STOCHASTIC INTEGRATION IN FOCK SPACE

V. S. SUNDER

In this paper, using purely Hilbert space-theoretic methods, an analogue of the Itô integral is constructed in the symmetric Fock space of a direct integral \mathfrak{F} of Hilbert spaces over the real line. The classical Itô integral is the special case when $\mathfrak{F} = L^2[0,\infty)$. An explicit formula is obtained for the projection onto the space of 'non-anticipating functionals', which is then used to prove that simple non-anticipating functionals are dense in the space of all non-anticipating functionals. After defining the analogue of the Itô integral, its isometric nature is established. Finally, the range of this 'integral' is identified; this last result is essentially the Kunita-Watanabe theorem on square-integrable martingales.

Preliminaries. (a) Symmetric Fock space: If \mathfrak{F} is a (complex) Hilbert space, the symbol $\mathfrak{F}^{(s)n}$ will denote the Hilbert space of symmetric tensors of rank *n*; alternatively, $\mathfrak{F}^{(s)n}$ is the closed subspace of $\otimes^n \mathfrak{F}$ spanned by $\{x \otimes \cdots \otimes x: x \in \mathfrak{F}\}$. (In the sequel, the symbol sp S will denote the closed subspace spanned by the set S of vectors.) By convention, $\mathfrak{F}^{(s)0} = \mathbb{C}$. We shall also write $\otimes^n x$ for $x \otimes \cdots \otimes x$, with the convention that $\otimes^0 x = 1$.

The symmetric Fock space over \mathfrak{H} , is by definition, the Hilbert direct sum

$$\Gamma(\mathfrak{H}) = \bigoplus_{n=0}^{\infty} \mathfrak{H}^{(s)n}.$$

If $x \in \mathfrak{H}$, then $\Gamma(x)$ will denote the 'exponential' vector in $\Gamma(\mathfrak{H})$ defined by

$$\Gamma(x) = \left(1, x, \frac{\otimes^2 x}{\sqrt{2!}}, \dots, \frac{\otimes^n x}{\sqrt{n!}}, \dots\right).$$

The following are easily verified:

(i)
$$\Gamma(\mathfrak{H}) = \operatorname{sp}\{\Gamma(x) \colon x \in \mathfrak{H}\};\$$

(1) and

(ii) $\langle \Gamma(x), \Gamma(y) \rangle = \exp\langle x, y \rangle, \quad x, y \in \mathfrak{S}.$

The symbol Ω is reserved for the 'vacuum' vector: $\Omega = \Gamma(0) = (1, 0, 0, ...)$.

If \mathfrak{H}_1 and \mathfrak{H}_2 are Hilbert spaces, it follows from (1) that the correspondence

$$\Gamma((x_1, x_2)) \leftrightarrow \Gamma(x_1) \otimes \Gamma(x_2)$$

extends to a canonical unitary isomorphism of Hilbert spaces:

$$\Gamma(\mathfrak{F}_1 \oplus \mathfrak{F}_2) \cong \Gamma(\mathfrak{F}_1) \otimes \Gamma(\mathfrak{F}_2).$$

If A is a contraction on \mathfrak{F} (i.e., A is an operator with $||A|| \leq 1$), there exists a unique contraction $\Gamma(A)$ on $\Gamma(\mathfrak{F})$ such that $\Gamma(A)\Gamma(x) = \Gamma(Ax)$ for all x in \mathfrak{F} . (In fact, $\Gamma(A) = \bigoplus_{n=0}^{\infty} (\bigotimes^n A)$). If A and B are contractions on \mathfrak{F} , it is clear that

(2)
$$\Gamma(AB) = \Gamma(A)\Gamma(B); \quad \Gamma(A)^* = \Gamma(A^*).$$

In particular, if A is a projection, so also is $\Gamma(A)$.

