V = 1 + iΘ, Θ infinitesimal. The change in the action is

δS[φ, Ā] = −h̄
∫
ds dt [∂s{tr(Θ∂tφ)} − ∂t{tr(Θ∂sφ)}] + i

∫
dt tr(Θ[Ā, φ]) (48)

We shall take time t to be non-compact. Then the (s, t) space is a half plane, with

−∞ ≤ s ≤ 0, −∞ ≤ t ≤ +∞ and the boundary conditions φ(t, s = −∞) = 1 and

φ(t, s = 0) = φ(t). Also, assuming that φ(t) → 1 as t→ ±∞, only the s-boundary

term contributes in (48) and we get

δS = −
∫
dt tr[Θ(h̄∂tφ− i[Ā, φ])]. (49)

This gives the equation of motion

ih̄∂tφ+ [Ā, φ] = 0, φ2 = φ, trφ = N (50)

Classically, therefore, the W∞ spin system under consideration is completely de-

fined by (50). We will now solve this equation and show that the constraints

φ2 = φ, trφ = N keep track of the underlying fermionic structure.
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Expanding Ā and φ in the Heisenberg-Weyl basis, we may write

Ā =

∫
dα dβ [

1

2
(∂2

β − ∂2
α + i

g3√
N
∂3

α + · · ·)δ(α)δ(β)]ĝ(α, β) (51)

and (33) and (34) for φ. The equation of motion for u(p, q, t) now becomes

∂tu = {h, u}MB (52)

where

h(p, q) =
1

2
(p2 − q2 +

g3√
N
q3 + · · ·). (53)

Time-independent case:

In this case the equation of motion is solved by any u which depends on p, q

only through the function h(p, q). That is to say, in the phase space u takes the

same value on curves of constant classical energy. Out of all such u’s, the classical

problem is solved only by those that satisfy the quadratic constraint (46). This

constraint cannot be solved exactly, except in the limit h̄→ 0. Denoting u by u(0)

in this limit, (46) leads to

(u(0)(p, q))2 = u(0)(p, q) (54)

Thus u(0) takes the same value (1 or 0) on curves of constant energy in phase space.

For example, one may choose

u(0)(p, q) = θ(ǫF − h(p, q)). (55)

ǫF is a parameter of this classical solution. Finally u(0)(p, q) must satisfy the

fermion number constraint (45); for a u(0) of the above form this fixes ǫF in terms

of h̄ and N . For the hamiltonian (53) we find −ǫF ∼ 1/(h̄N) which is consistent

with the fact that in the double scaling limit we treat −ǫFN ≡ µ as the inverse

string coupling. It is clear that (55) is just the classical phase space density of

fermions in the fermi vacuum. We have thus once again arrived at the underlying

fermionic picture.
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Time-dependent case:

As in the time-independent case we are able to solve the equations only in

the h̄ → 0 limit. Let us denote the solution of the constraint in this limit by the

characterisitic function χR(t)(p, q), which satisfies (54) and defines a region R(t) of

phase space. There is a time-dependence in R(t) because in the present case the

region changes with time. The region R(0) can in principle be quite complicated

involving several fluid blobs or droplets of the fermi fluid. Since we are working

in the h̄ → 0 limit, the equation of motion satisfied by u(p, q, t) reduces to the

classical one: ∂tu = {h(p, q), u(p, q)}PB. It can be easily shown that u = χR(t)

satisfies the equation of motion if the region R(t) is given by

χR(t)(p, q) = χR(0)(p̄(t), q̄(t)) (56)

where (p̄(t), q̄(t)) denote the classical trajectory evolving according to the hamil-

tonian −h(p, q) with the initial conditions p̄(t = 0) = p, q̄(t = 0) = q. In other

words, the region R(t) is obtained by evolving each point in the region R(0) for

time t under the classical hamiltonian h. For the hamiltonian (53) we can write

the classical trajectories explicitly if we ignore the O(1/
√
N) terms. This leads to

