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Out-of-equilibrium microrheology using optical tweezers to probe

directional viscoelastic properties under shear
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Abstract. - Many wormlike micellar systems exhibit appreciable shear thinning due to shear
induced alignment. As the micelles get aligned introducing directionality in the system, the vis-
coelastic properties are no longer expected to be isotropic. An optical tweezers based active
microrheology technique enables us to probe the out-of-equilibrium rheological properties of a
wormlike micellar system simultaneously along two orthogonal directions - parallel to the applied
shear, as well as perpendicular to it. While the displacements of a trapped bead - in response to
active drag force carry signature of conventional shear thinning, its spontaneous position fluctua-
tions along the perpendicular direction manifest an orthogonal shear thickening, an effect hitherto
unobserved.

Viscoelastic fluids are distinguished in showcasing novel
flow properties [1]. In most of the cases, such interest-
ing rheological behaviors originate from the modulation
of interaction between the structural units induced by the
flow perturbations, namely shear stress and shear strain.
To be more specific, in wormlike micellar solutions all
the flow properties are governed by the length, entangle-
ment and relative orientation of the micelles. In these
systems, the non-Newtonian behaviors characterized by a
strain-rate-dependent effective viscosity arise from a flow-
induced alignment of the micelles [2–5]. SANS [2], SALS
[3] patterns and electron micrographs [4] provide direct
evidence of this orientational ordering along the direction
of applied shear. It poses a very important question -
whether this structural ordering in such sheared systems
imposes an anisotropy in their flow properties. While the
micellar alignment facilitates shear thinning along the di-
rection of flow, it may alter the rheological parameters
differently along the other directions. Unfortunately the
conventional rheology experiments, that measure a sys-
tem’s response parallel to the applied shear, fail to probe
this shear-induced anisotropy thereby leaving this impor-
tant issue unaddressed.

In this Letter we report an experimental probe to study
the anisotropy in rheological properties of a sheared vis-
coelastic medium. Using an optical tweezers based active

microrheology technique [6–8] we have measured the flow
properties of a wormlike micellar system simultaneously
along two orthogonal directions; the direction of applied
shear, and more importantly, the one perpendicular to it.
A micron sized polystyrene bead held in a tight optical
trap is dragged through the medium at a constant veloc-
ity in order to shear the system. While this active forcing
drives the medium to a defined sheared state along the
direction of drag, the spontaneous thermal fluctuations
of the trapped bead apply passive thermal forcing along
an orthogonal direction. Taking advantage of the Fluctua-
tion Dissipation Theorem (FDT) [9], we thereby probe the
system’s loss modulus through the bead’s position fluctu-
ations along the direction normal to that of the applied
shear. A strong optical trap ensures the bead’s driven
motion, relative to the medium, to be strictly one dimen-
sional along the direction of the drag. Thus the system
can be pushed beyond linear response along one direction
while the surrounding fluid still faithfully behaves like an
equilibrium system by virtue of the one dimensional mo-
tion of the microbead. This approach permits us to utilize
the FDT in investigating the viscoelastic properties of a
CTAT (cetyltrimethylammonium tosylate) system along
the perpendicular direction to the applied shear. More-
over, the shear thinning along the parallel direction can
simultaneously be examined by measuring the drag force
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on the trapped bead. To the best of our knowledge, the
measurement of rheological properties along a direction
orthogonal to that of the applied shear has not been re-
ported earlier.

Fig. 1: (Color online) The schematic of the experiment. The
sample stage is given a velocity vs to apply a shear stress on
the medium by the trapped bead along the direction of rela-
tive velocity (x̂). In the course of this motion the drag force
( ~Fd) pushes the trapped bead to a new equilibrium position xd

from its otherwise mean position x0. Along ŷ, its spontaneous
position fluctuation is always about the same mean value y0.