(b) Continuous tensor products: If (X, \mathcal{B}, μ) is a measure space and $\mathfrak{F} = \int_X^{\oplus} \mathfrak{F}(t) \mu(dt)$ is a direct integral of Hilbert spaces over X (cf. [2] for definition and basic facts about direct integrals), then, for each M in \mathcal{B} , the operator of multiplication by χ_M will be denoted by P(M). Thus, $M \to P(M)$ is the canonical spectral measure in \mathfrak{F} . If $\mathscr{H} = \Gamma(\mathfrak{F})$, we shall use the symbol E(M) for $\Gamma(P(M))$. By the last remark in (a), each E(M) is a projection; further, (2) implies that if $M \subseteq N$, then $E(M) \leq E(N)$. Further, we shall write $\mathfrak{F}(M) = P(M)\mathfrak{F}$ and $\mathscr{H}(M) = E(M)\mathscr{H}$. Then, $\mathscr{H}(M)$ can be naturally identified with $\Gamma(\mathfrak{F}(M))$, and it is easy to see that $\mathscr{H}(M) = \{(f_n)_{n=0}^{\infty} \in \mathscr{H}: f_n \in \mathfrak{F}(M)^{(s)n}$ for all $n\}$.

If M and N are disjoint sets in X, then $\mathfrak{H}(M \cup N) \cong \mathfrak{H}(M) \oplus \mathfrak{H}(N)$, and so, there exists a canonical unitary operator (cf. (a))

$$U_{M,N}: \mathscr{H}(M) \otimes \mathscr{H}(N) \to \mathscr{H}(M \cup N).$$

(If $x \in \mathfrak{F}(M)$, $y \in \mathfrak{F}(N)$, $U_{M,N}(\Gamma(x) \otimes \Gamma(y)) = \Gamma(x + y)$.) The following properties of the $U_{M,N}$'s are easily established (by verifying them on exponential vectors).

PROPOSITION (U). (i) If L, M and N are disjoint Borel sets in X, the following diagram of Hilbert spaces and unitary operators is commutative:

$$\begin{split} \mathscr{H}(L) \otimes \mathscr{H}(M) \otimes \mathscr{H}(N) & \stackrel{1_{\mathscr{H}(L)} \otimes U_{M,N}}{\to} & \mathscr{H}(L) \otimes \mathscr{H}(M \cup N) \\ & \downarrow_{U_{L,M}} \otimes 1_{\mathscr{H}(N)} & \downarrow_{U_{L,M} \cup N} \\ & \mathscr{H}(L \cup M) \otimes \mathscr{H}(N) & \stackrel{U_{L \cup M,N}}{\to} & \mathscr{H}(L \cup M \cup N) \end{split}$$

(ii) If
$$M \subseteq N$$
, then $\mathscr{H}(M) \subseteq \mathscr{H}(N)$ and
 $U_{M,N\setminus M}(f \otimes \Omega) = f, \quad f \in \mathscr{H}(M)$

(Note that $\Omega \in \mathscr{H}(L)$ for all $L \in \mathscr{B}$.)

Briefly, \mathcal{H} has a continuous tensor product structure over X (cf. [1] and [6]).

In case $X = [0, \infty)$, μ is Lebesgue measure and $\mathfrak{H} = L^2[0, \infty)$, it is known that $\mathscr{H} = \Gamma(\mathfrak{H})$ can be identified with $L^2(\mathscr{C}, P)$, where $\mathscr{C} = \{f \in C[0, \infty): f(0) = 0\}$ and P is the Wiener (probability) measure defined on the σ -algebra generated by point-evaluations. Explicitly, the correspondence is given by

$$\Gamma(\phi) \leftrightarrow \exp\left(\int \phi(t) \, dw(t) - \frac{1}{2} \int \phi(t)^2 \, dt\right),$$

where $\phi \in L^2[0, \infty)$ and the first integral on the right is the Wiener integral (cf. [6]).

The text. In the sequel, the notation and terminology will be exactly as in (b) above. We shall further restrict ourselves to the case where

(a) $X = \mathbf{R}$

(b) \mathscr{B} is the σ -algebra of Borel sets in **R**; and

(c) μ is a non-atomic, positive, σ -finite measure defined on \mathscr{B} . Thus,

$$\mathfrak{F} = \int_{\mathbf{R}}^{\oplus} \mathfrak{F}(t) \mu(dt); \qquad \mathscr{H} = \Gamma(\mathfrak{F}).$$

For any t in **R**, we shall use the abbreviations P_t , E_t , \mathfrak{F}_t and \mathscr{H}_t respectively for $P(-\infty, t]$, $E(-\infty, t]$, $P_t\mathfrak{F}$ and $E_t\mathscr{H}$. The non-atomicity of μ ensures that inclusion or exclusion of one or both end-points of intervals is irrelevant. (Thus, $P_t = P(-\infty, t)$.) Further, the non-atomicity of μ implies that $\{P_t\}$ and $\{E_t\}$ are strongly continuous one-parameter families of projections.

