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We describe a real-time classical solution of c = 1 string field theory written

in terms of the phase space density, u(p, q, t), of the equivalent fermion theory.

The solution corresponds to tunnelling of a single fermion above the filled fermi
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1. Introduction:

If we call gstr the coupling constant of string theory then we would expect that,

at weak coupling, non-perturbative effects would go as exp(−C/gstr2). However,

Shenker [1] has made the remarkable observation that in closed string theories

there can be non-perturbative effects which go as exp(−C/gstr) and that this is a

generic feature of string theory. Such a non-perturbative behaviour can be argued

for on the basis of large orders of string perturbation theory and can be seen in

the solutions of string theory with c < 1. Their existence in the c = 1 model (two-

dimensional string theory) [2] and in the Marinari-Parisi model [3] is also argued

for in terms of ‘eigenvalue tunnelling’. For a detailed discussion of these we refer

the reader to [1].

In this paper we discuss this phenomenon in the non-perturbative formulation

of string field theory at c = 1 deveolped in [4]. This formulation is based on the

mapping of the c = 1 matrix model onto a theory of free non-relativistic fermions

moving in one dimension in a potential [5, 2]. The central object in the formulation

developed in [4] is the fermion density operator, u(p, q, t) =
∫

dxψ†(q − x/2)ψ(q +

x/2) exp(−ipx), whose expectation value in any state is the fermion distribution

function in phase space in that state. The string field theory action of [4] is written

in terms of u(p, q, t) and has a nontrivial dependence on gstr ∼ h̄. Formally, the

action can be written as an infinite series in gstr. We present a real-time classical

solution of this theory which can be seen to correspond to quantum tunnelling of

a single fermion above the filled fermi sea. This classical solution has a nontrivial

dependence on gstr and leads to amplitudes that go as exp(−C/gstr) rather than

exp(−C/gstr2). A comparison with collective field theory shows that our classical

solution is not a classical solution of the collective field theory even in the limit

gstr → 0. We explain the discrepancy. Our classical solution can be generalized

to the Marinari-Parisi model and has a possible application to supersymmetry

breaking in that model. Also, in the context of identification [6, 7, 8] with black

hole physics in two dimensions [9, 10] we find that the “hyperbolic” transform [6]
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of our solution corresponds to a rather interesting time-dependent tachyon solution

in the black hole background.

The plan of the paper is as follows. In Sec. 2 we briefly review our formulation

of the c = 1 string field theory and set up the notation. In Sec. 3 we discuss

an exact solution of the classical equations of motion of the c = 1 string field

theory which describes a single fermion tunnelling. In Sec. 4 we combine this

solution with the phase space density corresponding to the filled fermi sea of N−1

fermions to get a time-dependent solution of the full theory and show that it leads

to amplitudes ∝ exp(−C/gstr). In Sec. 5, we discuss how this technique can be

applied to find non-perturbative effects in the Marinari-Parisi Model. In Sec. 6, we

make a comparsion with collective field theory. In Sec. 7, we discuss our solution

in the black hole context.

2. c = 1 String Field Theory:

We briefly review the non-perturbative formulation of the c = 1 string field

theory [4]. As is well-known, this theory is exactly described by non-relativistic

fermions moving in a background hamiltonian [5, 2]. The double scaled field theory

corresponds to the hamiltonian h(p, q) = 1
2(p2 − q2). Since the fermion number is

held fixed, the basic excitations are described by the bilocal operator φ(x, y, t) =

ψ(x, t)ψ†(y, t) or equivalently its transform

u(p, q, t) =

+∞
∫

−∞

dx ψ† (q − h̄x/2, t) e−ipxψ (q + h̄x/2, t) (1)

Here and in the following we have used the notation h̄ for gstr as in [4]. The

expectation value of this operator in a state is the phase space fermion distribution

function in that state. Eqn. (1) also has the important property that given a

“classical function” f(p, q, t) in the phase space, we have an operator in the fermion
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field theory

Of =

∫

dpdq

(2π)2
f(p, q, t)u(p, q, t) =

1

2π

∫

dx ψ†(x, t)f̂(x̂, p̂, t)ψ(x, t) (2)

where f̂(x̂, p̂, t) is the Weyl-ordered operator corresponding to the classical function

f(p, q, t). For example, vector fields corresponding to the functions fαβ(p, q) =

ei(pβ−qα) satisfy the classical algebra ω∞ of area-preserving diffeomorphisms. The

corresponding quantum operators in the fermion field theory

ũ(α, β, t) =

∫

dp dq

(2π)2
ei(pβ−qα)u(p, q, t) (3)

satisfy the W∞ algebra (a one-parameter deformation of ω∞)
⋆

[ũ(α, β, t), ũ(α′, β′, t)] =
i

π
sin

h̄

2
(αβ′ − βα′)ũ(α + α′, β + β′, t) (4)

An exact boson representation of the fermion field theory that reflects the W∞

symmetry can be acheived in terms of the 3-dim. field u(p, q, t), provided we

impose the constraints that follow from its microscopic definition

∫

dp dq

2πh̄
u(p, q, t) = N (5)

cos
h̄

2
(∂q∂p′ − ∂q′∂p) u(p, q, t)u(p

′, q′, t)

∣

∣

∣

∣

p′=p

q′=q

= u(p, q, t) (6)

where N is the total number of fermions. Also the equation of motion that follows

from the definition (1) is

(∂t + p∂q + q∂p)u(p, q, t) = 0 (7)

The constraints (5) and (6) in fact specify a co-adjoint orbit of W∞, and the

⋆ We have in our previous works also used the notation W (α, β, t) for ũ(α, β, t).
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classical action is constructed using the method of Kirillov

S[u, h] =

∫

ds dt

∫

dp dq

2πh̄
u(p, q, t, s)h̄2 {∂su(p, q, t, s), ∂tu(p, q, t, s)}MB

+

∫

dt

∫

dp dq

2πh̄
u(p, q, t)h(p, q).