χR(t)(p, q) = χR(0)(p cosh t− q sinh t,−p sinh t+ q cosh t). (57)

6. Correspondence with Geometric Action for Fluid Profiles

In this section we would like to show how the geometric action for fluid profiles

[18] may be obtained from the exact classical action in the limit h̄ → 0. As we

mentioned in the last section the characteristic function of a region R in phase space

satisfies the constraint (46) in the limit h̄→ 0. This reflects the fact that as h̄→ 0

the phase space density u(p, q) corresponds to that of an incompressible fermi fluid

whose density is 1 in some region R and 0 outside. When we consider a two-

parameter deformation (in (t, s)) of the phase space density u(p, q, t, s), classically
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it corresponds to a two-parameter deformation R(t, s) of the fluid region R. In the

following we shall therefore put

u(p, q, t, s) = χR(t,s)(p, q) + h̄ corrections. (58)

The correspondence with the fluid-profile action [18] is most directly made

by rewriting the action (41) and the equations (42) in terms of the phase space

variables. Let us denote the first term of (41) by S0. In terms of the phase space

variables it reads

S0 =

∫
ds dt

∫
dpdq

2πh̄
u(p, q, t, s){ft, fs}MB (59)

The hamiltonians ft and fs are defined by (42). In terms of phase space variables

equations (42) read

∂tu = {ft, u}MB, ∂su = {fs, u}MB (60)

In the limit h̄→ 0, the Moyal bracket goes over to the Poisson bracket. Using this

fact and equation (58) we get

S0 =

∫
ds dt

∫
dpdq

2πh̄
[χR(t,s){ft, fs}PB + o(h̄2)] (61)

where

∂tχR = {ft, χR}PB, ∂sχR = {fs, χR}PB (62)

It is simple to see that (61) is the same as the action S0 written in equation (62)

of [18]. To facilitate the comparison, let us recall that equation (62) of [18] is

S0 =

∫
dt ds 〈χR(t,s)(p, q) | [∂tUU

−1, ∂sUU
−1]〉 (63)

which is equivalent to

S0 =

∫
dt ds

∫
dpdq

2πh̄
χR(t,s)(p, q){ft, fs}PB (64)

where we have written out the definition of the scalar product used in the last paper,

and used the fact that ∂aUU
−1, a = s, t are Lie algebra elements corresponding to
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the functions fs, ft satisfying the property (62) (we have explained in [18] how the

commutatator in the w∞ Lie algebra is equivalent to Poisson bracket of functions

in phase space).

The second term in (41) in the limit h̄ → 0 becomes the classical energy

contained in the fluid region R(t, s), which is the same as equation (66) of [18].

Therefore we see that the action written in the present paper agrees with the one

in [18] in the limit h̄→ 0. A different approach to the classical limit is discussed in

[25]. A different approach to coadjoint orbits of w∞, the group of area-preserving

diffeomorphisms, is discussed in [26].

7. Interacting Fermions

In this section we indicate how the bosonization technique described so far can

be applied to a wide class of interacting fermi systems.

Let us try to use the bilocal operator φ or equivalently the phase space density

u(p, q) again as the basic dynamical variable. The first point to realize is that the

constraints (38)(equivalently (45) and (46)) have been derived above using purely

kinematic reasoning without considering the equation of motion of the fermi field.

This is obvious for (45), which simply states that the total number of fermions

is N , a condition that is satisfied by any closed system of fermions, interacting

or otherwise. The second constraint, (46), originates from the operator constraint

(26), viz., Φ2 = (N + 1)Φ. The only ingredient that went into the derivation of

this constraint is the anticommutation relation of the fermi field which again does

not depend on the dynamics of the fermi system. Besides the constraints, the first

term (the symplectic form) in the action (44) is also purely kinematic, and it does

not depend on the choice of the many-body hamiltonian. With these remarks, it

is now easy to see that the coadjoint orbits of W∞ that we have constructed are

suitable for representing interacting fermions also, provided the interaction can be

expressed in terms of φ or equivalently u(p, q).
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Let us now give some examples. The most general interaction involving quadrat-

ics of φ (or u) is

Sint =

∫
dt

∫
dx dy dz dwAxyzwφ(x, y)φ(z, w) (65)