The symbol W will be reserved for the natural (isometric) inclusion of \mathfrak{H} in \mathscr{H} :

(3)
$$Wx = (0, x, 0, 0, ...).$$

The map W clearly satisfies

(4)
$$W(\mathfrak{F}(M)) \subseteq \mathscr{H}(M), \quad M \in \mathscr{B}, \text{ and} \\ \langle Wx, \Omega \rangle = 0, \quad x \in \mathfrak{F}.$$

In case $\mathfrak{H} = L^2[0, \infty)$ and $\mathscr{H} = L^2(\mathscr{C}, P)$, it can be verified that W is just the Wiener integral: $W\phi = \int \phi(t) dw(t)$. In order to define the analogue of the Itô integral, we begin with the following:

DEFINITION 1. A non-anticipating tensor (abbreviated to n.a.t. in the sequel) is an element of the closed subspace \Re of $\mathscr{H} \otimes \mathfrak{H}$ defined by

$$\mathfrak{N} = \left\{ \phi \in \mathscr{H} \otimes \mathfrak{H} : (1_{\mathscr{H}} \otimes P_t) \phi = (E_t \otimes P_t) \phi \,\forall t \right\}$$

EXAMPLE 2. Let $a \in \mathbf{R}$, $f \in \mathscr{H}(-\infty, a]$, $x \in \mathfrak{H}(a, \infty)$, and let $\phi = f \otimes x$. Then ϕ is a n.a.t., since $(1_{\mathscr{H}} \otimes P_t)\phi = (E_t \otimes P_t)\phi = 0$ if $t \leq a$, while if t > a,

$$(E_t \otimes P_t)\phi = E_t f \otimes P_t x = f \otimes P_t x = (1_{\mathscr{H}} \otimes P_t)\phi.$$

DEFINITION 3. A n.a.t. of the sort described in Example 2 will be called an elementary n.a.t.; a finite linear combination of elementary n.a.t.s will be called a simple n.a.t.

The following elementary result is recorded here for later use.

PROPOSITION 4. If $\phi \in \Re$ and $-\infty < a \le b < \infty$, then $(1_{\mathscr{H}} \otimes P(a, b])\phi = (E_b \otimes P(a, b])\phi.$

Proof.

$$(1_{\mathscr{H}} \otimes P(a, b])\phi = (1_{\mathscr{H}} \otimes P_b - 1_{\mathscr{H}} \otimes P_a)\phi = (E_b \otimes P_b - E_a \otimes P_a)\phi, \text{ since } \phi \in \mathfrak{N}.$$

Hence

$$(E_b \otimes P(a, b])\phi = (E_b \otimes 1_{\mathfrak{F}})(E_b \otimes P_b - E_a \otimes P_a)\phi$$
$$= (E_b \otimes P_b - E_b E_a \otimes P_a)\phi$$
$$= (E_b \otimes P_b - E_a \otimes P_a)\phi = (1_{\mathscr{H}} \otimes P(a, b])\phi$$

by the previous equality, and the proof is complete.

We now wish to obtain a formula for the projection of $\mathscr{H} \otimes \mathfrak{H}$ onto \mathfrak{N} , which will henceforth be denoted by Q. However, some notation should be established first.

Let $J = \{(t_0, t_2, \dots, t_n): -\infty < t_0 < t_1 < \dots < t_n < \infty, n = 1, 2, \dots\}$. The set J is a directed set with respect to the partial order defined by

$$(t_0,\ldots,t_n) \leq (s_0,\ldots,s_n) \quad \text{iff} \quad \{t_0,\ldots,t_n\} \subseteq \{s_0,\ldots,s_m\}.$$

If $\Delta = (t_0, \ldots, t_n) \in J$, define

(5)
$$Q_{\Delta} = \sum_{i=1}^{n} E(-\infty, t_{i-1}] \otimes P(t_{i-1}, t_i]$$

Since the projections $\{P(t_{i-1}, t_i]: i = 1, ..., n\}$ are mutually orthogonal it follows that Q_{Δ} , being a sum of mutually orthogonal projections, is itself a projection with