For this active microrheology experiment, a very dilute
suspension of 1.9 µm polystyrene beads in 1 wt% CTAT
solution is loaded in a sample cell made up of two cover
glasses separated and sealed by a 125 µm thick double
stick tape. A polystyrene bead is optically trapped at a
height of ∼ 25 µm from the bottom plate by a tightly
focused infrared (1064 nm) laser beam. Another 680 nm
laser beam, collinear to the trapping beam, is used to im-
age the trapped bead on a quadrant photo diode (QPD)
for its position detection. The QPD current signals, cap-
tured at 1 kHz bandwidth, is converted and amplified to
voltage signals which linearly correspond to the x and y
positions of the microbead. The position fluctuations of
the probe bead are then analyzed to obtain the microrhe-
ological properties of the medium. In order to drive the
system to a sheared state, the sample stage is given a
constant velocity vsx̂ while the microbead is held station-
ary in the moving medium by the static optical trap (Fig
1). The stage motion is alternately kept on and off for a
time interval of ∆tvs 6=0 and ∆tvs=0 respectively and every
vsx̂ movement is retraced by a −vsx̂ motion. Fluctua-
tion signals are recorded continuously in this process. As

vs is increased, to set a higher strain-rate, ∆tvs 6=0 is de-
creased, keeping the travel length under a limiting value.
The experiment is repeated for four different shear rates
corresponding to the stage speeds (vs) 10 µm/s, 20 µm/s,
30 µm/s and 40 µm/s. The bulk rheological properties of
the same sample are measured using a Paar Physica MCR
300 rheometer.

Since this experiment demands a very tight optical trap
to achieve a strictly one dimensional (along x̂) constant
velocity drive mode, a high power infrared laser beam is
used. The laser power delivered to the sample cell, as
measured after the objective, is ∼ 150 mW . This intense
beam creates a notably strong optical trap holding the
polystyrene bead tightly. The trap stiffness in this vis-
coelastic medium cannot be measured in a direct fashion.
However, it is extracted as a part of the microrheology
data analysis (discussed in a later section) and takes the
values: κx = 28.6 pN/µm, κy = 27.5 pN/µm. At this high
laser power, local heating poses a major concern. It might
alter the local rheological properties of the sample or affect
surface smoothness of the probe bead, eventually leading
to erroneous measurements. To tackle this crucial issue,
the trap position in the sample cell as well as the probe
bead is changed after every 60 s which is the time span
of a single data set. The sample cell is also replaced with
a new one after recording every 10 data sets to maintain
the sample at room temperature.

The position fluctuation data captured in the time in-
terval ∆tvs=0 (when the trapped bead is not actively
perturbing the system) provide the system’s microrhe-
ological properties through the FDT. This theorem en-
ables us to derive the response function of the system
χ(f) = χ′(f) + iχ′′(f) directly from the equilibrium fluc-
tuation data x(t) and y(t) through the following equation
[10, 11]

χ′′(f) =
π

2kBT
fS(f), (1)

where kB is the Boltzmann constant, T is the system tem-
perature and S(f) is the single-sided Power Spectral Den-
sity (PSD) of the time series x(t) (or y(t)). A Kramers-
Kronig relation can then be used to evaluate the real part
of the response function χ′(f) as

χ′(f) =
2

π

∫ ∞

0

dt cos(ft)

∫ ∞

0

dξ sin(ξt)χ′′(ξ). (2)

The optical trap response, being elastic in nature, gets
added to the system’s elastic response thereby giving an
overestimate of the actual system response. To subtract
the trap effect, the response function needs to be corrected
as

α(f) =
χ(f)

1− κχ(f)
, (3)

where α is the corrected system response function and κ is
the trap stiffness. The corrected response function is then
converted to the complex shear modulus of the system
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G(f) = G′(f) + iG′′(f) by the relation,

G(f) =
1

6πaα(f)
, (4)

a being the radius of the bead. G′(f) and G′′(f) are the
elastic and loss moduli, respectively. Eq. 4 can be simpli-
fied to write in terms of χ′(f) and χ′′(f) as

G′(f) =
1

6πa

χ′

χ′2 + χ′′2
−

κ

6πa
; (5)

G′′(f) =
1

6πa

χ′′

χ′2 + χ′′2
. (6)

Since measuring the trap stiffness in a viscoelastic medium
is not so straightforward, it is customary to consider the
average value, calculated over first few points in the flat
region of the uncorrected G′(f) as the correction factor for
the trap effect [10]. The correction factor, which is equal
to κ

