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1. Introduction

Lectins, multivalent carbohydrate-binding proteins of 
non-immune origin, have the unique ability to decode the 
information contained in complex carbohydrate structures 
of glycoproteins and glycolipids by stereo-specifi cally 
recognizing and binding to carbohydrates and carbohydrate 
linkages. Lectins are present in all kingdoms of life. 
They are involved in various biological processes such 
as cell–cell communication, host–pathogen interaction, 
cancer metastasis, embryogenesis, tissue development and 
mitogenic stimulation (Lis et al 1998; Drickamer 1999; 
Vijayan and Chandra 1999; Loris et al 2002). Because of 
the complex nature and numerous possibilities of glycosidic 
linkages and stereoisomers, carbohydrates have always been 
a challenge to structural biologists. The advancement in 

high-resolution techniques such as X-ray crystallography 
and nuclear magnetic resonance (NMR), as well as a 
wealth of biochemical data indicating the importance of 
carbohydrates in in vivo systems have resulted in increased 
attention being paid to carbohydrates. Thus, the study of 
protein–carbohydrate interactions and evolution of proteins 
with stringent affi nity towards specifi c isomers from a pool 
of equivalent possibilities is of prime importance. Lectins 
appear to be the ideal candidates for such studies. The 
biological roles of animal, bacterial and viral lectins are 
reasonably well understood. However, although thoroughly 
studied structurally and biochemically, the endogenous 
roles of plant lectins are yet to be fully elucidated. It is 
believed that they are involved in root–nodule symbiosis 
in legume plants and also in plant defence (Chrispeels and 
Raikhel 1991; Peumans and Van Damme 1995; Hirsch 1999; 
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Navarro-Gochicoa et al 2003; Imberty et al 2004). The 
stereo-specifi c selectivity of plant lectins has been exploited 
in a wide variety of applications, such as purifi cation of 
glycoproteins, markers for cancer cells, antimicrobial 
agents and drug delivery (Lehr and Gabor 2004). Studies 
on plant lectins have also contributed substantially to the 
understanding of the structure and assembly of proteins 
and strategies for generating ligand specifi city (Vijayan and 
Chandra 1999; Delbaere et al 1993; Banerjee et al 1994; 
Rini 1995; Elgavish and Shaanan 1998; Jeyaprakash et al 

2004; Jeyaprakash et al 2005). 
Based on the structure of their subunit folds, plant lectins 

themselves have been classifi ed into fi ve groups (http:
//www.cermav.cnrs.fr/lectines): legume lectins, hevein 
domain lectins, β-prism I fold lectins (also referred to as 
jacalin-like lectins), β-prism II fold lectins (also referred 
to as monocot mannose-binding lectins) and β-trefoil fold 
lectins. Of these, the last three exhibit threefold symmetry. 
In particular, the β-prism I and the β-prism II folds have 
prismoidal arrangements involving a four-stranded β-sheet 
constituting each side of the prism. The strands are roughly 
parallel to the threefold axis in the β-prism I fold while they 
are nearly perpendicular to the axis in the β-prism II fold. 

The β-prism I fold was fi rst characterized as a lectin fold 
in this laboratory through the X-ray analysis of jacalin, one 
of the two lectins from jackfruit seeds (Sankaranarayanan 
et al 1996). The other lectin from the seeds, artocarpin, also 
has a β-prism I fold (Pratap et al 2002). A jacalin subunit 
contains two polypeptide chains resulting from post-
translational proteolysis. The amino terminus generated 
by the proteolysis has been shown to be important for the 
lectin’s specifi city for galactose at the primary binding site. 
Artocarpin is a single polypeptide chain and is specifi c for 
mannose at the primary binding site. Subsequently, the 
structural basis of the carbohydrate specifi city in the lectin 
has been thoroughly characterized. Although both the lectins 
have threefold symmetrical subunits, each subunit binds 
only one sugar. Also, the symmetry in the three-dimensional 
structure is not refl ected in the sequence. In the meantime, the 
crystal structures of several other β-prism I fold plant lectins 
became available (Lee et al 1988; Bourne et al 1999; Bourne 
et al 2004; Rao et al 2004; Gallego et al 2005; Rabijns et 

al 2005; Yen-Chieh et al 2006). Their subunits share the 
basic structural and carbohydrate-binding characteristics of 
jacalin and artocarpin. However, they exhibit a wide variety 
of quaternary structures. Originally, the β-prism I fold was 
considered to be characteristic of the Moraceae family. 
However, the fold has been found in lectins from other plant 
families as well. The widespread occurrence of this fold in 
lectins from different families has also been confi rmed by a 
detailed sequence analysis (Raval et al 2004).

The β-prism II fold was fi rst discovered in snowdrop lectin 
(Hester et al 1996). Snowdrop lectin is tetrameric while the 

second lectin of the same class to be X-ray analysed, garlic 
lectin, is dimeric (Chandra et al 1999). Since then, the 
structures of a few other lectins with β-prism II fold have 
been reported (Chantalat et al 1996; Sauerborn et al 1999; 
Wood et al 1999). All of them are mannose-specifi c. Unlike 
in the case of β-prism I fold lectins, the threefold symmetry 
of the β-prism II fold lectins is refl ected in the sequence as 
well (Ramachandraiah and Chandra 2000). Further, each 
subunit contains three carbohydrate-binding sites.

Some features of the recently determined crystal structure 
of banana lectin went against the conventional wisdom on 
β-prism I fold lectins in certain respects (Singh et al 2005; 
Meagher et al 2005). The threefold symmetry of the subunit 
structure is refl ected, albeit weakly, in the sequence as well. 
Furthermore, each subunit contains two carbohydrate-
binding sites of identical structure situated at two of the 
three threefold-equivalent positions. It is also interesting 
that banana is a monocot while all other β-prism I fold plant 
lectins of known structure are from dicots. When reporting 
the structure of jacalin, we had hypothesized that the β-prism 
I fold could have arisen from successive gene duplication and 
fusion of a primitive carbohydrate-binding motif involving 
a polypeptide chain containing approximately 40 amino 
acid residues. The new features observed in banana lectin 
appear to support this hypothesis. In banana lectin, three 
components resulting from successive gene duplication and 
fusion have not diverged enough to obliterate past history, 
while the components have done so in other β-prism I fold 
lectins of known structure, all from dicots. This observation 
led to an analysis of the structure and sequence of β-prism 
I fold lectins with special reference to the evolution of 
carbohydrate-binding sites. After the completion of one stage 
of this analysis, the structure of an algal lectin, griffi thsin, 
containing β-prism I fold domains which bear three 
carbohydrate-binding sites each, has been reported (Chandra 
2006, Ziolkowska et al 2006). This adds to the relevance of 
the analysis. In parallel, a similar analysis was carried out on 
β-prism II fold lectins also. These analyses, presented here, 
provide interesting insights into the evolutionary history and 
the possible common ancestor of the two types of β-prism 
fold lectins. They also point to a plausible rationale for the 
presence of a higher number of binding sites per domain in 
these lectins from monocots, than in those from dicots, in 
terms of the role of plant lectins in defence.