(6)
$$\operatorname{ran} Q_{\Delta} = \bigoplus_{i=1}^{n} \mathscr{H}(-\infty, t_{i-1}] \otimes \mathfrak{H}(t_{i-1}, t_{i}]$$

LEMMA 5. $\{Q_{\Delta}: \Delta \in J\}$ is a monotone net of projections; i.e., if Δ , $\Delta' \in J$ and $\Delta \leq \Delta'$, then $Q_{\Delta} \leq Q_{\Delta'}$.

Proof. It clearly suffices to prove the following: If

 $\Delta = (a, b)$ and $\Delta' = (s_0, \dots, s_n)$

where $a = s_0 < s_1 < \cdots < s_n = b$, then $Q_{\Delta} \leq \Delta_{\Delta'}$. In this case, however,

$$Q_{\Delta} = E(-\infty, a] \otimes P(a, b]$$

= $\sum_{i=1}^{n} E(-\infty, a] \otimes P(s_{i-1}, s_i]$
 $\leq \sum_{i=1}^{n} E(-\infty, s_{i-1}] \otimes P(s_{i-1}, s_i] = Q_{\Delta'}.$

PROPOSITION 6. $Q = \lim_{\Delta \in J} Q_{\Delta}$, in the strong operator topology.

Proof. Example 2 shows that every product vector in $\mathscr{H}(-\infty, a] \otimes \mathfrak{S}(a, b]$ is a n.a.t. It follows that (cf. (6)) ran $Q_{\Delta} \subseteq \operatorname{ran} Q$ for all Δ in J; i.e., $Q_{\Delta} \leq Q$ for all Δ in J.

Since Q and each Q_{Δ} are projections, it suffices to show that $Q_{\Delta} \rightarrow Q$ weakly. Further, since $Q_{\Delta} \leq Q$ for all Δ , and since the Q_{Δ} 's are uniformly bounded, it is enough to show that $\langle Q_{\Delta}\Psi, \phi \rangle \rightarrow \langle Q\Psi, \phi \rangle$ for all ϕ in \Re and for all Ψ belonging to some total set of vectors in $\mathscr{H} \otimes \mathfrak{F}$.

Observe that $\{f \otimes x: f \in \mathscr{H}(-T, T], x \in \mathfrak{F}(-T, T], T > 0\}$ is a total set of vectors in $\mathscr{H} \otimes \mathfrak{F}$. What we shall prove is that $\langle Q_{\Delta}(f \otimes x), \phi \rangle \rightarrow \langle Q(f \otimes x), \phi \rangle$ for all ϕ in \mathfrak{N} , where $f \in \mathscr{H}(-T, T]$ and $x \in \mathfrak{F}(-T, T]$ for some T > 0.

Let $\varepsilon > 0$ be given. Since $t \mapsto ||E_t f||^2$ is monotone and uniformly continuous (recall that μ is non-atomic, and so the above function is continuous and constant in each of the intervals $(-\infty, T]$ and (T, ∞)), there exists $\Delta_0 = (s_0, \dots, s_N)$ in J such that

(i)
$$s_0 = -T$$
; $s_N = T$, and

(ii) $||E_t f||^2 - ||E_{t'} f||^2 < \varepsilon^2 / ||x||^2 ||\phi||$ whenever

 $s_{i-1} \le t' < t \le s_i$, for i = 1, ..., N.

 $Claim. \ \Delta_0 \leq \Delta \Rightarrow |\langle (Q_\Delta - Q)(f \otimes x), \phi \rangle| < \varepsilon.$