6πa , can then be safely used to calculate the true trap
stiffness κ in the medium.
The state of the system is dramatically changed when

(in time interval ∆tvs 6=0) it is actively sheared along X
by the trapped bead that is dragged through the medium
with a velocity vsx̂ (Fig 1). Neglecting the elastic response
of the medium, the drag force Fd acting on the bead is
roughly calculated as Fd = 6πηxavs, where ηx denotes the
viscosity of the medium along X . This drag force, Fd,
pushes the trapped bead from its otherwise mean position
x0 to a new equilibrium position xd, where the restoring
force balances the drag force [8], i.e.

Fd = 6πηxavs = κx(xd − x0), (7)

κx being the force constant of the trap along X . Differ-
ent stage velocities vs, which can be represented as shear
strain rates γ̇x, would result in varying shear viscosities
ηx. Therefore, along the direction of active drive, ηx(γ̇x)
can be evaluated as

ηx = κx(xd − x0)/6πavs. (8)

It should be noted that neglecting the elastic response of
the medium would lead to an underestimation of ηx. The
stage velocities (vs) can be converted to equivalent strain
rates (γ̇x) using the relation [12]

γ̇x =
σavg

η
=

6πηavs
πa2

.
1

η
=

6vs
a

, (9)

where σavg = 6πηavs
πa2 is the average uniform stress applied

on the fluid by the microbead.
In course of the translational motion of the stage, the

viscoelastic medium (CTAT) flows past the trapped bead
at a velocity vs. The strong optical trap holds the
polystyrene bead rigidly enough so that the microstruc-
tures in the medium cannot impose any velocity fluctua-
tions to the bead while passing by. Therefore, the velocity
of the trapped bead, relative to the fluid, will not change

its value or direction in course of this motion. This per-
mits us to treat the drive along X as a constant strain rate
process. More importantly, this ensures that there is no
driven movement of the bead along Y . Consequently, the
bead’s position fluctuations along Y can be treated as the
spontaneous thermal fluctuations connected to the dissi-
pative property of the medium (along Y ) through FDT.
It is noteworthy that this position fluctuations along Y ,
y(t)γ̇x 6=0, are not the same as the unperturbed equilibrium
fluctuations y(t)γ̇x=0. The active shear along X induces
a micellar organization in the surrounding fluid which, in
turn, regulate the fluctuation properties of the bead along
Y . The effect of this structural organization can, there-
fore, be probed by analyzing y(t)γ̇x 6=0. Using FDT and the
subsequent recipe (Eq. 1 to Eq. 6), as explained above,
the storage and loss modulus along Y can be evaluated for
different strain rates along X . We denote these viscoelas-
tic moduli as G′

y(γ̇x 6= 0) and G′′
y(γ̇x 6= 0) respectively.

In this experiment, for each vs values, the system is
alternately pushed to a driven state (for time ∆tvs 6=0)
and pulled back to the initial equilibrium state (for time
∆tvs=0) for several cycles and the position fluctuation data
(x(t), y(t)) of the trapped bead are recorded continuously.
The zero-shear datasets captured in this manner are ana-
lyzed to ensure that the starting point of each driven states
are indeed the unimpaired equilibrium state of the system
and the data captured in the sheared states are free from
any artifacts caused by local heating. The average storage
(G′) and loss moduli (G′′) obtained from the equilibrium
fluctuation datasets are plotted and compared with the
bulk rheological properties of the sample in Fig. 2. A very
good match between the equilibrium viscoelastic moduli
computed from x(t) (G′

x and G′′
x) and y(t) (G′

y and G′′
y)

clearly confirms that prior to each sheared states, the sys-
tem behaves purely as an isotropic medium. In addition,
it can also be concluded that the rheological properties of
the system as measured in this experiment, even in the
in-between driven states, reflect the true behavior of the
medium and are not altered by any unwanted effects that
might arise while working with high laser powers. The
trap stiffness κ, both along X and Y , in the CTAT sys-
tem are also evaluated from the correction factor ( κ

