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ABSTRACT

In this note we discuss local gauge-invariant operators in noncommutative gauge theories.
Inspired by the connection of these theories with the Matrix model, we give a simple
construction of a complete set of gauge-invariant operators. We make connection with the
recent discussions of candidate operators which are dual to closed strings modes. We also
discuss large Wilson loops which in the limit of vanishing noncommutativity, reduce to the
closed Wilson loops of the ordinary gauge theory.
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1 Introduction

One question of intrinsic interest in any gauge theory is the construction of local gauge-
invariant operators since these form a complete set of observables of the theory. This question
has been addressed in several recent works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] in the context
of noncommutative gauge theories. In these theories the construction of gauge-invariant
operators is made somewhat nontrivial by the fact that simple analogues of local gauge-
invariant operators of commutative gauge theories, taken over to the noncommutative case,
are not local, but are integrated over all of space. It turns out, however, that more general
gauge-invariant operators do exist and were constructed in [7]. The set of gauge-invariant
operators in noncommutative gauge theories constructed in this work has been further discussed
in [13, 14, 15]. Furthermore, operators presented in [15] have the desirable property that they
reproduce the corresponding local operators in ordinary commutative gauge theories at scales
large compared to the noncommutativity scale.

In this note we exploit the connection [16, 17, 18, 19, 20, 21, 7, 23, 22, 8] of the matrix
model to noncommutative gauge theories (emphasized recently by Seiberg [24]) to present a
particularly simple construction of local gauge-invariant operators in these theories. The matrix
model has an underlying U(N) gauge symmetry and it is easy to write operators invariant
under this symmetry. Dp-branes arise in the matrix model as classical solutions in the limit
of large N and the U(N) gauge symmetry of the matrix model reappears on the branes as the
noncommutative gauge symmetry. Because of this connection U(N)-invariant operators of the
matrix model reappear as gauge-invariant operators on the branes. This fact directly leads to
a simple construction of local gauge-invariant operators in noncommutative gauge theories.

2 Dp-branes in Matrix Model

The dynamical variables in the matrix model [25] are nine N × N hermitian matrices XI ,
I = 1, 2, ..., 9. Time-independent bosonic classical solutions are determined by extremizing the
potential Tr[XI , XJ ]2, which gives the equation of motion

[XJ , [XI , XJ ]] = 0. (1)

In the large N limit Dp-branes correspond to the solutions of this equation given by [16]

X i = xi, i = 1, 2, ..., p,

XI = 0, I = p + 1, ..., 9. (2)

where

[xi, xj] = iθij , (3)

The rank of the matrix θ is p for Dp-branes so that one has maximal noncommutativity. Also
note that in the matrix model p is even.
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Expanding XI around the above classical solution gives a noncommutative gauge theory on
the branes. If the classical solution represents Q Dp-branes, one gets a U(Q) noncommutative
gauge theory.

Let us parameterize the fluctuations as

X i = xi + θijÂj(x
i) (4)

We have written the fluctuations as dependent on xi because we can expand it in terms of a
complete set of operators. An example, in the large N limit, is the Weyl basis defined by the
exponential operators g(α) = exp iαix

i. We also have the scalar fluctuations φa = Xa+p, a =
1, 2, ..., 9 − p.

Now, the time independent U(N) gauge symmetry of the matrix model 1 acts on XI

as XI → UXIU †. This action descends on the fluctuations Âi on the branes as U(Q)
noncommutative gauge symmetry

Âi → UÂiU
† + iU∂iU

† (5)

where
∂i = −iθ−1

ij adxj (6)

provided we transfer, as above, the U(N) transformation of the background to the fluctuation.
Here θ−1 is the inverse of the matrix θ.

The transformation of the fluctuation in (5) is indeed a gauge transformation because the
second term can be understood as a parallel transport [11, 10] defined in terms of the derivative
operator of the non-commutative gauge theory. From here it is clear that the gauge group of the
non-commutative gauge theory is inherited from the large N limit of the matrix model, and also
the definition (6) makes it clear that translations are generated by U(∞) rotations. Thus, we
see that the set of gauge-invariant operators on the branes is identical to and directly inherited
from the gauge-invariant operators in the matrix model. Also gauge invariant operators are
necessarily translation invariant.