2. Materials and methods 

Sequence homologues of the banana and garlic lectins 
(accession number AAM48480.1 for banana lectin and 
4389040 for garlic lectin) were searched by PSI-BLAST 
alignment with an e-value cut off of 0.0005 using the NR 
database available at NCBI (Altschul et al 1997; Schaffer 
et al 2001). Alignments with an overlap length of less than 
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75% were not considered for further study, as they cannot 
form the complete fold. The search was fi rst carried out on 9 
April 2006 when the database size was 3,632,049. A search 
was again made in December 2006 and sequences deposited 
after April 2006 were considered for further analysis. 
Sequences obtained thus were made non-redundant using a 
Perl script (Li et al 2001; Li et al 2002). Smaller sequences 
with more than 90% identity were removed in all versus all 
pair-wise alignment. Lectin domains in each sequence were 
searched using the CDD tool available at the NCBI. Domain 
search was relaxed with an e-value cut-off of 10 and lower 
stringency cut-offs (Marchel Bauer et al 2002). 

In both the cases, sequences with at least one carbohydrate-
binding site motif were sorted after analysing the pair-wise 
alignment of all sequences with the corresponding target 
lectin sequence and profi le search using 3of5. Those 
sequences in which the carbohydrate-binding motif (G…
GXXXD or QXDXNXVXY) also aligned were then selected 
for further analysis. This selection was further cross-checked 
by the profi le search tool in the 3of5 module available on 
the Expasy server. GX[GAVIYWF] [GAVIYWF][DNEQ] 
and [QE]X[DENQ][X][DENQ][AVILG]X[YF] were used 

as search profi les for β-prism I and β-prism II fold lectins, 
respectively. All the selected sequences were indicated to 
have lectin domains. Models were built for this set of sorted 
sequences using various structure prediction tools for further 
selection on the basis of the ability of the sequence to fold 
into a reasonably complete β-prism (Rost 1996; Bates and 
Sternberg 1999; Bates et al 2001; Contreras-Moreira and 
Bates 2002). The sequences for which models could not be 
predicted or the model did not yield either of the β-prism 
folds lay in the twilight zone of similarity (~15–30%). All 
the pair-wise and multiple alignments were carried out 
using Align and CLUSTALW, respectively, both available 
at www.ebi.ac.uk (Rice et al 2000; Thompson et al 1994). 
Corresponding binding-site motifs in both the cases were 
searched using 3of5 available at http://www.dkfz.de/mga2/
3of5/ (Seiler et al 2006).

Dot plot analysis was carried out using the 
DOTMATCHER program available at the EMBOSS 
server with a window size of 30 and threshold cut-off of 10 
(Sonnhammer Erik and Durbin 1995).

Phylogenetic analyses were carried out using the Bayesian 
method as implemented in MrBayes 3.1 (Huelsenbeck and 
Ronquist 2001) and maximum parsimony as implemented 
in the MEGA suite of programs (Kumar et al 2004). Both 
the methods gave similar connectivity. In all the illustrations 
the Mrbayes output has been used. Protein coordinates were 
obtained from the Protein Data Bank (PDB) (Berman et al 

2000). In silico mutations for structural studies were carried 
out using Coot 0.0 (Emsley and Cowtan 2004). Pymol was 
used for the analysis and for illustrating 3-dimensional 
structures (http://www.pymol.org).

3. Results and discussion

3.1 Occurrence of β-prism fold lectins

A subunit of banana lectin (fi gure 1a) was chosen as the 
search model for proteins with the β-prism I fold. A PSI-
BLAST search, fi rst made in April 2006, using the sequence 
of this lectin through the entire non-redundant database 
using cut-off values and criteria as mentioned in the section 
on Materials and methods, led to the identifi cation of 194 

Figure 1. (a) Subunit structure of banana lectin (PDB CODE 
1X1V) viewed down the pseudo threefold axis. The three Greek 
keys are shown in different colours. Sugars are represented as 
ball and stick. (b) A structural superposition of the carbohydrate-
binding sites of all the β-prism I fold lectins with known structure 
in complex with sugar. For the sake of clarity, side chains of 
residues XXX of the G…GXXXD motif are not shown. Sugars are 
shown in the line representation.
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Table 1. List of fi nally selected banana lectin homologues identifi ed from the sequence database, using banana lectin as a search 
template

Sl. No.
Accession 

number Source I II III IV V

Plants

Algae

1 P84801 Griffi thsia sp. 1 121 44 3 Griffi thsin (lectin)

Gymnosperm

2 BAE95375.1 Cycas revolute 2 291 (a) 52 1 Lectin

3 (b) 48 2

Monocots other than Oryza sativa

4 AAR20919.1 Triticum aestivum 1 304 56 2 Jasmonate-induced protein

5 AAA87042.1 Hordeum vulgare 

subsp. vulgare

1 304 54 2 Jasmonate-induced protein

6** AAM46813.1 Triticum aestivum 1 345 45 2 Hessian fl y response gene 1 protein (a 
lectin-like wheat gene which responds 

to Hessian fl y)

7 AAV39531.1 Hordeum vulgare 1 146 56 2 Horcolin

8 AAM48480.1 Musa acuminata 1 141 100 2 Lectin

9 AAY41607.1 Agrostis stolonifera 1 319 50 1 Crs-1 (meiosis-specifi c cyclin, i.e. 
meiotically upregulated protein) 

10 AAF71261.2 Zea mays 1 306 52 1 Beta-glucosidase aggregating factor 
precursor

11 AAS20963.1 Hyacinthus orientalis 1 161 47 1 OSJNBa0016N04.20-like protein

12 AAC49284.1 Triticum aestivum 1 343 45 1 Unknown

13 AAQ07258.1 Ananas comosus 1 145 59 1 Jacalin-like lectin

14 AAP87359.1 Hordeum vulgare 1 160 50 1 High light protein

15** ABI24164.1 Sorghum bicolor 1 305 52 2 Beta-glucosidase aggregating factor

Oryza sativa

16 NP_918855.1 O. sativa 1 144 51 2 Putative mannose-binding rice lectin

17 AAU90197.1 O. sativa 1 152 54 2 Unknown protein

18 XP_471663.1 O. sativa 1 150 52 2 OSJNBa0041M21.2

19 BAD67983.1 O. sativa 1 209 51 2 Putative GOS9 (rice-specifi c gene)

20 XP_465120.1 O. sativa 1 1072 54 2 Putative LZ-NBS-LRR class RGA 
(stripe rust resistance protein)

21 ABA96667.1 O. sativa 1 307 55 2 Jasmonate-induced protein

22** ABA97248.1 O. sativa 1 306 55 2 Expressed protein

23 BAD67976.1 O. sativa 1 161 52 2 GOS9 (root-specifi c rice gene)

24 ABA93998.1 O. sativa 3 1384 (a) 55 1 Stripe rust resistance protein Yr10

25 (b) 44 1

26** (c) 49 1

27 ABA94721.1 O. sativa 2 734 (a) 53 1 Jacalin-like lectin domain containing 
protein

28 (b) 53 1

29 XP_472139.1 O. sativa 1 477 54 1 OSJNBa0016N04.16

30 NP_916350.1 O. sativa 3 925 (a ) 48 1 P0413G02.3

31 (b) 56 1
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Sl. No. Accession 
number Source I II III IV V