(8)

where { , }MB is the Moyal bracket (for details see [4]).

We wish to emphasize that the action (8), together with a measure in the

functional integral that incorporates the constraints (5) and (6) can be derived,

starting from the fermion field theory, by the standard procedure of time-slicing and

inserting complete sets of W∞-coherent states. Thus, one can derive the following

identity for the n-point function of the bilocal fermion operator u(p, q, t):

〈µ|T (u(p1, q1, t1) · · ·u(pn, qn, tn))|µ〉 =

∫

Du u(p1, q1, t1) · · ·u(pn, qn, tn) exp(
i

h̄
S[u, h])

(9)

where S[u, h] is the action (8) and the measure Du includes δ-functions incorpo-

rating the constraints (5) and (6). The state |µ〉 on the left hand side refers to the

fermi ground state.

Let us now briefly indicate the classical limit of the string theory (h̄ → 0). In

this limit the constraint (6) implies that u(p, q, t) is a characteristic function of a

region of phase space specified by a boundary [11, 12, 13, 14]. For example the

ground state corresponds to the static solution u(p, q) = θ(µ − h(p, q)), µ ∼ − 1
h̄ .

The massless excitation (tachyon) [15, 16] corresponds to a curve that is a small

deviation from the fermi surface h(p, q) = 1
2(p2 − q2) = µ.

5



3. Time-dependent Classical Solution For Single-fermion Tunnelling:

We shall now describe a time-dependent classical solution of the u(p, q, t) theory

(5)-(8) that describes the phenomenon of quantum mechanical tunnelling of a single

fermion through the potential barrier.

We wish to emphasize at the outset that an effect which is genuinely quan-

tum mechanical in terms of a single fermion can be described entirely

by a classical solution of the u(p, q, t) theory in real time. Such a phe-

nomenon is not unfamiliar: the classical Euler-Lagrange equation of a Schrödinger

field theory is identical to the Schrödinger equation of single-particle quantum me-

chanics. The fact that the classical theory of u(p, q, t) describes the single-particle

quantum mechanics exactly is indicated by the appearance of explicit factors of h̄

in the classical action and the constraints, as well as by the fact that the action

is derived from coadjoint orbit of W∞ rather than w∞. The latter is the group of

canonical transformations in the classical single-particle phase space whereas the

former is the group of unitary transformations in the single-particle Hilbert space.

This, indeed, is the main difference between our formalism and standard collective

field theory [16]— classical solutions of the latter describe only classical motion of

the fermions and do not accomodate their quantum fluctuations. We shall see this

difference quantitatively in Sec. 6.

Single-fermion wave-packet in phase space:

We shall first describe a solution u1(p, q, t) of (5)-(8) with N in (5) put equal to

one. This phase space density corresponds to a single isolated fermion tunnnelling

across the potential barrier. Later we will combine this solution with a stationary

solution corresponding to a fermi sea built out of N − 1 fermions to construct a

solution of the full N -particle system.

It is easy to verify that

u1(p, q, t) = 2 exp
−1

h̄
[(p cosh t− q sinh t− p0)

2 + (−p sinh t+ q cosh t− q0)
2] (10)
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satisfies the equation of motion

∂tu1(p, q, t) = {h, u1}MB = −(p∂q + q∂p)u1 (11)

and the constraints
∫

dpdq

2πh̄
u1(p, q) = 1 (12)

cos
h̄

2
(∂q∂p′ − ∂q′∂p)[u1(p, q)u1(p

′, q′)]p′=p,q′=q = u1(p, q) (13)

It is clear that u1(p, q, t) is a configuration that describes the phase space den-

sity of a single fermion. In the next section we shall see that u1(p, q, t) corresponds

to the phase space density of a fermion in a minimum uncertainty wavepacket

(Eqn. (39)). Note that the peak of the phase space density at time t is given by

p cosh t− q sinh t− p0 = 0 = −p sinh t+ q cosh t− q0 (14)

The above equations give the position of the peak at time t as

p̄(t) = p0 cosh t+ q0 sinh t, q̄(t) = p0 sinh t+ q0 cosh t (15)

Let us choose p0 > 0, q0 < 0 and p0 < |q0| for definiteness, so that the mean

trajectory (15) describes a hyperbola in the left half space corresponding to negative

energy (negative value of (p2
0−q20)/2). We shall equivalently use a parametrization

p0 =
√

2|E0| sinh θ0, q0 = −
√

2|E0| cosh θ0 (16)

where E0 = −|E0| = (p2
0 − q20)/2 denotes the energy of the trajectory.
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The trajectory of the peak, (15), suggests that classically the fermion is com-

pletely reflected off the barrier. To see this more quantitatively, note that in the

h̄→ 0 limit we get

1

2πh̄
u1(p, q, t) →δ(p cosh t− q sinh t− p0)δ(−p sinh t+ q cosh t− q0)

=δ(p− p̄(t))δ(q − q̄(t))
(17)

where p̄(t) and q̄(t) are given by (15). For finite h̄, however, the phase space density

has a finite spread and a finite amount of the phase space density trickles across

to the other side of the potential barrier. The easiest way to see this is to look at

the fermion density ρ(q, t):

ρ(q, t) ≡
∫

dp

2πh̄
u1(p, q, t)

=(πh̄ cosh 2t)−1/2 exp[−(q − q̄(t))2

h̄ cosh 2t
]

(18)

where q̄(t) has been defined in (15).