Suppose $\Delta = (t_0, \dots, t_n) \ge \Delta_0$. Then $t_0 \le s_0 = -T$ and $t_n \ge s_N = T$ and hence,

$$x = P(t_0, t_n] x = \sum_{i=1}^{n} P(t_{i-1}, t_i] x;$$

thus,

$$\begin{split} \left\langle Q(f \otimes x), \phi \right\rangle &= \left\langle f \otimes x, \phi \right\rangle \quad (\text{since } \phi \in \mathfrak{N}) \\ &= \sum_{i=1}^{n} \left\langle f \otimes P(t_{i-1}, t_i] x, \phi \right\rangle \\ &= \sum_{i=1}^{n} \left\langle (1_{\mathscr{H}} \otimes P(t_{i-1}, t_i])(f \otimes x), \phi \right\rangle \\ &= \sum_{i=1}^{n} \left\langle (f \otimes x), (1_{\mathscr{H}} \otimes P(t_{i-1}, t_i]) \phi \right\rangle \\ &= \sum_{i=1}^{n} \left\langle \left(f \otimes x, E_{t_i} \otimes P(t_{i-1}, t_i] \right) \phi \right\rangle \quad (\text{by Proposition 4}) \\ &= \sum_{i=1}^{n} \left\langle \left(E_{t_i} \otimes P(t_{i-1}, t_i] \right)(f \otimes x), \phi \right\rangle, \end{split}$$

while, by definition,

$$\langle Q_{\Delta}(f \otimes x), \phi \rangle = \sum_{i=1}^{n} \langle (E_{t_{i-1}} \otimes P(t_{i-1}, t_i))(f \otimes x), \phi \rangle.$$

Hence

$$\begin{aligned} \left| \left\langle Q(f \otimes x), \phi \right\rangle - \left\langle Q_{\Delta}(f \otimes x), \phi \right\rangle \right| \\ &= \left| \sum_{i=1}^{n} \left\langle \left(\left(E_{t_{i}} - E_{T_{i-1}} \right) \otimes P(t_{i-1}, t_{i}] \right), (f \otimes x), \phi \right\rangle \right| \\ &= \left| \sum_{i=1}^{n} \left\langle \left(\left(E_{t_{i}} - E_{t_{i-1}} \right) \otimes P(t_{i-1}, t_{i}] \right) (f \otimes x), \right. \\ &\left. \left\langle \left(1_{\mathscr{H}} \otimes P(t_{i-1}, t_{i}] \right) \phi \right\rangle \right| \end{aligned} \end{aligned}$$

(continues)

$$\leq \sum_{i=1}^{n} \left\| \left(\left(E_{t_{i}} - E_{t_{i-1}} \right) \otimes P(t_{i-1}, t_{i}] \right) (f \otimes x) \right\| \\ \cdot \left\| \left(1_{\mathscr{H}} \otimes P(t_{i-1}, t_{i}] \right) \phi \right\| \\ \leq \left[\sum_{i=1}^{n} \left\| \left(E_{t_{i}} - E_{t_{i-1}} \right) f \otimes P(t_{i-1}, t_{i}] x \right\|^{2} \right]^{1/2} \\ \cdot \left[\sum_{i=1}^{n} \left\| \left(1_{\mathscr{H}} \otimes P(t_{i-1}, t_{i}] \right) \phi \right\|^{2} \right]^{1/2} . \\ \text{The first term} = \left[\sum_{i=1}^{n} \left\| \left(E_{t_{i}} - E_{t_{i-1}} \right) f \right\|^{2} \left\| P(t_{i-1}, t_{i}] x \right\|^{2} \right]^{1/2} \\ \leq \left[\frac{\varepsilon^{2}}{\left\| x \right\|^{2} \left\| \phi \right\|^{2}} \sum_{i=1}^{n} \left\| P(t_{i-1}, t_{i}] x \right\|^{2} \right]^{1/2} = \varepsilon \| \phi \|^{-1},$$

the first inequality being a consequence of the choice of Δ_0 , the inequality $\Delta \ge \Delta_0$ and the assumption $f \in \mathscr{H}(-T, T]$, while the last equality follows from $x \in \mathfrak{F}[-T, T]$.

The second term is dominated by $\|\phi\|$ since $\{1_{\mathscr{H}} \otimes P(t_{i-1}, t_i]$: $i = 1, \ldots, n\}$ is a set of mutually orthogonal projections; hence, the proof of the claim, and consequently, the proof of the proposition, is complete.

The next result is an easy consequence of the last proposition.

PROPOSITION 7. Simple n.a.t.s (cf. Definition 3) are dense in \Re .

Proof. It is to be proved that $\mathfrak{N} = \mathfrak{N}_0$, where \mathfrak{N}_0 is the closure of the set of simple n.a.t.s.