32 (c) 46 1

33 ABB46687.1 O. sativa 1 154 49 1 Jacalin-like lectin domain containing 
protein

34 BAD52750.1 O. sativa 1 271 51 1 Putative salT

35 XP_474804.1 O. sativa 1 1269 48 1 OSJNBa0014F04.15

36 ABA96835.1 O. sativa 1 260 55 1 Jacalin homologue/Jjasmonate-induced 
protein

37 NP_908901.1 O. sativa 1 145 50 2 Mannose-binding rice lectin

38 BAD37295.1 O. sativa 1 146 54 1 Putative salT protein precursor

39** AAP12924.1 O. sativa 1 191 44 2 Putative salt-induced protein 

40 XP_475665.1 O. sativa 2 604 (a) 53 1 Unknown protein

41 (b) 48 1

42 ABA94002.1 O. sativa 2 1386 (a) 55 1 NBS-LRR resistance protein/Jacalin-
like lectin 

43** (c) 51 1

44 ABA94728.1 O. sativa 3 837 (a) 50 1 Jacalin-like lectin domain containing 
protein

45** (b) 53 1

46 NP_
001042976.1

O. sativa 1 145 50 1 Japonica-cultivar group

47 NP_
001044410.1

O. sativa 1 349 55 2 Japonica-cultivar group

48 NP_
001046624.1

O. sativa 1 141 53 2 Japonica-cultivar group

49 NP_
001050311.1

O. sativa 1 343 44 2 Japonica-cultivar group

50 NP_
001052399.1

O. sativa 1 150 52 2 Japonica-cultivar group

51 NP_
001052560.1

O. sativa 3 770 51 1 Japonica-cultivar group

52 54 1 Japonica-cultivar group

53 53 2 Japonica-cultivar group

54 NP_
001054618.1

O. sativa 1 152 54 2 Japonica-cultivar group

Dicots other than Arabidopsis thaliana

55 1XXR Morus nigra 1 161 50 1 Mannose-specifi c jacalin-related lectin

56 AAD11577.1 Helianthus tuberosus 1 151 50 1 Lectin HE17

57 AAL09163.1 Morus nigra 1 216 46 1 Galactose-binding lectin

58 AAA32678.1 Artocarpus 

heterophyllus 

1 217 47 1 Jacalin

59 P83304 Parkia platycephala 3 447 (a) 50 1 Mannose/glucose-specifi c lectin

60 (b) 53 1

61 (c) 50 1

62 1J4S Artocarpus 

heterophyllus 

1 149 46 1 Artocarpin: mannose-specifi c lectin
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Sl. No. Accession 
number Source I II III IV V

63 ABC70328.1 Castanea crenata 1 310  46 1 Agglutinin isoform

64 S15825 Maclura pomifera 1 133 46 1 Agglutinin alpha chain

65 1TP8 Artocarpus hirsuta 1 133 47 1 Artocarpus hirsuta: galactose-specifi c 
lectin

66 AAB23126.1 Artocarpus 

heterophyllus 

1 133 48 1 Jacalin

67** AAC08051.1 Brassica napus 1 552  44 1 Myrosinase-binding protein

68 AAC08050.1 Brassica napus 1 331  44 1 Myrosinase-binding protein

69 BAB18761.1 Helianthus tuberosus 1 143 59 1 Lectin

70 AAG10403.1 Convolvulus arvensis 1 152 48 1 Mannose-binding lectin

71 BAA14024.1 Ipomoea batatas 1 154 44 1 Ipomoelin

72 AAC49564.1 Calystegia sepium 1 153 50 1 Lectin

73 AAB22274.1 Artocarpus 

heterophyllus 

1 133 48 1 Jacalin heavy chain

74 CAJ38387.1 Plantago major 1 197 53 1 Jacalin-like domain protein

Arabidopsis thaliana

75 NP_177447.1 A. thaliana 1 176 52 1 Unknown protein

76 NP_849691.1 A. thaliana 2 595 (a) 50 1 Unknown protein

77 (b) 48 1

78 NP_974324.2 A. thaliana 2 705 (a) 46 1 Unknown protein

79** (b) 44 1

80 NP_175618.1 A. thaliana 2 293 (a) 43 1 Unknown protein

81** (b) 43 1

82 AAD12681.1 A. thaliana 2 303 (a) 44 1 Putative myrosinase-binding protein

83** (b) 42 1

84 AAD12684.1 A. thaliana 1 445 44 1 Putative myrosinase-binding protein

85 NP_198444.1 A. thaliana 3 444  42 1 Unknown protein

Animals

86 XP_510910.1 Pan troglodytes 1 1242 49 1 PREDICTED: similar to kinesin-like 
protein

87 Q8CJD3 Rattus norvegicus 1 167 47 1 Zymogen granule membrane protein

88 XP_536909.1 Canis familiaris 1 167 50 1 PREDICTED: similar to zymogen 
granule protein

89 XP_871351.1 Bos taurus 1 167 49 1 PREDICTED: similar to zymogen 
granule protein

Fungi

90 CAG90055.1 Debaryomyces hansenii 1 735 28 1 Unnamed protein product

91 XP_506051.1 Yarrowia lipolytica 1 702 45 1 Hypothetical protein

92 NP_012158.1 Saccharomyces 

cerevisiae 

1 696 32 1 Putative metalloprotease

93 XP_445234.1 Candida glabrata 1 683 34 1 Unnamed protein product

94 CAB63793.1 Schizosaccharomyces 

pombe 

2 612 47 2 SPAC607.06c
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non-redundant sequences. These sequences exhibited 
a similarity in the range of 28–64% (identity 16–42%) 
with that of banana lectin. They were then searched for 
carbohydrate-binding motifs. A superposition of the binding 
sites in β-prism I fold lectins is shown in fi gure 1b. The 
binding site involves the motif G…GXXXD. Although 
not contiguous in sequence with the rest of the motif, it is 
important to take into account the distal glycine as well. Not 
only does it occur in all relevant structures, but it also occurs 
at a position in conformational space, which can be occupied 
only by glycine. The φ and ψ values for the residue in the 
relevant lectins of known structure vary between 51 and 
88º and –154 and 163º (–197º), respectively. Furthermore, 
in the three-dimensional structure, the distal glycine comes 
close to the rest of the carbohydrate-binding site. If each 
of the relevant sequences is circularly arranged such that 
the N- and C-termini are in close proximity, the separation 
between this glycine and aspartic acid is around 20 residues 
in all cases. The second glycyl residue in the motif also has 
φ, ψ values appropriate only for a glycyl residue. Thus, the 
two glycines appear to be important for maintaining the 
desired geometry of the binding site. The aspartate side 
chain is crucial for lectin–carbohydrate interactions. In a few 
instances (ten), motifs G…GXXXE and G…GXXXN were 
also accepted as carbohydrate-binding motifs. It was verifi ed 
through modelling that the presence of E or N instead of D is 
consistent with the observed lectin–sugar interactions. 