6πa ) of
the corresponding storage moduli and used in other cal-
culations.
A slight deviation of the microrheological data from

the corresponding bulk values can be attributed to the
inherent imperfection of one-point-microrheology. The
tracer bead, that conveys the medium’s flow properties
through its equilibrium fluctuations, gets coupled to the
bulk medium by the immediate surrounding whose rheo-
logical properties are modified by the introduction of the
probe particle [13, 14]. The viscoelastic moduli measured
in this way actually represent some convolution of the per-
turbed layer (shell) and the bulk material properties.
In the driven states, the trapped bead, moving at a

constant speed (vs) with respect to the medium, actively
shears the surrounding system. In this process, due to the

p-3



M. Khan et al.

Fig. 2: (Color online) The microrheological loss moduli, G′′

x and
G′′

y , computed from the equilibrium fluctuation data x(t) and
y(t) respectively, are compared with the bulk rheology data.
Corresponding microrheological storage moduli (corrected), G′

x

and G′

y , are shown alongside the bulk G′ data in the Inset.

drag force Fd, the bead gets displaced from its otherwise
mean position in the optical trap. Measuring this displace-
ment, (xd − x0), the shear viscosity of the medium along
X (ηx) is obtained for different strain rates γ̇x using Eq. 8
and Eq. 9. The ηx(γ̇x) values are plotted and compared to
the bulk flow curve in Fig. 3. As this measurement does
not include the elastic response of the medium, it underes-
timates the shear viscosity to some degree. The deviation
is more prominent at the lower shear rate values.
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Fig. 3: (Color online) The shear thinning along X, ηX (γ̇x), as
observed in the active microrheology (along X) are compared
with the bulk flow curve.

While the bead applies active shear stress on the CTAT
system along the X direction thereby forcing a shear in-
duced alignment, which is manifested by the shear thin-
ning along X , its spontaneous position fluctuation along

Y remains unaffected by the drive. In other words, the Y -
position fluctuations of the bead do not comprise of any
driven component. To support this proposition, the vari-
ance of y(t) has been calculated and plotted against each
shear rate values (Fig. 4-Inset(a)). A non-monotonic vari-
ation of the variance, V ar(y(t)), clearly establishes that
y(t) is not directly regulated by any component of the ac-
tive shear strain along X . It also confirms that the bead’s
Y -position fluctuation data are free from any artifacts that
may originate because of the high shear rates γ̇x.
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Fig. 4: (Color online) Power Spectral Densities (PSDy) of the
spontaneous position fluctuation of the microbead along Y are
shown for different shear rates γ̇x. Compared to the equilib-
rium data, initially the PSDs go up slightly for the first two
shear rates and then decrease significantly as γ̇x is increased
further. Inset(a) shows the variance of the position fluctuations
along Y (y(t)) plotted against shear rates. Inset(b) exhibits
the results of identical experiments performed on a Newtonian
fluid (glycerol-water 60%-40% mixture) using exactly the same
settings. In this case, even for the highest two γ̇x values, the
PSDy do not show any deviation from the equilibrium (γ̇x = 0)
data.

Therefore, the system’s response to the thermal shear
along Y can be analyzed (using Eq. 1 to Eq. 6) to ob-
tain its modified viscoelastic properties in that direction
for different shear rates along X . The power spectral den-
sities (PSD) of y(t) at varying γ̇x are shown in Fig. 4. In
the PSD plot, the higher frequency regime reveals the sys-
tem’s dissipative properties whereas the lower frequency
data represent the trap characteristics combined with the
elastic response of the medium. In this figure, after a cer-
tain frequency, ∼ 30Hz, the PSD curves start splitting up

p-4



Out-of-equilibrium microrheology using optical tweezers

systematically and exhibit the system characteristics. The
higher frequency fluctuations get enhanced slightly, com-
pared to the unperturbed data, for the lowest two shear
rates (γ̇x). However, the trend becomes completely oppo-
site as the shear rate is increased further, where the fluctu-
ations at higher frequencies diminish significantly for each
increment in the shear rate. It is worth mentioning that
when this experiment is repeated on a Newtonian fluid
(glycerol-water 60%-40% mixture) for a consistency check,
the PSDs of y(t) at different γ̇x do not show any variation
from the equilibrium PSD (as shown in Fig 4Inset(b)) and
reflect the same bulk flow properties, as expected.