There are several interesting facts about (18). First of all, it is defined for all

q, positive and negative. Therefore, there is a non-zero probability density of the

fermion in the right half of the world (q > 0) at any time. Moreover, although the

mean position q̄(t) again shows the classically reflected trajectory, the dispersion

∆q(t) =

√

h̄

2
cosh 2t

increases exponentially rapidly at large times (positive as well as negative). This

means that the density (18) is reasonably peaked at finite times around its mean

but at large negative and positive times it gets very spread out. How does one find

out if there is a finite amount of probability that actually moves over from the left

side of the barrier to the right?
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Let us consider the total probability, at any given time, of the fermion to be

in the right (or left) half of q-space. In other words, we define

N+(t) =

∞
∫

0

dq ρ(q, t) (19)

and

N−(t) =

0
∫

−∞

dq ρ(q, t) (20)

By (12), N+(t) + N−(t) = 1; hence only one of them is independent. We shall

focus on N+(t). Using (18), we find that

N+(t) =
1

2
[1 − erf(x̄(t))] (21)

where

x̄(t) = − q̄(t)√
h̄ cosh 2t

and the error function is defined by

erf(z) =
2√
π

x
∫

0

dt e−t2

Note that with our choice of the classical trajectory (15)-(16), x̄(t) is positive for

all t. It is easy to calculate the t→ ±∞ limits of (21):

N+(±∞) =
1

2
[1 − erf(x̄(±∞))]

x̄(±∞) =

√

|E0|
h̄

exp(∓θ0)
(22)

where we have used the parametrization (16) of p0, q0 in terms of |E0|, θ0. For

θ0 > 0, i.e. p0 > 0, we see that N+(∞) > N+(−∞), showing that a finite amount
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of “trickling” has taken place, the amount being

T ≡ N+(∞) −N+(−∞) =
1√
π

x̄(∞)
∫

x̄(−∞)

dt e−t2 (23)

Note that we find a positive “trickle” from the left to the right when p0 > 0. This

is understandable because p0 > 0 means that the mean momentum of the wave-

packet is also directed from the left to the right (in the direction of increasing q).

For negative θ0, or equivalently negative p0, we find a negative value for T , while

T vanishes for θ0 = 0 = p0.

For small θ0 we get

T = 2θ0

√

|E0|
2πh̄

exp[−|E0|
2h̄

] + o(θ2
0) (24)

This can be compared with the leading WKB result for the tunnelling amplitude,

which is given by

exp[−1

h̄

a
∫

−a

dx′
√

V (x′) − E0] ∝ exp[−|E0|π/h̄
√

2] (25)

Here ±a are the classical turning points, satisfying V (±a) = E0.

4. Time-dependent Classical Solution of c = 1 String Field Theory and

exp(−C/gstr) Effects:

In the last section we constructed an exact solution of the u(p, q, t) theory

which corresponds to fermion number equal to one. It describes the phase space

density of a single-fermion wave packet, part of which tunnels through. To use

this solution in constructing a solution of the N -fermion problem we proceed as

follows. We consider the fermi sea of the N -fermion system and imagine removing

one fermion from the fermi level to a ‘wave-packet state’ of the kind described
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above, with a mean energy that is much higher than the fermi energy but still far

lower than the top of the potential barrier (we will presently make these statements

more exact). The fermi sea of N−1 fermions corresponds to a phase space density

u0(p, q) =〈F |
∫

dx e−ipxψ†(q − h̄x/2, t)ψ(q + h̄x/2, t)|F 〉

=

µ
∫

dν

∫

dx e−ipxφ∗ν(q − h̄x/2)φν(q + h̄x/2)

(26)

Here |F 〉 is the ground state of (N − 1) fermions, φν(x) is the eigenstate of the

single-particle hamiltonian

ĥ =
1

2
(p̂2 − x̂2 +

g3√
N
x̂3 + · · ·) (27)

with energy ν and µ is the fermi level for (N − 1) fermions. In the limit N → ∞,

the right hand side of (26) can be evaluated explicitly. Denoting this limiting value

by ū0(p, q), we have

ū0(p, q) =
1

2π

µ
∫

−∞

dν

∞
∫

−∞

dλ

cosh λ/2
exp i[νλ− 1

h̄
(p2 − q2) tanh

λ

2
] (28)

By construction, the u0(p, q) in (26) satisfies the constraints

∫

dp dq

2πh̄
u0(p, q) = N − 1 (29)

cos
h̄

2
(∂q∂p′ − ∂q′∂p)u0(p, q)u0(p

′, q′)

∣

∣

∣

∣

p′=p

q′=q

= u0(p, q) (30)