Of the 194 sequences considered, 36 and 51 were from 
Oryza sativa and Arabidopsis thaliana, respectively. The 
availability of their entire genomes probably accounts for 
these large numbers. Of these, 13 sequences in O. sativa 
and 44 in A. thaliana did not contain any carbohydrate-
binding motif. These sequences were omitted from further 
consideration. Sequences from other sources which do not 
contain carbohydrate-binding motifs were also omitted from 

further consideration. Sequences that failed to fold into a 
β-prism I fold on model building were also not considered 
further. There were fi ve such sequences which exhibited 
low sequence similarity. The remaining domains/subunits, 
which may be considered as homologues of banana lectin 
in structure and function, are listed category-wise in table 
1. The second search, made in December 2006, following 
the same protocol, added 10 more sequences, which are also 
given in the table. In view of the large number of sequences 
from O. sativa and A. thaliana, they have been separately 
grouped in the table. 

A similar search, fi rst made in April 2006, for β-prism 
II fold using a garlic lectin subunit (fi gure 2a) as the search 
model, resulted in the identifi cation of 452 β-prism II fold 
sequences. Of these, 123 are from O. sativa, 77 from A. 

thaliana and 106 from Brassica spp, all organisms with 
sequenced genomes. The motif QXDXNXVXY (fi gure 2b) 
was used to search for the carbohydrate-binding sites. In a 
few instances, motifs with one or two conservative changes 
were also accepted as those involved in carbohydrate 
binding. In each such instance, all the rotamers of the 
changed side chain, available in the Coot 0.0 rotamer 
library, were examined in the garlic lectin structure and it 
was ensured that there was no unacceptable steric contact. 
Only such changes were accepted in which the lectin–sugar 
hydrogen bonds were substantially maintained. In particular, 
it was ensured that all interactions involving O2, which are 
crucial for mannose recognition, were present even when the 
residue was changed.

It turns out that none of 77 and 106 sequences identifi ed 
in A. thaliana and Brassica spp, respectively, contain any 
carbohydrate-binding motif. In the case of O. sativa, only 1 
of the 116 sequences contains carbohydrate-binding motifs. 
Therefore, there was no need to treat the sequences from the 
whole genomes of these organisms separately. The single 

Sl. No. Accession 
number Source I II III IV V

95 BAE57820.1 Aspergillus oryzae 1 785 40 2 Unknown protein

96 EAT80432.1 Phaeosphaeria 

nodorum

1 788 41 1 Hypothetical protein

Monera

97 ZP_00591571.1 Prosthecochloris 

aestuarii DSM 271

1 171 46 3 Jacalin-related lectin

98 ZP_00532662.1 Chlorobium 

phaeobacteroides BS1

1 171 45 1 Zymogen granule protein

In the sequences marked with **, either GXXXE or GXXXN has been considered as a possible carbohydrate-binding motif.

  I: Number of Jacalin-related lectin domains with carbohydrate-binding motif(s).
 II: Total length of the polypeptide.
III: Similarity (%) of each domain with banana lectin (AAM48480.1).
IV: Number of carbohydrate-binding motif(s) in each domain.
 V: Predicted or known function of the protein.
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sequence from O. sativa was grouped along with those from 
other monocots in table 2, which lists all the lectin domains 
with β-prism II fold containing one or more mannose-
binding motifs. A second search made in December 2006 
added 9 more sequences, which are also given in the table. 

3.2 Distribution of β-prism fold lectins

A majority of β-prism fold lectins of both types occur in 
plants. They are also found in animals, fungi and bacteria. 
Among plants, β-prism I fold lectins occur in monocots as 
well as dicots. In dicots, each domain invariably carries only 
one carbohydrate-binding site. In monocots, domains with 
one and two carbohydrate-binding sites occur with almost 
equal frequency. In animals, β-prism I fold lectins with only 
one binding site have so far been identifi ed. Domains with 
one or two binding sites are seen in fungi. The rare examples 
of a β-prism I fold lectin with three binding sites are seen in 
bacteria and algae. 

In plants, β-prism II fold lectins occur overwhelmingly 
in monocots. In most cases, they carry three carbohydrate-

binding sites each. At least one monocot β-prism II fold lectin 
has been identifi ed with two carbohydrate-binding sites in it. 
There are a few which carry only one carbohydrate-binding 
site each. Three dicots containing β-prism II fold lectins 
have been identifi ed. They carry one to three carbohydrate-
binding sites. It is also interesting to note that most of 
the domains containing one carbohydrate-binding site in 
monocots form a part of sequences containing multiple 
domains. The only gymnosperm lectin with a β-prism II fold 
domain carries three carbohydrate-binding motifs. β-prism II 
fold lectins from non-plants carry one to three binding sites 
each. Most of the bacterial domains (28 out of 32) contain 
two or three carbohydrate-binding motifs. All protists have 
two carbohydrate-binding motifs. Fungal domains have 
one or two whereas animal domains have two or three 
carbohydrate-binding motifs. The β-prism II fold with three 
carbohydrate-binding sites predominantly appears to be a 
monocot phenomenon. Also, the sequence similarities and 
sources as listed in tables 1 and 2 indicate that β-prism II 
fold lectins are more widespread but less diverse in terms of 
carbohydrate-binding sites than β-prism I fold lectins.

Figure 2. (a) Subunit structure of garlic lectin (PDB CODE 1BWU) viewed down the pseudo threefold axis. The three sheets are shown in 
different colours. Sugars are represented as ball and stick. (b) A structural superposition of the carbohydrate-binding sites of all the β-prism 
II fold lectins with known structure in complex with sugar. Sugars are shown in line representation.
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Table 2. List of fi nally selected garlic lectin homologues identifi ed from the sequence database, using garlic lectin as a search 
template