The PSD of y(t) in various driven states have been an-
alyzed to evaluate the loss modulus along Y . G′′

y for dif-
ferent driven states, including the equilibrium data set,
have been displayed in Fig. 5. In this figure, the fea-
tureless lower frequency side does not faithfully represent
the system properties. It is noteworthy that to extract
the system properties at the lower frequencies, an accu-
rate calculation of the χ′(f) (Eq. 2) is essential. However,
for a limited frequency dataset the Kramers-Kronig trans-
formation along with the subsequent treatments does not
produce consistent results. Nevertheless all the important
system properties are distinctly visible in the higher fre-
quency regime. For lower strain rates, the G′′

y decreases
a bit from its unperturbed value. This effect can be at-
tributed to the property of the shell which isolates the
tracer bead from the bulk medium [13,14]. As the bead is
dragged through the medium, the shell tries to follow the
bead. In this process the shell needs to relax and reform
itself at the newly moved position of the bead. Therefore,
with increasing strain rates (γ̇x), the thickness and effect
of the shell diminish and the viscoelastic properties of the
bulk medium prevail. This shell-effect is manifested here,
suppressing the medium properties, for the first two strain
rates (γ̇x = 63s−1 and 126s−1). At higher strain rates,
when the shell can no longer follow the tracer bead, the
bead gets exposed to the medium and can probe the true
viscoelastic properties. At this regime (from γ̇x = 126s−1

to 253s−1) the G′′
y increases significantly with the shear

rate along X . To demonstrate it more clearly, the nor-

malized increment of the G′′
y , defined as G′′(γ̇x)−G′′(γ̇x=0)

G′′(γ̇x=0) ,

at a constant frequency 250 Hz, is plotted against the
strain rates (γ̇x) in Fig. 5-Inset. The loss modulus along
Y increases almost two folds as the strain rate along X
changes from 126 s−1 to 253 s−1.

Studying the passive and active microrheology (Fig. 3)
concurrently, it can be inferred that the enhanced loss
modulus along Y with increasing strain rates γ̇x, is the
consequence of the same shear induced micellar alignment
that causes a shear thinning along X . This experimental
study clearly manifests that the shear induced reorganiza-
tions of the micro-structures in a viscoelastic medium not
only change the viscosity along the direction of shear, but
modify the system entirely and thereby regulate the flow
properties accordingly along the orthogonal directions too.
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Fig. 5: (Color online) Loss moduli along Y , G′′

y , are shown
for different γ̇x, along with the unperturbed data set. In
the Inset, the normalized increments of the loss modulus

(
G′′

y
(γ̇x)−G′′

y
(γ̇x=0)

G′′

y
(γ̇x=0)

) at a frequency value 250 Hz have been plot-

ted against the shear rate, γ̇x. The dashed line is a guide to
the eye.

To conclude, we have proposed and demonstrated a
laser tweezers based microrheology technique to probe
the viscoelastic properties of a wormlike micellar solution
along a direction orthogonal to that of the applied shear.
While active shear stress is applied alongX , we exploit the
spontaneous thermal stress along Y to perform the active
and passive microrheological studies simultaneously along
the two perpendicular directions. Our results clearly show
that the applied shear induces an overall anisotropy in the
system. As the system shows reduced viscosity along the
direction of applied shear, viscous modulus increases along
the normal direction with increasing strain rates. This
firmly suggests that under shear, the viscoelastic proper-
ties are not only a function of the strain-rate, but also
dependent on the direction along which those are being
measured. Therefore, for a more accurate representation,
the shear viscosity of a viscoelastic system needs to be
represented as ηθ, where θ is the angle between the direc-
tion of applied shear and the direction along which the
rheological properties are measured. For a shear thinning
system, as in our case, ηθ takes its lowest value for θ = 0
and attains the maximum at θ = π/2. While the former
phenomenon is well known as shear thinning, the latter
could be termed as ‘orthogonal shear thickening’. This
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study, we hope, will motivate quantitative theoretical cal-
culations to understand the rheological properties of such
structured systems in a more complete fashion.
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