To start with, note that if $f \in \mathscr{H}$ and $x \in \mathfrak{H}$, then $Q_{\Delta}(f \otimes x)$ is a simple n.a.t. for every Δ in J, and so, by Proposition 6, it follows that $Q(f \otimes x) \in \mathfrak{N}_0$.

Since $\mathscr{H} \otimes \mathfrak{H} = \operatorname{sp} \{ f \otimes x : f \in \mathscr{H}, x \in \mathfrak{H} \}$ it follows (from the linearity and continuity of Q) that

 $\mathfrak{N} = Q(\mathscr{H} \otimes \mathfrak{H}) = \operatorname{sp} \{ Q(f \otimes x) \colon f \in \mathscr{H}, x \in \mathfrak{H} \} \subseteq \mathfrak{N}_0$

the last inclusion following from the previous paragraph. Since, clearly, $\mathfrak{N}_0 \subseteq \mathfrak{N}$, the proof is complete.

Observe that $\Omega \otimes x \in \Re$ for any x in \mathfrak{H} , since $E_t \Omega = \Omega$ for all t.

THEOREM 8. There exists a unique isometic operator $\mathscr{I}: \mathfrak{N} \to \mathscr{H}$ such that

- (i) $\mathscr{I}(\Omega \otimes x) = Wx$ for all x in \mathfrak{H} ; and more generally,
- (ii) if $a \in \mathbf{R}$, $f \in \mathscr{H}(-\infty, a]$, $x \in \mathfrak{S}(a, \infty)$ and $\phi = f \otimes x$, then $\mathscr{I}\phi = U_{(-\infty,a],(a,\infty)}(f \otimes Wx)$.

(*Note*: This is the analogue of the Itô integral and it is tempting to write $\mathscr{I}\phi = \int \phi \, dW$.)

Proof. Since elementary n.a.t.s span \Re , it is clear that (ii) forces uniqueness of \mathscr{I} , so it suffices to prove existence.

For typographical economy, let us write U_a for $U_{(-\infty,a],(a,\infty)}$ and $U_{a,b}$ for $U_{(-\infty,a],(a,b]}$ when $a \le b$, where the $U_{L,M's}$ are as defined in (b) of Preliminaries.

If a, f, x and ϕ are as in (ii) above, then $Wx \in \mathscr{H}(a, \infty)$ (cf. (4)) and so, it makes sense to define $\mathscr{I}\phi = U_a(f \otimes Wx)$. That $\mathscr{I}\phi$ is unambiguously defined (in the sense that $\mathscr{I}\phi$ depends only on ϕ , and not on a, f or x) is a consequence of the consistency properties of the $U_{L,M's}$ stated in Proposition (U).

Next suppose $a, b \in \mathbf{R}$, $f \in \mathscr{H}(-\infty, a]$, $x \in \mathfrak{H}(a, \infty)$, $\phi = f \otimes x$, and $g \in \mathscr{H}(-\infty, b]$, $y \in \mathfrak{H}(b, \infty)$, $\Psi = g \otimes y$. Assume (without loss of generality) that $a \leq b$. Then, observe that

$$\begin{split} \mathscr{I}\phi &= \mathscr{I}(f \otimes x) = U_a(f \otimes Wx) \\ &= U_a(f \otimes W(P(a, b]x + P(b, \infty)x)) \\ &= U_a(f \otimes WP(a, b]x) + U_a(f \otimes WP(b, \infty)x). \end{split}$$

Notice that $U_a(f \otimes WP(a, b]x) \in \mathscr{H}(-\infty, b]$ and so,

$$U_a(f \otimes WP(a, b]x) = U_b(U_{a,b}(f \otimes WP(a, b]x) \otimes \Omega).$$

Similarly

$$U_a(f \otimes WP(b, \infty)x) = U_b(U_{a,b}(f \otimes \Omega) \otimes WP(b, \infty)x).$$