Sl. No. Accession number Source I II III IV V

Plants

Gymnosperm

1 AAT73201.1 Taxus x media 3 144 59 3 Mannose-binding lectin

Monocots

2 AAL07478.1 Galanthus nivalis 1 157 64 3 Lectin

3 AAW22055.1 Lycoris sp. 1 162 63 3 Agglutinin

4 AAB64238.1 Allium sativum 1 181 85 3 Mannose-specifi c lectin

5 AAA33546.1 Narcissus hybrid cultivar 1 171 66 3 Mannose-specifi c lectin 
precursor

6 AAP37975.1 Zephyranthes grandifl ora 1 163 67 3 Agglutinin

7 BAD98798.1 Lycoris radiata var. pumila 1 156 62 3 Lectin

8 AAM44412.1 Zephyranthes candida 1 169 65 3 Agglutinin

9 1NPL Narcissus pseudonarcissus 1 109 64 3 Agglutinin

10 AAP57409.1 Amaryllis vittata 1 158 67 3 Agglutinin

11 AAP20877.1 Lycoris radiata 1 158 62 3 Lectin

12 AAM28277.1 Ananas comosus 1 164 67 3 Mannose-binding lectin

13 BAD67183.1 Dioscorea polystachya 1 149 65 3 Mannose-specifi c lectin

14 AAP04617.1 Amorphophallus konjac 1 158 59 3 3DAKA precursor

15 AAV70492.1 Zingiber offi cinale 1 169 60 3 Mannose-binding lectin 
precursor

16 AAB64239.1 Allium sativum 2 303 (a) 71 3 Lectin-related protein

17** (b) 59 2

18 AAR82848.1 Crinum asiaticum 1 175 61 3 Mannose binding lectin

19 AAV66418.1 Dendrobium offi cinale 1 165 61 3 Mannose-binding lectin 
precursor

20 AAG52664.2 Gastrodia elata 1 179 62 3 Antifungal protein precursor

21 AAQ55289.1 Typhonium divaricatum 1 197 63 3 Lectin precursor

22 AAQ18904.1 Zephyranthes grandifl ora 1 191 64 3 Mannose-binding lectin

23 AAK59994.1 Gastrodia elata 1 169 59 3 Antifungal protein

24 AAA16281.1 Allium ursinum 1 185 86 3 Mannose-specifi c lectin

25 AAA32643.1 Allium sativum 1 155 92 3 Lectin

26 JE0136 Galanthus nivalis 1 160 66 3 Lectin precursor

27 AAA16280.1 Allium ursinum 1 176 86 3 Mannose-specifi c lectin

28 AAA19911.1 Clivia miniata 1 169 65 3 Lectin

29 AAA33347.1 Galanthus nivalis 1 154 63 3 Lectin

30 AAA19913.1 Clivia miniata 1 166 62 3 Lectin

31 AAC37360.1 Allium ascalonicum 1 177 85 3 Mannose-specifi c lectin

32 AAC49387.1 Tulipa hybrid cultivar 1 183 66 3 Mannose-binding lectin 
precursor

33 AAA19577.1 Epipactis helleborine 1 172 63 3 Lectin

34 AAA19578.1 Cymbidium hybrid 1 176 60 3 Lectin
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Sl. No.
Accession

number Source I II III IV V

35 AAA20899.1 Listera ovata 1 175 62 3 Lectin

36 AAC48927.1 Epipactis helleborine 1 168 59 3 Lectin

37 AAC37423.1 Listera ovata 1 167 63 3 Mannose-binding protein

38 1XD6 Gastrodia elata 1 112 61 3 Mannose-binding lectin

39 AAC37422.1 Listera ovata 1 176 63 3 Lectin

40** AAA33345.1 Galanthus nivalis 1 161 65 3 Lectin

41** AAC49858.1 Allium ursinum 1 166 82 3 Mannose-specifi c lectin 
precursor

42** AAW82332.1 Polygonatum roseum 1 159 61 3 Mannose/sialic acid binding 
lectin

43** AAQ75079.1 Zantedeschia aethiopica 1 138 65 3 Mannose binding lectin

44** AAM77364.1 Polygonatum cyrtonema 1 160 60 3 Mannose/sialic acid-binding 
lectin

45** AAA32646.1 Allium sativum 1 313 91 3 Lectin

46** AAC49413.1 Polygonatum multifl orum 1 160 60 3 Mannose-specifi c lectin 
precursor

47** P49329 Aloe arborescens 1 109 65 3 Mannose-specifi c lectin 
precursor

48 AAD16403.1 Hyacinthoides hispanica 1 155 65 2 Lectin SCA man precursor

49 AAP20876.1 Pinellia ternata 2 269 (a) 51 1 Lectin

50 (b) 54 1

51 CAA53717.1 Colocasia esculenta 1 253 51 1 Tarin (storage protein)

52 ABC69036.1 Alocasia macrorrhizos 2 270 (a) 49 1 Mannose-binding lectin

53 (b) 52 1

54 BAA03722.1 Colocasia esculenta 2 268 (a) 53 1 Storage protein

55 (b) 51 1

56 AAP50524.1 Arisaema heterophyllum 2 258 (a) 55 1 Agglutinin

57 (b) 49 1

58 AAS66304.1 Arisaema lobatum 2 258 (a) 51 1 Mannose-binding lectin

59 (b) 50 1

60 AAC48998.1 Arum maculatum 2 260 (a) 46 1 Lectin precursor

61 (b) 55 1

62 AAC49384.1 Tulipa hybrid cultivar 1 275 51 1 Complex specifi city lectin 
precursor

63 ABA00714.1 Allium triquetrum 1 173 81 3 Agglutinin

64 BAD98797.1 Lycoris radiata 1 156 62 3 Lectin

65 NP_910000.1 Oryza sativa 1 797 26 1 Putative protein kinase

Dicots

67 AAD45250.1 Hernandia moerenhoutiana 

subsp. samoensis

1 133 64 3 Seed lectin

68** AAZ30387.1 Helianthus tuberosus 1 118 51 2 Mannose-binding lectin

69** ABE91586.1 Medicago truncatula 1 825 42 1 Protein kinase; curculin-like
(Mannose-binding) lectin 

Animals

70 CAI91574.1 Lubomirskia baicalensis 1 120 50 3 Mannose-binding lectin
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Sl. No.
Accession

number Source I II III IV V

71** BAD90686.1 Lophiomus setigerus 1 111 52 2 Skin mucus lectin

72 BAE79275.1 Leiognathus nuchalis 1 113 49 2 Lily-type lectin

73 AAU14874.1 Oncorhynchus mykiss 1 111 50 2 Lectin

74 CAG10253.1 Tetraodon nigroviridis 1 116 50 2 Unnamed protein product

75 NP_001027736.1 Takifugu rubripes 1 116 48 2 Skin mucus lectin

Fungi

76 BAE55557.1 Aspergillus oryzae 1 114 50 2 Unnamed protein product

77** XP_383865.1 Gibberella zeae 1 183 48 2 Hypothetical protein product

78 EAS27517.1 Coccidioides immitis 1 114 45 1 Hypothetical protein product

79 BAE63462.1 Aspergillus oryzae 1 129 44 1 Unnamed protein product

80 BAE63461.1 Aspergillus oryzae 1 138 43 1 Unnamed protein product

Protista

81 XP_636121.1 Dictyostelium discoideum 1 185 46 2 Comitin (membrane-
associated protein)

82 XP_641612.1 Dictyostelium discoideum 1 135 47 2 Hypothetical protein

83** EAR96445.1 Tetrahymena thermophila 2 413 (a) 46 2 Conserved hypothetical 
protein

84** (b) 46 2

85** EAR80561.1 Tetrahymena thermophila 2 295 (a) 46 2 Conserved hypothetical 
protein