The equation of motion is also satisfied since u0(p, q) is time independent and can

be shown to depend on p and q only through the classical hamiltonian h(p, q) =

1
2(p2 − q2 + g3√

N
q3 + · · ·).
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There are two ways one can approach the problem of constructing the full

u(p, q, t) that combines the phase space densities u0(p, q) and u1(p, q, t). The first

is to try to see if

u(p, q, t) = u0(p, q) + u1(p, q, t) (31)

is a solution of the equations of motion and the constraints. It is easy to see that in

the large N limit the equation of motion and the total fermion number constraint

is satisfied since the corresponding equations are linear. The quadratic constraint,

however, is not satisfied because of the cross term

C01 ≡ cos
h̄

2
(∂q∂p′ − ∂q′∂p) u0(p, q)u1(p

′, q′, t)

∣

∣

∣

∣

p′=p

q′=q

(32)

Note, however, that in the classical limit h̄→ 0,

u0(p, q) → θ(µ− p2 − q2

2
),

1

2πh̄
u1(p, q, t) → δ(p− p̄(t))δ(q − q̄(t)) (33)

where q̄(t) and p̄(t) are given by (15). Clearly if in this limit we choose (p0, q0), the

initial (t = 0) position of the peak, to be outside the support of u0, or alternatively

the energy E0 ≡ (p2
0 − q20)/2 to be greater than the fermi energy µ, then the cross

term (32) vanishes. In other words,

u(p, q, t) = θ(µ− p2 − q2

2
) + 2πh̄δ(p− p̄(t))δ(q − q̄(t) (34)

is a solution of the equation of motion and the constraints in the limit h̄→ 0.

How about h̄ 6= 0? After all, if we put h̄ = 0 the physical effect that we

are after, the “trickle”, vanishes. Let us assume that h̄ is non-zero but small.

It is easy to see, by using explicit expressions for u0(p, q) and u1(p, q, t), that

they develop exponential tails away from the support of the θ-function and δ-

function respectively. Thus, by choosing the energy E0 of the wave-packet to be

sufficiently far away from the fermi energy µ, we can make the cross term C01 in (32)
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exponentially small. The region where the cross term is the strongest is given by

(p, q) ≈ (p0, q0) where u1 is of order 1 and u0 is of order exp[−(a|µ| − b
√

|µE0|)/h̄]
(a, b positive numbers of order 1). If we choose |µ| >> |E0| >> 0 then C01 ∼
exp[−a|µ|/h̄]. This implies that the solution u(p, q, t) = u0 + u1 is off from the

exact solution by terms of the order exp[−(a|µ|)/h̄]⋆. Note that we cannot outright

ignore such terms because the “trickle” that we are looking for is also exponentially

small as h̄→ 0. The implication of this is the following. As in the previous section,

let us define the quantities N+(t) and T as

N+(t) =

∞
∫

0

dq

∞
∫

−∞

dp u(p, q, t) (35)

T = N+(∞) −N+(−∞) (36)

If u = u0 + u1 were the exact solution, then T would again be given by (23)-(24),

since u0 is time-independent and does not contribute to the trickle. The question

is, if u has additional terms of order exp[−(a|µ|)/h̄] (which are also clearly time-

dependent) then how does the estimate for the “trickle” modify? For instance, can

the new contribution cancel the trickle by contributing an equal amount with an

opposite sign? Fortunately such bizarre things do not happen. The basic reason

is that expressions like (23) or (24) do not depend on µ, and in the domain of

parameters |µ| >> |E0| >> 0 we can claim that, to leading order, the trickle is

again given by

T = 2θ0

√

|E0|
πh̄

exp[−|E0|
h̄

] + o(θ2
0) (37)

There is a more precise way of seeing the above result by going back to fermions

and constructing an exact classical solution u(p, q, t) that satisfies all the con-

⋆ We shall soon verify this statement explicitly by presenting the exact solution.
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straints and the equation of motion exactly. It is given by

u(p, q) = 〈Φ|
∫

dx e−ipxψ†(q − h̄x/2, t)ψ(q + h̄x/2, t)|Φ〉 (38)

Here |Φ〉 is the N -fermion state in which N − 1 fermions occupy the N − 1 lowest

energy eigenstates φν(x), ν = −M, · · · , µ (−M is a large negative number denoting

the ground state energy of the single-particle hamiltonian; in the limit of N → ∞,

−M → −∞ and the energy levels become continuous) and one fermion belongs to

a wave-packet state, which is given, in the limit N → ∞ in which the single-particle

hamiltonian is ĥ = 1
2(p̂2 − x̂2), by

ψ1(x, t) = exp(
it

2
[h̄∂2

x + x2/h̄]){(πh̄)−1/4 exp(− 1

2h̄
[(x− q0)

2 − 2ip0x])}

=
(πh̄)−1/4 exp(ip0q0/2h̄)

√

f(t)
exp[− 1

2h̄ cosh 2t
{(xf∗(t) − z0)

2 +
1

2
(|z0|2 cosh 2t− z2

0f(t))}]

(39)

where z0 ≡ q0 + ip0 and f(t) = cosh t+ i sinh t. ψ1(x, t) is the wave-function whose

phase space density is u1(p, q, t). The state |Φ〉 is explicitly given by the Slater

determinant of the single-particle states {φν(x), ν = −M, · · · , µ; ψ1(x, t)}. To see

that (38) satisfies the quadratic constraint (6) it is convenient to define the first-

order density matrix [12] γΦ(x, y, t) = 〈Φ|ψ†(x, t)ψ(y, t)|Φ〉 in terms of which the

constraint (6) reads as
∫

dy γΦ(x, y, t)γΦ(y, z, t) = γΦ(x, z, t). The last statement

is true for any state Φ which can be written as a single Slater determinant of any

arbitrary one-particle wavefunctions. Indeed, this is the easiest way to check the

validity of the quadratic constraint for u0 and u1 also.