On the other hand, by definition,

$$\mathscr{I}\Psi=\mathscr{I}(g\otimes y)=U_b(g\otimes Wy).$$

Since U_{h} is unitary, conclude that

$$\begin{split} \left\langle \mathscr{I}\phi, \mathscr{I}\Psi \right\rangle &= \left\langle U_{a,b}(f \otimes WP(a, b]x) \otimes \Omega, g \otimes Wy \right\rangle \\ &+ \left\langle U_{a,b}(f \otimes \Omega) \otimes WP(b, \infty)x, g \otimes Wy \right\rangle. \end{split}$$

The first term on the right is zero since $\langle \Omega, Wy \rangle = 0$ (cf. (4)), and so, since W is isometric,

$$\begin{split} \langle \mathscr{I}\phi, \mathscr{I}\Psi \rangle &= \langle U_{a,b}(f \otimes \Omega), g \rangle \langle P(b, \infty)x, y \rangle \\ &= \langle f, g \rangle \langle x, P(b, \infty)y \rangle \quad (\text{since } U_{a,b}(f \otimes \Omega) = f) \\ &= \langle f, g \rangle \langle x, y \rangle \quad (\text{since } y \in \mathscr{H}(b, \infty)) \\ &= \langle f \otimes x, g \otimes y \rangle = \langle \phi, \Psi \rangle. \end{split}$$

So, the equation (ii) (in the statement of the theorem) unambiguously defines a vector $\mathscr{I}\phi$ in \mathscr{H} for every elementary n.a.t. ϕ ; further, if ϕ and Ψ are elementary n.a.t.s, then $\langle \mathscr{I}\phi, \mathscr{I}\Psi \rangle = \langle \phi, \Psi \rangle$. Since elementary n.a.t.s generate \Re (by Proposition 7), it is clear that \mathscr{I} extends to a unique isometric operator from \Re into \mathscr{H} .

Finally, we identify the range of \mathcal{I} , and this result is essentially the Kunita-Watanabe Theorem.

THEOREM 9. $\mathscr{I}(\mathfrak{N}) = \{\Omega\}^{\perp} = \mathscr{H} \ominus \mathbb{C} \Omega.$

Proof. Since $\{\Omega\}^{\perp} = \sup\{\Gamma(x) - \Omega: x \in \mathfrak{H}\}$, and since \mathscr{I} (being isometric) has closed range, it suffices to prove the following:

Claim. $\Gamma(x) - \Omega = \mathscr{I}(Q(\Gamma(x) \otimes x))$ for all x in \mathfrak{F} . Since $\mathscr{H} = sp{\Gamma(y): y \in \mathfrak{F}}$, it is enough to establish that

$$\langle \mathscr{I}(Q(\Gamma(x) \otimes x)), \Gamma(y) \rangle = \langle \Gamma(x) - \Omega, \Gamma(y) \rangle = \exp\langle x, y \rangle - 1.$$

In view of Proposition 6 (and the continuity of \mathcal{I}), it is enough to prove that

$$\lim_{\Delta \in J} \langle \mathscr{I}(Q_{\Delta}(\Gamma(x) \otimes x)), \Gamma(y) \rangle = \exp\langle x, y \rangle - 1.$$

Let $\Delta = (t_0, \dots, t_n) \in J$. Writing U_t for $U_{(-\infty, t], (t, \infty)}$ (as in the proof of Theorem 8), we see that

$$\begin{aligned} \mathscr{I}(Q_{\Delta}(\Gamma(x)\otimes x)) &= \mathscr{I}\bigg(\sum_{i=1}^{n} E_{t_{i-1}}(\Gamma(x)) \otimes P(t_{i-1},t_i]x\bigg) \\ &= \mathscr{I}\bigg(\sum_{i=1}^{n} \Gamma(P_{t_{i-1}})\Gamma(x) \otimes P(t_{i-1},t_i]x\bigg) \\ &= \mathscr{I}\bigg(\sum_{i=1}^{n} \Gamma(P_{t_{i-1}}x) \otimes P(t_{i-1},t_i]x\bigg) \\ &= \sum_{i=1}^{n} U_{t_{i-1}}\bigg(\Gamma(P_{t_{i-1}}x) \otimes WP(t_{i-1},t_i]x\bigg). \end{aligned}$$