86** (b) 46 2

Monera

87 ZP_00462266.1 Burkholderia cenocepacia 2 298 (a) 57 3 Curculin-like lectin

88 (b) 56 3

89 ZP_00413163.1 Arthrobacter sp. 2 226 (a) 49 3 Curculin-like lectin

90 (b) 45 3

91 ZP_00687583.1 Burkholderia ambifaria 2 788 (a) 46 3 Peptidase, subtilisin
Kexin, sedolisin: curculin

like lectin 

92 (b) 57 3

93 YP_258360.1 Pseudomonas fl uorescens 1 316 49 2 Putidacin L1 (Plant lectin-like 
bacteriocin)

94** AAX31574.1 Streptomyces fi lamentosus 1 338 51 2 Unknown

95 YP_586686.1 Ralstonia metallidurans 2 852 (a) 53 2 Curculin-like lectin

96 (b) 51 1

97 ZP_00520232.1 Solibacter usitatus 1 228 39 3 Curculin-like lectin

98 AAL73547.1 Ruminococcus albus 1 339 48 2 Bacteriocin (an antibacterial 
substance)

99 AAM95702.1 Pseudomonas sp. 2 276 (a) 46 2 Putidacin (plant lectin-like 
bacteriocin)

100** (b) 38 2

101 ABB23888.1 Pelodictyon luteolum 1 388 42 2 Hypothetical protein

102 AAM35756.1 Xanthomonas axonopodis 2 269 (a) 38 1 Hypothetical protein

103 (b) 45 1
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3.3 Interrelationship among the three faces of the prism

On account of the approximate internal threefold symmetry, 
each subunit of a β-prism I fold lectin has an appropriate loop 
in each one of the three Greek keys, irrespective of whether 
the loop carries a carbohydrate-binding motif or not. This is 
illustrated in fi gure 3a, b, c, in which the three Greek keys are 
superposed in artocarpin, banana lectin and griffi thsin, three 
lectins containing one, two and three carbohydrate-binding 
sites, respectively, on a subunit. A similar representation has 
been shown for garlic lectin also (fi gure 3d). In artocarpin, 
only loop 1 (the loop in Greek key 1) binds sugar. Loop 2 
(on Greek key 2) has nearly the same geometry as loop 1, but 
it does not contain the motif and hence does not bind sugar. 
The longer loop 3 (on Greek key 3) has a different geometry; 
it also does not carry the carbohydrate-binding motif. In 
banana lectin, loops 1 and 2 contain the motif and bind 
sugar. The longer loop 3 again has a different geometry. In 
both the cases, this loop functions as the secondary-binding 
site when oligosaccharides bind to the lectin. The same is 
true in the case of heltuba, a β-prism I fold lectin with the 
known crystal structure of an oligosaccharide complex. 
Griffi thsin has three loops of similar structure, each carrying 
a carbohydrate-binding motif resulting in three binding sites 

on each subunit. Thus, the ability of each loop to bind sugar 
is determined by the structure (geometry of the loop) as well 
as the presence or absence of the sequence motif. 

The similarity among the three loops appears to be a 
refl ection of that among the Greek keys that carry them. For 
example, the percentage similarity (identity) between keys 
1 and 2, keys 2 and 3, and keys 1 and 3 in artocarpin are 
low at 14.7 (10.7), 25.8 (16.7) and 34.5 (20.7), respectively. 
The corresponding values in banana lectin are higher at 
38.2 (23.6), 42.0 (22.0) and 35.3 (23.5), respectively. 
The values, on an average, are still higher in griffi thsin at 
37.8 (31.1), 46.8 (27.7) and 42.3 (26.9), respectively. The 
extent of relatedness among the three lectins becomes even 
more striking when the dot plots of their sequences, with 
a window size of 30 and a stringency cut-off of 10, are 
examined (fi gure 4).

It may be mentioned that in terms of sequence and 
structure, the integrity of the Greek keys is maintained even 
when differences occur in multimerization. Also, the level 
of multimerization is in no way correlated with the number 
of carbohydrate-binding sites in each subunit. β-prism fold 
lectins, as indeed other type of lectins (Prabu et al 1999), 
exhibit a variety of quaternary structures. However, in a 
majority of β-prism I fold lectins of known structure, the 

Sl. No.
Accession

number Source I II III IV V

104 NP_440485.1 Synechocystis sp. 1 3972 43 1 Integrin alpha-subunit 
domain-like protein

105 ABK70862.1 Mycobacterium smegmatis 1 208 51 3 Mannose-binding lectin

106 YP_620971.1 Burkholderia cenocepacia 3 298 55 3 Curculin-like lectin

107 56 3

108 40 3

109 YP_620972.1 Burkholderia cenocepacia 3 270 54 3 Curculin-like lectin

110 48 2

111 48 2

112** YP_772659.1 Burkholderia cenocepacia 3 788 46 3 Curculin-like lectin

113 58 3

114 40 3

115 YP_827995.1 Solibacter usitatus 1 228 39 3 Curculin domain protein

116 YP_829274.1 Arthrobacter sp. 2 226 49 3 Curculin-like protein

117 45 3

118** ZP_01463094.1 Stigmatella aurantiaca 1 513 51 3 Aqualysin-1

In the sequences marked with **, at least one ambiguous motif (other than QXDXNXVXY) has been considered as a possible 
carbohydrate-binding motif.

  I: Number of bulb lectin domains with carbohydrate-binding motif(s).
 II: Total length of the polypeptide.
III: Similarity (%) of each domain with garlic lectin (4389040).
IV: Number of carbohydrate-binding motif(s) in each domain.
 V: Predicted or known function of the protein.
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position of one subunit is not restricted by that of another 
subunit except through normal non-bonded interactions. 
However, in one instance, the outer strand of one Greek 
key and the same strand of a neighbouring key swap during 
dimerization. Thus, the sequence of the strands constituting 
each key remains the same. The same is true of all oligomeric 
β-prism II fold lectins. Therefore, the analysis of sequences 
is unaffected by strand swapping.

The analysis of the sequence relationship among the 
three loops in a β-prism I fold lectin was extended to all 
plant lectins listed in table 1. In those from dicots, which 

invariably have only one carbohydrate-binding site per 
subunit, the maximum sequence divergence is between keys 
1 and 2, with an average similarity of only 13.5 %. That 
between keys 1 and 3, and 2 and 3 is in the range of 20.0–
22.7%. Thus, Greek key 3, which carries the secondary-
binding site in artocarpin and heltuba, has a sequence 
intermediate between that carrying the primary binding site 
(Greek key 1) and that having no binding site at all (Greek 
key 2). The situation in monocots is somewhat different. 
Irrespective of whether the subunit has one or two binding 
motifs, the maximum similarity among them is between 

Figure 3. Structural superposition of individual sheets in (a) artocarpin, (b) banana lectin, (c) griffi thsin, (d) garlic lectin. For (a), (b) and 
(c) the longer loop from Greek key 3 is shown in the darker shade. Sugars are shown in line representation.

(a) (b) (c) (d)

Figure 4. Dot plot representation of artocarpin, banana lectin and griffi thsin sequences. In all cases window size 30 and threshhold cut-off 
10 were used.
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Greek keys 1 and 2, with an average similarity of 33.0% 
in the case of lectins with one binding motif, and 37.2% 
in those with two binding motifs. The average similarities 
between keys 2 and 3, and 1 and 3 range between 25.3% and 
29.4%. This difference between β-prism I fold lectins from 
dicots and monocots presumably refl ects the difference in 
the evolutionary paths the two groups followed.