Let us expand ψ1(x, t) in terms of the energy eigenfunctions φν(x, t) ≡ φν(x) exp(−iνt):

ψ1(x, t) =
∑

ν

A(ν)φν(x) exp(−iνt) (40)

Using these one can evaluate (38):

u(p, q, t) =
∑

ν(sea)

uν(p, q) +
1

C2
B (41)
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where

C2 =
∑

ν(above)

|A(ν)|2 = 1 −
∑

ν(sea)

|A(ν)|2 (42)

and

B =
∑

ν(above)

|A(ν)|2uν(p, q) +
∑

ν 6=ν′(above)

A∗(ν)A(ν′)uνν′(p, q, t) (43)

In the above, sum over energy levels that belong to the fermi sea or above have

been denoted appropriately. An unspecified sum means sum over all states. The

notation uνν′(p, q, t) stands for
∫

dx exp(−ipx)φ∗ν(q − h̄x/2, t)φν′(q + h̄x/2, t).

It is clear that the first term in (41) is simply u0(p, q) of Eqn. (26). Let us

compare the second term B/C2 with u1(p, q, t); the latter (Eqn. (10)) looks in the

present notation as

u1(p, q, t) =
∑

ν

|A(ν)|2uν(p, q) +
∑

ν 6=ν′

A∗(ν)A(ν′)uνν′(p, q, t) (44)

We see that, in the limit N → ∞, B/C2 differs from u1(p, q, t) by terms of the

order of |A(µ)|2. Now, A(µ) is simply the scalar product between the Gaussian

wavefunction ψ1 and the fermi level wave-function φµ and can be shown to be

∼ exp[−a|µ|/h̄], a > 0 if we have |µ| >> |E0| >> 0. This verifies our earlier

conclusion that u = u0 + u1 + o(exp[−a|µ|/h̄]), a > 0.

Stringy Non-perturbative effect:

Since we are working in the weak coupling limit (h̄ = gstr → 0), the expression

for the “trickle” that we have calculated using a classical solution can be regarded

as the leading result for the following field theory amplitude

A ≡
∫

Du exp(iS[u])T [u]
∫

Du exp(iS[u])
(45)

where

T [u] =

∞
∫

0

dq

∞
∫

−∞

dp[u(p, q, t = +∞) − u(p, q, t = −∞)] (46)
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In the above, S[u] is the classical action described in Sec. 2 and the measure

Du incorporates the constraints on the u(p, q, t) field. To pick out the classical

solution described above, we of course need to specify boundary conditions in the

functional integral appropriately so that they match the behaviour of the desired

classical solution at large initial and final times. By the results described above,

we find that

A ∼ exp[−|E0|/gstr] (47)

where E0 = (p2
0−q20)/2 is a parameter of the classical solution specifying the mean

energy of the wave packet. As already mentioned, the physics of this amplitude is

the tunnelling of a single fermion.

For treatment of non-perturbative effects within the framework of collective

field theory, see [17-19]. Stringy non-perturbative effects arising from the motion

of a single eigenvalue in an effective potential have been discussed previously in

c < 1 models in [20].

5. Marinari-Parisi Model:

In this section we briefly outline how the Marinari-Parisi model [3] can be

treated in our formalism of u(p, q, t)-theory so that non-perturbative effects may be

calculated in a field theory framework. The essential point is that the bosonic sector

of the model corresponds to a non-relativistic fermi gas in one space dimension.

The basic difference with the c = 1 model is that the classical single-particle

hamiltonian is given by

h(p, q) =
p2

2
+ V (q), V (q) = q3 − αq (48)

Thus, except for the equation of motion for the u-field, which becomes

∂tu = {h, u}MB = {h, u}PB − h̄2

4
∂3

pu, (49)

everything else (like the constraints, the classical action etc.) remains unchanged.
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The interesting physical effect in this model is assoicated with the tunnelling

of a single fermion. For α > 0, the potential V (q) has two minima at q = qm ≡
+

√

α/3 and q = −∞, separated by a maximum at q = −qm. It has been shown

in [3] that at the critical point α = 0, where the secondary well disappears, the

ground state of the fermi system is given by a fermi sea which reaches upto the

position of the point of inflexion. This means that as one decreases α from the

positive side towards zero, more and more fermions escape out of the secondary

well. In the limiting situation α → 0+ only one fermion remains and criticality

is characterized by the tunnelling of this fermion. This causes non-perturbative

supersymmetry breaking, leading to amplitudes that go as exp(−C/gstr). Since

the tunnelling involves a single fermion, the interpolating configuration u(p, q, t)

again consists of a “large” piece u0(p, q) describing N − 1 stationary fermions and

a “small” piece u1(p, q, t). We can explicitly construct u1(p, q, t) as follows. Let u1

at time t = 0 be given by

u1(p, q, 0) = 2 exp[−1

h̄
{(p− p0)