3 Gauge Invariant Operators

Gauge-invariant operators are very easy to construct in the matrix model because its U(N)
gauge symmetry is linearly realized on the dynamical variables XI . Thus, the matrix trace of
an arbitrary function of XI is gauge-invariant. A complete set of gauge-invariant operators is
given by Tr(XI1...XIn) where n ≤ N , since for n ≥ N the trace can be rewritten in terms of
traces of fewer number of matrices. In the large N limit, which is what we need in the Dp-brane
classical background, it is more convenient to consider the operators

Ôk = eik.X . (7)

1In the IKKT matrix model [26] this will be the full gauge symmetry
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Traces of products of these operators for different values of k can be used to generate all the
above gauge-invariant operators for finite N . For example,

Tr[XI , XJ ]2 = −2(∂I∂
′
J − ∂J∂′

I)
2 Tr(eik.Xeik′.X)|k=k′=0,

where ∂ and ∂′ are derivatives with respect to k and k′. That is, all the gauge-invariant
operators of the matrix model are contained in the set of operators

Ôkk′... = eik.X eik′.X · · · (8)

By the correspondence of the matrix model U(N) gauge symmetry with the noncommutative
gauge symmetry on the branes discussed above, then, this set of operators must reproduce all
the gauge-invariant operators in the noncommutative gauge theory on the branes. In the rest
of this note we will show that this is indeed the case.

3.1 Straight and Curved Wilson lines

Traces of operators of the type in (7) can be given the interpretation of straight Wilson lines
in the noncommutative gauge theory on the branes. To see how that comes about, let us write

Ôk = eik.X

= ei k
n

.X ei k
n

.X · · · (n factors). (9)

At the end we will take the limit n → ∞. Here we will restrict ourselves to kI with non-
zero components only in the brane directions. The more general case is treated in the next
sub-section. Let us now use (4) to write, in an obvious notation,

ei k
n

.X = eiǫθ−1.x+iǫ.Â(x)

= eiǫθ−1.x eiǫ.Â(x)+o(ǫ2)

where ǫ = k
n
θ. Using this in (9), we get

Ôk = eiǫθ−1.x eiǫ.Â(x)+o(ǫ2) eiǫθ−1.x eiǫ.Â(x)+o(ǫ2) · · · (n factors)

= eiǫ.Â(x+ǫ)+o(ǫ2) eiǫ.Â(x+2ǫ)+o(ǫ2) · · · eiǫ.Â(x+nǫ)+o(ǫ2) einǫθ−1.x (10)

In arriving at the last line above we have used the fact that the adjoint action of x generates a
translation by virtue of the algebra (3). In the limit n → ∞, the product of operators involving
the gauge field in the last line gives the Wilson line operator U(x, x + kθ) along a straight line
path given by the vector kθ. Thus the gauge-invariant operator TrÔk of the matrix theory
translates into the Wilson line TrU(x, x+ kθ) eik.x in the noncommutative gauge theory on the
branes.

Upto a phase, the more general operators Ôkk′... given in (8) can similarly be interpreted
in the noncommutative gauge theory on the branes as Wilson line operators along a general
curved path determined by the straight line segments given by the vectors kθ, k′θ, etc. That
is,

Ôkk′... = U(x, x + kθ) U(x + kθ, x + (k + k′)θ) · · · eik.x eik′.x · · · (11)
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An example of such a Wilson line has been shown in Fig. 1. Since any continuous
curve can be approximated by straight line segments one can easily construct the Wilson line
corresponding to an arbitrary open curve.

k1θ
k2θ

k3θ
k4θ

k6θk θ5

Fig. 1: Polygonal Wilson line

Note that if xi is a brane background then so is xi + aiI where I is the identity operator
and ai is a real number. This fact immediately implies that the expectation value of TrÔkk′...

conserves momentum and is non-zero only if the sum k + k′ + .... = 0.