There are 10 β-prism I fold lectins, galactose specifi c 
or mannose/glucose specifi c, with known structure. The 
sequences of the three Greek keys in them were individually 
aligned. The commonality in the 10 sequences is not very 
striking in each case. However, it is the highest in Greek 
keys 1 and 3. Greek key 1 carries a carbohydrate-binding 
site in all the lectins. Greek key 3 carries a secondary 
binding site in several of these lectins. Greek key 2 
has a carbohydrate-binding site only in griffi thsin and 
banana lectin, and it displays the lowest level of sequence 
conservation. Incidentally, griffi thsin, which exhibits very 
high anti-HIV activity, presents an interesting case with 
three carbohydrate-binding sites forming an equilateral 
triangle of side about 15 Å in length. Modelling indicates 
that a tridentate oligosaccharide, commonly found in viral 
glycoprotein, simultaneously makes use of the three binding 
sites (Ziolkowska and Wlodawer 2006).

The β-prism II fold lectins present an altogether simpler 
picture. There are 7 such lectins of known structure, all 
from monocots. The threefold symmetry of the subunit in 
each lectin is refl ected in the sequence as well. The average 
sequence similarity (identity) among the three Greek 
key-like motifs in them range from 46.4 to 59.0% (28.5 
to 40.7%) Again, as in the case of β-prism I fold lectins, 
in these lectins also individual Greek keys from different 
lectins align better than the whole sequences do. If all the 
sequences with three carbohydrate-binding motifs (table 2) 
from monocots are taken into account, the average sequence 
similarity among the sheets ranges from 42.1 to 50.1%. 
The corresponding range in monocot lectins with only one 
carbohydrate-binding motif is 27.6–36.5%. The same trend 
in correlation between the number of carbohydrate-binding 
motifs and sequence identity among the keys is observed in 
β-prism II fold dicot lectins also, although the number of 
such lectins is too small for any fi rm statistical inference to 
be drawn.

Most of the β-prism II fold lectins carry three carbohydrate-
binding sites, one per Greek key-like sheet, and the sheets 
are also related to one another through sequence similarity. 
This indicates the probability of gene duplication and fusion 
in the generation of the lectin. The situation is less obvious 
in β-prism I fold lectins. Therefore, a phylogenetic tree for 
β-prism I fold lectins of known structure was constructed 
using the sequence of each Greek key in each subunit 
as an individual unit. Nearly the same tree was obtained 
irrespective of the method, lending credence to the result 

obtained. In the tree (fi gure 5), individual Greek keys cluster 
together. Deviation from this behaviour is exhibited only 
by banana lectin and griffi thsin, which have two and three 
carbohydrate-binding sites, respectively, in each subunit. 

3.4 Phylogenetic analysis of β-prism fold lectins

The numbers of binding sites in each lectin domain do not 
follow strict taxonomical classifi cation. They are, however, 
closely related to the similarity in sequences within the 
domain. This can be clearly seen in fi gure 6a, which gives a 
phylogenetic classifi cation of β-prism II fold domains, each 
made up of three Greek key-like sheets, on the basis of their 
sequences. Although the phylogenetic tree for β-prism II 
fold lectins shows fi ve major clusters, only three of them 
indicate clustering of sequences based on strict taxonomic 
positions. Most of the sequences from Amaryllidaceae, 
Alliaceae and Orchidaceae families form two independent 
clusters. Sequences from the Araceae family also constitute 
a major part of other clusters. Almost all the sequences 
in each of these clusters have the same number of 
carbohydrate-binding motifs. It is interesting to examine the 
distribution of sequences from sources other than monocots 
and sequences that do not contain three carbohydrate-
binding motifs. The single dicot with three carbohydrate-
binding motifs (AAD45250.1), although not part of any 
cluster, shares the same origin with the taxonomic cluster 
of Amaryllidaceae where all the sequences have three 
carbohydrate-binding motifs. Interestingly, two sequences 
from the Araceae family (AAP04617.1 and AAQ55289.1), 
which have three carbohydrate-binding motifs, do not form 
part of the taxonomic cluster of Araceae sequences with 
a single carbohydrate-binding motif each. Instead, they 
cluster with other monocot lectins with three carbohydrate-
binding motifs. Similarly, the dicot sequence ABE91586.1, 
with a single carbohydrate-binding site, does not align 
with any other dicot sequence; instead, it clusters with the 
Araceae family where most of the sequences have a single 
carbohydrate-binding site. This clustering of sequences 
containing the same number of carbohydrate-binding motifs 
across taxonomic positions is interesting. An analysis of 
internal symmetry in the sequences clearly indicates that 
the decrease in number of carbohydrate-binding motifs is a 
manifestation of the decrease in sequence similarity among 
the three Greek key-like sheets in the sequence. Thus, the 
numbers of binding sites provide a reasonable explanation 
for the heterogeneity in the sequence-based phylogenetic 
analysis. 

β-prism I fold lectins, which appear to be more divergent 
in sequence than β-prism II fold lectins, do not form well-
defi ned taxonomic clusters (fi gure 6b). Sequences from 
Poaceae and Brassicaceae form reasonable, though not 
exclusive, clusters. This is probably because of the large 
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number of sequences obtained from O. sativa and A. thaliana 
genomes belonging to the Poaceae and Brassicaceae 

families, respectively. The only well-defi ned taxonomic 
cluster is made up of sequences from the Moraceae family. 
Although the tendency is not as clear as in the β-prism II fold 
lectins, there appears to be a correlation between clustering 
and number of carbohydrate-binding sites in the β-prism I 
fold lectins also. On the basis of number of carbohydrate-

binding sites, the tree can be roughly divided in two halves; 
the lower half made up of all the sequences, except one, with 
a single carbohydrate-binding site and the upper half with 
sequences containing one or two carbohydrate-binding sites. 
The sequence from O. sativa (XP_47804.1) which contains 
a single carbohydrate-binding motif clusters in the lower 
half of the phylogenetic tree with dicot sequences containing 
a single carbohydrate-binding motif each.

Figure 5. Phylogenetic tree produced from the multiple sequence alignment of all Greek key sequences in β-prism I fold lectins of known 
structures.
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3.5 Possible evolutionary relationship between 

the two β-prism folds

Interestingly, carbohydrate-binding motifs are exhibited 
by only a subset of domains from among those that are 

suggested to have the apparent β-prism fold by sequence 
comparison. This is particularly true in the case of the 
β-prism II fold. It is therefore diffi cult to address the 
evolutionary relatedness between the proteins which exhibit 
carbohydrate-binding motifs and those which do not. 

Figure 7. Schematic representations of the topology of (a) the banana lectin fold and (b) the garlic lectin fold. In (b), the strand from the 
other subunit involved in swapping to form the complete third Greek key has been labelled as 100(D) to 106(D).

(a)

(b)
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Instances of proteins unrelated in sequence but sharing the 
same fold are in any case very well known. Both the β-prism 
folds can be considered to have been generated by different 
types of fusion of the three Greek keys. The Greek key is 
such a well-known and stable super-secondary structural 
element that proteins resulting from their fusion could 
have originated primarily for reasons of structural viability. 
Therefore, it is reasonable to expect the existence of β-prism 
folds without any sequence or functional similarity with the 
β-prism fold lectins. Hence, the discussion here is confi ned 
to proteins listed in tables 1 and 2, which exhibit sequence 
similarity with the β-prism fold lectins and also carry the 
characteristic lectin carbohydrate-binding motifs. 