2 + (q − q0)
2}]. (50)

It is easy to verify that (50) satisfies the constraints (12) and (13) at t = 0. Now

a useful fact about the time-evolution ∂tu = {h, u}MB is that if we ensure that

u(p, q, 0) satisfies the two constraints (12) and (13), then the time-evolved u(p, q, t)

automatically satisfies them for any arbitrary hamiltonian h(p, q) (this is of course

required for consistency between equations of motion and constraints). It is not

difficult to show that the solution to (49), with the initial condition (50), is

u1(p, q, t) = 2 exp[−1

h̄
{(P (p, q, t) − p0)

2 + (Q(p, q, t) − q0)
2}] + o(h̄2). (51)

where P (p, q, t), Q(p, q, t) describe a classical trajectory for the hamilton (48), with

the initial condition P (p, q, 0) = p,Q(p, q, 0) = q.

In order that (51) describes the appropriate tunnelling configuration, we should

take q0 to be inside the secondary well (q0 ≈ qm ≡
√

α/3) and p0 to be negative
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such that the wave-packet is directed towards the other well (the other well is

strictly speaking bottomless in the double scaled limit, but for any finite N one

has a regulated potential with a finite depth just as in the standard c = 1 model).

The calculation of the “trickle” can again be performed in a similar fashion to the

earlier sections. We shall present the details elsewhere.

6. Comparison with Collective Field Theory:

In this section we ask whether our classical solution u(p, q, t) could be derived

from the equations of motion of the standard collective field theory [16]. The

answer will turn out to be negative. But before going to that, let us first see

how one might make a comparison between the u(p, q, t)-theory and the standard

collective field theory.

It is convenient to define the following moments of the phase space density

u(p, q, t):

ρ(q, t) ≡ ρ̃(q, t)

2πh̄
=

∫

dp

2πh̄
u(p, q, t)

Π(q, t)ρ(q, t) =

∫

dp

2πh̄
pu(p, q, t)

Π2(q, t)ρ(q, t) =

∫

dp

2πh̄
p2u(p, q, t)

· · · = · · ·

(52)

In the following we shall assume that the N → ∞ limit has been taken. In this

limit the classical hamiltonian is h(p, q) = 1
2(p2 − q2) and therefore the equation of

motion is

(∂t + p∂q + q∂p)u(p, q, t) = 0 (53)

This equation implies equations of motion for the moments. One can obtain them

by taking moments of (53). Let us write down the first two equations obtained
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this way:

∂tρ̃(q, t) = −∂q(Πρ̃) (54)

∂tΠ(q, t) = q + ∂q(
Π2

2
− Π2) +

∂qρ

ρ
(Π2 − Π2) (55)

It is clear that one does not obtain a closed set of equations for ρ,Π— their equa-

tions of motion involve the next higher moment. In fact this pattern continues ad

infinitum.

Let us compare (54)-(55) with collective field theory equations

∂tρ̃(q, t) = − ∂q(Πρ̃)

∂tΠ(q, t) =q − ∂q(
Π2

2
+
ρ̃2

8
)

(56)

How does one understand getting a closed set of equations for ρ,Π from our view-

point? To see this, we turn again to quadratic profiles (for details see [4, 12]) for

which the classical solution u(p, q, t), in the limit h̄→ 0, looks like

u(p, q, t) = θ[(p+(q, t) − p)(p− p−(q, t))] + h̄ corrections (57)

Remarkably, for these kinds of solutions we can show that the moment Π2 can be

determined in terms of Π, ρ as

Π2 = Π2 +
1

12
ρ̃2 + h̄ corrections (58)

If one puts this in (55), one recovers the second equation of (56) upto h̄-corrections

(the first equation already agreed with (54)).

There are two lessons to be learnt from the above exercise: (a) collective field

theory equations can be recovered from the equation of motion of u(p, q, t)-theory

under the assumption (57), in the limit h̄ → 0; (b) even under the “quadratic

profile” assumption, classical equations of the collective field theory are violated
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by classical solutions of u-theory (like (57)) by h̄-corrections. The last observation

reflects the fact that the classical solutions of the u-theory incorporate the single-

particle quantum mechanics exactly, as was remarked in Sec. 3. To give a more

explicit example of this point, consider u = u0(p, q) of the Sec. 4, and regard

it for the moment as the fermi sea of the N -body problem (rather than N − 1).

This classical solution satisfies the ansatz (57) with non-trivial non-perturbative

corrections in h̄. It is easy to see that the second equation of (56) is violated by

non-perturbative h̄-corrections.