On the other hand, for any t in **R**,

$$\Gamma(y) = U_t(\Gamma(P_t y) \otimes \Gamma(P(t, \infty) y)).$$

Hence,

$$\begin{split} \left\langle \mathscr{I}(Q_{\Delta}(\Gamma(x)\otimes x)), \Gamma(y) \right\rangle &= \sum_{i=1}^{n} \left\langle \Gamma(P_{t_{i-1}}x), \Gamma(P_{t_{i-1}}y) \right\rangle \\ &\cdot \left\langle WP(t_{i-1}, t_{i}]x, \Gamma(P(t_{i-1}, \infty)y) \right\rangle \\ &= \sum_{i=1}^{n} \left(\exp\left\langle P_{t_{i-1}}x, P_{t_{i-1}}y \right\rangle \right) \left\langle P(t_{i-1}, t_{i}]x, P(t_{i-1}, \infty)y \right\rangle \\ &= \sum_{i=1}^{n} \left(\exp\left\langle P_{t_{i-1}}x, y \right\rangle \right) \left\langle P(t_{i-1}, t_{i}]x, y \right\rangle \\ &= \sum_{i=1}^{n} \left(\exp\alpha(t_{i-1}) \right) \cdot (\alpha(t_{i}) - \alpha(t_{i-1})), \end{split}$$

where $\alpha(t) = \langle P_t x, y \rangle$.

Hence $\langle \mathscr{I}(Q_{\Delta}(\Gamma(x) \otimes x)), \Gamma(y) \rangle$ is a typical Riemann sum (considering the left end point) corresponding to the partition Δ , in the evaluation of the Riemann-Stieltje's integral $\int_{-\infty}^{\infty} (\exp \alpha(t)) d\alpha(t)$. (Note that $\alpha(t)$ is a function of finite total variation.) Taking limits as the partition is indefinitely refined, we get, by Proposition 6,

$$\langle \mathscr{I}(Q(\Gamma(x) \otimes x)), \Gamma(y) \rangle = \int_{-\infty}^{\infty} e^{\alpha(t)} d\alpha(t)$$

= $e^{\alpha(t)} \Big|_{-\infty}^{\infty} = e^{\langle x, y \rangle} - 1$, as desired.

The Kunita-Watanabe theorem (cf. [4]) is stated in terms of martingales. To make contact with that formulation, one can define a martingale (in this setting) as a curve $\{\phi(t): t \in \mathbf{R}\}$ in \mathcal{H} such that $E_s\phi(t) = \phi(s)$ for $s \leq t$. It can easily be verified, that $\phi(t) = E_t \mathscr{I}(\phi)$ defines a martingale with 'mean zero' for any ϕ in \mathfrak{N} (i.e., $\langle E_t \mathscr{I}(\phi), \Omega \rangle = 0$). It can now be deduced from Theorem 9 that if $\{\phi(t): t \in \mathbf{R}\}$ is a martingale such that (i) $\langle \phi(t), \Omega \rangle 0$ for all t, and (ii) $\sup_t ||\phi(t)|| < \infty$, then there exists ϕ in \mathfrak{N} such that $\phi(t) = E_t \mathscr{I}(\phi) = \mathscr{I}((1_{\mathscr{H}} \otimes P_t)\phi)$. The verification of the above details is fairly painless and we shall be content to stop here.

Acknowledgment. I wish to thank Professor K. R. Parthasarathy for introducing me to continuous tensor products, Fock space and stochastic integration.

References

- [1] H. Araki and E. J. Woods, *Complete Boolean algebras of Type-I factors*, Publications of the RIMS, Kyoto University, Ser. A, 2, No. 2, (1966), 157-242.
- [2] J. Dixmier, Les algebres des operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- [3] K. Ito, Stochastic integral, Proc. Imp. Acad. Tokyo, 20 (1944), 519-524.
- [4] H. Kunita and S. Watanabe, On square -integrable martingales, Nagoya Math. J., 30 (1967), 209-245.
- [5] H. P. McKean, Jr., Stochastic Integrals, Academic Press, New York, 1969.
- [6] K. R. Parthasarathy and K. Schmidt, *Positive Definite Kernels*, *Continuous Tensor Products and Central Limit Theorems in Probability Theory*, Lecture Notes in Mathematics, No. 272, Springer-Verlag, Berlin, 1970.

Received September 20, 1984.

Indian Statistical Institute Delhi Centre 7, S.J.S. Sansanwal Marg. New Delhi - 110016 India