The SU(2)-spin analog of such a term would be
∑

ij SiSjBij which can be thought

of as coupling to some “generalized magnetic fields” which have tensorial trans-

formation properties under SU(2) rotations (instead of vector transformations

which are true of usual magnetic fields). The above interaction term would be

the bosonized form of the following fermion interaction:

Sint =

∫
dt

∫
dx dy dz dwAxyzwψ(x, t)ψ†(y, t)ψ(z, t)ψ†(w, t) (66)

Clearly, the standard four-fermi interaction
∫
dt dx [ψ†(x)ψ(x)]2 is included in this

list.

The generalization to cubic and higher interaction terms in φ is obvious; they

just involve introduction of higher external tensor fields of W∞ in the sense ex-

plained above. It would be extremely interesting to understand emergence of new

collective excitations like plasmons arising out of interacting bose theories such as

the ones mentioned above.

8. Concluding Remarks

In this paper we have presented solution of the bosonization problem of non-

relativistic fermions in 1-dimension. We believe that this formulation will give us

a handle on some important issues of two-dimensional string theory. For instance,

using our action (37) and the constraints (45) and (46), we can look for stringy

non-perturbative effects ∼ exp(−1/h̄) that have been discussed by Shenker [27].

We should note in this context that both our classical action and the constraint

(46) contain explicit factors of h̄. The second point is that we have seen that a

(1 + 1) dimensional target space picture emerges from the c = 1 matrix model
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perturbatively in h̄, the string coupling constant. Since our formulation is valid for

all values of h̄ it is clearly important to ask what happens to this picture for large

h̄, i.e. in the strong coupling limit. We have not been able to solve the constraint

(46) in this limit, but it seems to us that the above picture of a (1+1)-dimensional

target space theory cannot be valid in this limit. The approximation to a single

fluid blob, valid for small h̄, must necessarily break down as the string coupling

constant increases, which is also accompanied with the loss of incompressiblity

of the fermi fluid on account of large quantum corrections to step-function-like

densities. One presumably then has numerous fluid blobs all over the phase space

indicating that in the limit h̄ → ∞, one may have to deal with the full (2 + 1)-

dimensional theory described by the action (44). Such a scenario implies that the

standard reasoning from the viewpoint of continuum quantum gravity that the

dynamical metric is equivalent to one conformal mode (Liouville) which in turn

is equivalent to one additional target space dimension, breaks down in the strong

coupling limit. It is clearly very important to make this discussion more concrete.

Another interesting aspect of the strong coupling limit is the following. From

the viewpoint of fermions moving in the inverted harmonic oscillator, h̄ → ∞
limit is equivalent to µ ≡ −NǫF → 0+ (we are measuring ǫF with respect to

the top of the potential and using the convention that µ is positive for energies

below the top). In this limit the fermi level moves to the top of the potential.

Since the potential barrier is negligible here, the fluid will freely move between

the two “classical worlds” described by the inverted harmonic oscillator potential.

In order to gain some insight into the description of the µ → 0+ limit, it may

be useful to consider a generalized model in which we consider the entire range

µ ∈ (−∞,+∞). For µ → 0−, this model does not correspond to a string theory,

in the sense that the perturbation expansion of the matrix model fails to exist.

However, negative µ’s make perfect sense as a theory of fermions. The generalized

model has another classical limit as µ → −∞ in addition to the weak coupling

string theory (µ → ∞). It would be interesting to see if the two different signs of

µ correspond to two different phases of the fermi system. Such phase transitions
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are known to occur in 2+1 dimensional fermi systems in the disussion of quantum

Hall effect
⋆
. We have also seen that our bosonization techniques can be applied to

interacting fermion systems in one dimension. It would be worthwhile if some of

the techniques introduced in this paper can deepen our understanding of (1 + 1)-

and (2 + 1)- dimensional condensed matter systems.
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