Let us now see if the full time-dependent u(p, q, t) including u0 and u1 of the

previous section satisfies equations (56). To a first approximation, let us ignore the

overlap regions between (ρ0,Π0) and (ρ1,Π1) and try to see if each of these pairs

satisfies the collective field equations independently. This amounts to ignoring

non-perturbative terms in h̄ (recall that both ρ0 and ρ1 have exponential tails

in the intermediate region between them). This attitude is similar to the one

that we had adopted while calculating the “trickle”. In addition, since we have

established non-perturbative violations of the collective field equations already in

the last paragraph, one may be interested in looking for new violations this time

which persist even when one ignores terms of order exp[−1/h̄]. It turns out that

ρ1,Π1, taken by themselves, indeed violate the second equation of (56) by the

amount

∂tΠ1(q, t)−{q − ∂q(
Π2

1

2
+
ρ̃2
1

8
)}

=
q − q̄(t)

cosh2 2t
− π

2

q − q̄(t)

cosh2 2t
exp[−2(q − q̄(t))2

h̄ cosh 2t
]

(59)

The non-perturbative term is already expected from earlier considerations; its mag-

nitude may change when one takes into account the overlap terms between ρ0 and

ρ1, though following the logic of previous sections, the modifications are smaller

than the original term. The first term is more of a surprise because it is non-zero

even in the h̄→ 0 limit. The way to understand this is to note that the wave-packet

solution u1(p, q, t) does not satisfy the criterion (57) appropriate for quadratic pro-

files. As a result it does not lead to (58)(which one may also verify directly). This
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is the reason why there is a classical violation of the collective field equations

by the wave packet solution. Indeed, since the relation (58) is rather crucial in

deriving the classical equations of collective field theory, and this in turn crucially

depends on the assumption (57) of quadratic profiles, it is trivial to generate other

examples of u(p, q, t) which in the limit h̄ → 0 go over to something other than

quadratic profiles and thus end up satisfying different collective field equations!

7. Interpretation of the Time-dependent solution in the Black Hole

Context:

In [6] we found a correspondence between the weak coupling regime of c = 1

string field theory and the black hole of two-dimensional string theory. One feature

of the correspondence is that if one considers 〈R|u(p, q, t)|R〉 ≡ uR(p, q, t) in states

|R〉 which are ‘small fluctuations’ on the ground state |R0〉 then the “hyperbolic

transform”(HT) of the fluctuation uR − uR0
≡ η satisfies, in the classical limit,

the differential equation of a massless scalar field in black hole background
⋆
. The

‘small fluctuation’ condition above means that the support of η must be in a small

neighbourhood of the fermi surface, satisfying |(h(p, q) − µ)/µ| << 1 whenever

η(p, q) 6= 0. Let us now see how we can find such solutions from the “tunnelling”

state that we have constructed and used in the preceding sections to see somewhat

different physical effects.

Consistent with the approximations that have been made in the earlier sections,

we shall regard the full solution for u as

u(p, q, t) = uN−1(p, q) + u1(p, q, t) (60)

where we have used the notation uN−1 in place of u0 to emphasize that it corre-

sponds to the fermi sea of an (N − 1)-fermion system. The fluctuation η is the

⋆ In equation (19) of [6] we made this claim for ∂µη. By going through the steps that led to
(19), we can show that the equation is equally valid for η itself.
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difference between (60) and the expectation value of the u(p, q, t)-operator in the

state |R0〉 which describes the N -particle fermi sea. We have

η(p, q, t) ≡ u(p, q, t) − uN (p, q) = −δ0u(p, q) + u1(p, q, t)

δ0u(p, q) =uN (p, q) − uN−1(p, q)
(61)

δ0u(p, q) is simply the phase space density corresponding to the fermion at the

top of the N -particle fermi sea and u1(p, q, t) is the phase space density of the

wave-packet. Now, by the arguments given in [6], the HT (‘hyperbolic transform’)

of δ0u(p, q), denoted by δ0T (u, v), satisfies the differential equation

[4(uv − µ

2
)∂u∂v + 2(u∂u + v∂v) + 1]δ0T (u, v) = 0 + h̄ corrections (62)

where u, v are defined by u = 1
2(p + q)e−t, v = 1

2(p − q)et. This is because in the

h̄→ 0 limit the support of δ0u in the phase space is confined to a small strip near

the fermi surface. Now if we can ensure that in the h̄→ 0 limit u1 satisfies the ‘small

flucutation’ condition mentioned in the last paragraph, then η will also satisfy this

condition and as a result the HT of η will satisfy Eqn. (62). This would imply

that the HT of u1(p, q, t), would also satisfy Eqn. (62). The ‘small fluctuation’

condition on u1(p, q, t) implies that we must have |(E0−µ)/µ| << 1. If we go back

to the arguments in Sec. 4, we can see that in such a region of parameters p0, q0,

(60) is a solution only in the classical limit h̄→ 0, since otherwise the cross terms

discussed in (32) are important. In the limit h̄→ 0,

u1(p, q, t) → 2πh̄δ(q − q̄(t))δ(p− p̄(t))

The HT of this limiting δ-function is easy to calculate and turns out to be propor-

tional to

T1(u, v) = |(u− u0)(v − v0)|−1/2 (63)

where u0 = 1
2(p0 + q0) and v0 = 1

2(p0 − q0). It can be directly verfied that T1(u, v)

satisfies the differential equation (62) for |(u0v0 − µ/2)/µ| << 1.
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Note that in the limit that we are working with in this section, our solu-

tion u1(p, q, t) does not exhibit any “trickling” and is not linked with any non-

perturbative effect. However, the solution T1(u, v) that it gives rise to is rather

interesting from the black hole point of view. Let us emphasize that if one chooses

parameters u0, v0 such that u0v0 = µ/2 then (63) provides an exact solution of

the differential equation for propagation of massless scalar fields in the

black hole geometry:

[4(uv − µ

2
)∂u∂v + 2(u∂u + v∂v) + 1]T1(u, v) = 0 (64)

This solution has the intriguing feature that it has singularities along the two lines

u = u0 and v = v0. Since µ in our convention is negative, u0v0 = µ/2 is satisfied

by a family of values

u0 = α
√

−µ/2, v0 = −α−1
√

−µ/2 (65)

where α is a non-zero real number.