3.2 Generalised Wilson Lines

Let us now consider the more general situation of arbitrary kI , i.e. kI = (ki, sa) where
i = 1, 2, ..., p and a = 1, 2, ..., 9 − p. In this case proceeding after eqn. (9), we have

ei k
n

.X = eiǫθ−1.x+iǫiÂ(x)i+i sa
n

φ̂a(x) (12)

where as before ǫi = kj

n
θji. Thus the analogue of (10) is

Ôk = e
iǫiÂi(x+ǫ)+i sa

n
φ̂a(x+ǫ)+o( 1

n2
)
e

iǫiÂi(x+2ǫ)+i sa
n

φ̂a(x+2ǫ)+o( 1

n2
)

· · · eiǫiÂi(x+nǫ)+i sa
n

φ̂a(x+nǫ)+o( 1

n2
)
einǫθ−1.x (13)

In the limit n → ∞ this gives rise to a modified Wilson line operator Us(x, x + kθ) along the
straight line path given by the vector kθ. The path is now characterized by the additional
‘internal’ quantities sa, s

′
a, ..... These generalized Wilson line operators are similar to those

introduced by Maldacena [12] in the context of AdS/CFT. It would be nice to understand the
connection more quantitatively.

3.3 Operators Dual to the Closed String Modes

When the sum of momenta (k + k′ + · · ·) vanishes, the operator Ôkk′... corresponds, on the
branes, to a closed Wilson loop (untraced), which was defined e.g. in [11] with ǫm

i = (kmθ)i
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being the length of the mth loop segment. One can let m → ∞ and km → 0 for fixed θ in such
a way that the polygonal loop becomes a continuous curve with no net momentum. Of course,
in general one also includes here operators that traverse the geometrical loop several times.

Now, a special class of operators arises when an operator, which corresponds to one or more
closed Wilson loops, is present anywhere in the product of exponentials that defines the general
operator Ôkk′.... On the branes, such an operator corresponds to a Wilson line with a closed
polygon loop somewhere along it. An example of such a Wilson line with a single closed loop
is shown in Fig 2. In the case of a single closed loop, the position of the loop along the Wilson
line does not matter. This is because we are dealing with the trace of the operator (8) in which
a certain sequence of momenta adds up to zero.

k1θ
k2θ

k3θ
k4θ k5θ

kθ k θ

k θ

Fig. 2: Wilson line with an attached closed loop

The above constructions are easily generalized to continuous curves. If the open curve is
a straight line specified by a fixed momentum and the closed loop is vanishingly small, the
Wilson line generates the gauge-invariant operators that have recently been discussed in [15]
as candidate operators dual to supergravity modes. As an example, consider the following
operator

Ôk1kk′k′′k2
= eik1.X eik.X eik′.X eik′′.X eik2.X (14)

where (k + k′ + k′′) = 0 and k and k′ are small, though k1 and k2 need not be small. Writing
k′′ = −(k + k′) we have

eik.X eik′.X e−i(k+k′).X = 1 −
1

2
[k.X, k′.X] + O(k3). (15)

Thus we get

Ôk1kk′k′′k2
= eik1.X eik2.X −

1

2
kIk

′
J eik1.X [XI , XJ ]eik2.X + O(k3). (16)

It is also instructive to note that if (k + k′ + k′′) were non-zero in Ôk1kk′k′′k2
(open loop),

then we could have defined Ôk1kk′k′′pqk2
such that p+ q = 0 and k + k′ + k′′ + p = 0. This is just
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the same as Ôk1kk′k′′k2
but now can be interpreted as a closed loop placed along an open line.

Taking the trace would once more move the loop anywhere along the open line. This simple
example is illustrative of the fact that in many cases of interest (though not all) open Wilson
lines are equivalent to straight Wilson lines with loops attached.

If the loop is not small, Wilson lines of the above type with fixed momentum (Fig. 3)
would then seem to correspond to the full closed string in the dual theory. This is the analogue
of closed Wilson loop in ordinary gauge theory and reduces to it in the limit of vanishing
noncommutativity (θ → 0). It would be interesting to compute the expectation value of the
Wilson loop in the large θ limit using Maldacena duality, much in the same spirit the calculation
is done in the absence of the B-field. Also since Wilson loops create electric flux lines, it would
be of interest to study the connection with the work of [27] in the case of the D3 branes.

kθ
Fig. 3: Large Wilson loop attached to a Wilson line of momentum k
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