In the absence of independent experimental confi rmation, 
it is diffi cult to assert that all the β-prism fold proteins which 
carry the appropriate carbohydrate-binding motif are lectins. 
Such defi nitive confi rmation is not available in most cases. 
However, indications are that most such proteins in plants 
have the lectin function. Furthermore, the evolutionary 
pressures that plants undergo are perhaps different from those 
that other groups of organisms are subjected to. In any case, 
plants form the majority of sources of the sequences listed in 
tables 1 and 2. Therefore, perhaps plants constitute the best 
group to explore the possible evolutionary implications of 
the observations summarized in the tables. 

Interestingly, a β-prism I fold lectin, griffi thsin is found in 
a red alga (Chandra 2006); and it has been suggested that the 
appearance of the red algae in evolution was prior to that of 
the leading to modern plants, animals and fungi (Stiller and 
Hall 1997). This lectin has three carbohydrate-binding sites. 
In the course of divergent evolution, β-prism I fold lectins in 
plants appear to have lost one or more carbohydrate-binding 

sites. Dicots almost invariably lost two while loss of one 
site and that of two sites appear to have been nearly equally 
distributed in monocots. A somewhat analogous situation 
exists in the case of β-prism II fold lectins in plants. It exists 
with three carbohydrate-binding sites in the lectin from 
gymnosperm, a primitive plant. Lectins from most of the 
monocots retain the three sites, but there are some with one 
binding site and at least one with two binding sites. β-prism 
II fold carbohydrate-binding domains occur only sparingly 
in dicots. Of the three that have been identifi ed, one has three 
binding motifs, another two motifs and the third one motif.

Successive gene duplication and fusion, and the extent 
of divergent evolution are refl ected in the internal symmetry 
of the sequence containing the three Greek keys. Griffi thsin 
appears to be the earliest plant or plant-like organism in 
which a β-prism I fold lectin has been identifi ed. Its structure 
has also been reported very recently (Chandra 2006, 
Ziolkowska et al 2006). The organism in the case of β-prism 
II fold lectin is Taxus x media. These possible ancestors not 
only have three carbohydrate-binding motifs, but they also 
share high sequence similarity among the three Greek key 
motifs. The internal sequence similarity is retained in all 
the lectins containing three carbohydrate-binding motifs. 
The similarity decreases with the decrease in the number of 
carbohydrate-binding motifs; although the fold remains the 
same, the carbohydrate–lectin stoichiometry decreases. 

The information presented in tables 1 and 2 also appears 
to suggest that the differences between β-prism I fold and β-
prism II fold lectins are not as clear cut as normally believed. 
β-prism fold I lectins occur in dicots and monocots. β-
prism II fold lectins, originally christened as monocot 
lectins, appear at least in three dicots. Both types of lectins 

Figure 8. A multiple sequence alignment of artocarpin, banana lectin, griffi thsin and garlic lectin. Carbohydrate-binding motif(s) are 
underlined.
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simultaneously occur at least in one of them (Helianthus 

tuberosus). The topology of the two folds, as exemplifi ed 
by banana lectin and garlic lectin, are shown in fi gures 7a 
and b. Both can be considered to have evolved through 
successive gene duplication and fusion from a primitive 
gene corresponding roughly to a Greek key, except that the 
Greek keys are assembled in different ways in the folds. The 
analysis presented here is in conformity with this hypothesis. 
Both the folds might have existed even before monocots 
and dicots originated. Monocots and dicots use both the 
folds, but perhaps with different frequencies. In relation to 
the elimination of one or two binding sites also, evolution 
seems to have proceeded in them at different rates and 
perhaps in different ways. Interestingly, when the sequences 
corresponding to the three Greek keys in garlic lectin, 
artocarpin, banana lectin and Griffi thsia lectin are aligned, 
as in fi gure 8, the carbohydrate motifs, where present, occur 
at similar locations in the sequences. Garlic lectin has a 
β-prism II fold with three carbohydrate-binding sites; the 
remaining three have β-prism I fold with one, two and three 
binding sites, respectively. Also, when the sequence of garlic 
lectin was threaded on a banana backbone and vice versa, 
and the models thus generated were energy minimized, the 
resulting structure not only does not show any steric clash 
among the residues but all the residues also lie within the 
Ramachandran allowed area. This suggests that sequences 
of β-prism fold lectins are at least structurally compatible 
with both the folds.

4. Conclusion

Among the β-prism I fold lectins of known three-
dimensional structure, all except banana and griffi thsin 
lectin carry one carbohydrate-binding site per domain/
subunit; banana lectin carries two; griffi thsin, the structure 
of which has been determined recently, carries three. Three 
binding sites are found in each domain/subunit of β-prism 
II fold lectins of known structure. The analysis presented 
here shows that β-prism fold lectins display a much higher 
diversity in carbohydrate-binding than indicated by the 
above data. This diversity does not follow any taxonomic 
pattern in a convincing manner. However, the number of 
carbohydrate-binding sites correlates reasonably well with 
the symmetry within the sequence. In the case of both the 
structural families of lectins, the lectin from the earliest 
plant or plant-like organism known to harbour it has three 
carbohydrate-binding sites and a substantially threefold 
symmetrical sequence. In the course of divergent evolution, 
the symmetry and the number of binding sites tended to 
decrease simultaneously, at different rates and probably 
in different ways, in the two families. Both the folds are 
produced essentially by combining the three Greek keys in 
different ways. It is possible that both of them arose through 

successive gene duplication, fusion and divergent evolution 
of the same primitive carbohydrate-binding motif involving 
a Greek key.

Plant lectins are believed to be involved in defending 
the organisms to which they belong from predators and 
infectious pathogens. There are obviously other modes of 
defence as well. For example, and with particular reference 
to the present discussion, dicots have a cork cambium 
layer protecting them while such a layer does not exist in 
monocots. Thus, in the absence of this defence system, 
monocots perhaps have a higher dependence on other 
defence mechanisms including those involving lectins. 
In this context, it is probably signifi cant that almost all 
monocot β-prism II fold lectins have three carbohydrate-
binding sites. β-prism II fold lectins rarely occur in dicots. 
β-prism I fold lectins occur in dicots and monocots. Those 
from dicots invariably carry only one carbohydrate-binding 
motif while the number varies between one and two in 
monocot β-prism I fold lectins. It is reasonable to consider 
the number of carbohydrate-binding sites per domain as 
an indication of the strength and extent of carbohydrate-
binding. Larger numbers also give an additional edge 
to multivalency (Ramachandraiah et al 2003), which is 
important in agglutination. It is interesting to note that in 
the rare instances where a monocot β-prism II fold domain 
has only one binding site, two or three such domains tend to 
occur in the same protein. This could conceivably be so to 
compensate in some manner for the loss of binding sites in 
the single domain. 
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