Let us try to understand this solution as a tachyon wave in the black hole

geometry. In the following we shall concentrate on the v > 0 half of the Kruskal

diagram and use “space” and “time” coordinates ξ and T , related to u, v by

u = ǫ exp(ξ + T ), v = exp(ξ − T ) (66)

where ǫ = ±1 depending on whether we are in the region uv > 0 or uv < 0.

Since uv = µ/2 = −|µ|/2 denotes the position of the black hole singularity in

our convention, uv > 0 or ǫ = +1 denotes spacetime regions outside the event

horizon. The ξ and T coordinates introduced above are simple functions of the

Schwarzschild space and time coordinates, respectively. The solution (63) then
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looks like

T1(ξ, T ) = |(exp(ξ + T ) − ǫα
√

|µ|/2)(exp(ξ − T ) + α−1
√

|µ|/2)|−1/2 (67)

Let us consider first the case α > 0. In this case, (67) has singularities only outside

the horizon ǫ > 0. At a fixed ξ this singularity occurs at

T = −ξ +
1

2
log(|µ|/2) (68)

This singularity can be interpreted in two ways. If we think of (67) as a propagating

tachyon wave, then it implies that the initial data has a singularity irrespective of

the choice of the initial spacelike surface. A more interesting interpretation comes

about if we think of additional observers who can couple to tachyon backgrounds.

For such an observer at fixed ξ, the tachyon solution (67) will appear as a singularity

at the instant of time (68) and will be well-behaved before and after. Since the

lines of singularity of our solution u = u0, v = v0 are light-like, these can perhaps

be interpreted as light-like “thunderbolts” [21]. The case α < 0 has the property

that here one encounters singularities only inside the event horizon. Note that

the symmetry between positive and negative values of α can be restored if one

includes in the discussion the other half of the Kruskal diagram v < 0. For further

discussion of this and other solutions to (64), see [22].

Acknowledgement: S.W. would like to thank S. Shenker and A. Jevicki for

discussions.

24



REFERENCES

1. S. Shenker, in Random Surfaces and Quantum Gravity, Cargese Proceedings,

Eds. O. Alvarez, E. Marinari and P. Windey (Plenum, 1991).

2. E. Brezin, V.A. Kazakov and Al.B. Zamolodchikov, Nucl. Phys. 338 (1990)

673; D.J. Gross and N. Milikovic, Nucl. Phys. B238 (1990) 217; G. Parisi,

Europhys Lett. 11 (1990) 595; P. Ginsparg and J. Zinn-Justin, Phys. Lett.

240B (1990) 333; S.R. Das, A. Dhar, A. Sengupta and S.R. Wadia, Mod.

Phys. Lett. A5 (1990) 891.

3. E. Marinari and G. Parisi, Phys. Lett. 240B (1990) 375.

4. A. Dhar, G. Mandal and S.R. Wadia, Mod. Phys. Lett. A7 (1992) 3129.

5. E. Brezin, C. Itzyksen, G. Parisi and J.B. Zuber, Comm. Math. Phys. 59

(1978) 35.

6. A. Dhar, G. Mandal and S.R. Wadia, Tata preprint TIFR-TH-92/63, hep-

th/9210120.

7. S.R. Das, TIFR preprint, TIFR/TH/92-62.

8. J.G. Russo, Texas preprint UTTG-27-92.

9. G. Mandal, A.M. Sengupta and S.R. Wadia, Mod. Phys. Lett. A6 (1991)

1685.

10. E. Witten, Phys. Rev. D44 (1991) 314.

11. S.R. Das, A. Dhar, G. Mandal and S.R. Wadia, Int. J. Mod. Phys. A7 (1992)

5165.

12. A. Dhar, G. Mandal and S.R. Wadia, preprint IASSNS-HEP-91/89, TIFR/TH/91-

61, hep-th/9204028 (to appear in Int. J. Mod. Phys.).

13. J. Polchinski, Nucl. Phys. B346 (1990) 253.

14. S. Iso, D. Karabali and B. Sakita, preprint CCNY-HEP-92/6.

15. A.M. Sengupta and S.R. Wadia, Int. J. Mod. Phys. A6 (1991) 1961.

25

http://arXiv.org/abs/hep-th/9210120
http://arXiv.org/abs/hep-th/9210120
http://arXiv.org/abs/hep-th/9204028


16. A. Jevicki and B. Sakita, Nucl. Phys. B165 (1980) 511; S.R. Das and A.

Jevicki, Mod. Phys. Lett. A5 (1990) 1639.

17. R. Brustein and B. Ovrut, Penn. U. preprint UPR-524T.

18. J. Lee and P.F. Mende, preprint BROWN-HET-880.

19. A. Jevicki, Nucl. Phys. B376 (1992) 75.

20. G. Bhanot, G. Mandal and O. Narayan, Phys. Lett. B251 (1990) 388; F.

David, Nucl. Phys. B348 (1991) 507.

21. S. Hawking and J.M. Stewart, DAMTP, Cambridge preprint PRINT-92-

0362.

22. A. Dhar, G. Mandal and S. Wadia, TIFR preprint, in preparation.

26


