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Abstract

In this paper, we compute the standard invariant of the ‘subgroup-
subfactor’ P ×α|H H ⊂ P ×α G, where α denotes an outer action of
a finite group G on a II1 factor P , and P ×α|H H denotes the obvi-
ous crossed-product obtained by restricting the action to H. We then
use this description to exhibit a pair of non-isomorphic subgroups
Hi, i = 1, 2, of the symmetric group S4 such that the subfactors
R ×α|Hi

Hi ⊂ P ×α G, i = 1, 2 are conjugate, thereby disproving

a conjecture of Thomsen - see [9] - that ‘the subgroup-subfactor re-
members the subgroup’ (provided the subgroup contains no non-trivial
normal subgroup of the ambient group).

1 Introduction

In this paper, we give a complete and explicit description of the so-called
standard invariant - see [7] - of the subgroup-subfactor. There does exist some
information in the literature on the principal and dual graphs (for instance,
see [4] and [2]) as well as on the fusion rules for the concerned bimodules
(see [3]). However, in order to obtain the entire standard invariant, we also
need the connection (in the sense of [5]) or the canonical commuting square
(in the sense of [7]).
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In order to obtain the connection, we need the bimodules in a sufficiently
explicit form so that we can write down ‘bases of intertwiners’, which are
the building blocks for the connection. Such computations are somewhat
easy when one has a standard model for the bimodules concerned; by this,
we mean the following:

Suppose Q1, Q2 are II1 factors and H is a Q1 − Q2 bimodule which has
finite left Q1- and right Q2- dimensions which are positive integers. (We
shall only encounter such bimodules in the context at hand, so we shall not
bother to talk in full generality here about possibly non-integral dimensions.)
Suppose, to be specific, that dimQ1,−H = d ∈ IN. Then there exists a
(necessarily faithful) unital normal *-homomorphism θ : Q2 →Md(Q1) such
that the bimodule H is isomorphic to the following ‘standard model’ Hθ of a
bimodule: as a Hilbert space Hθ is isomorphic to a direct sum of d copies of
L2(Q1); we shall find it convenient to identify Hθ with M1×d(L

2(Q1)) (and
to think of elements of Hθ as row-vectors ξ = [ξ1 · · · ξd] with entries from
L2(Q1)); the Q1 − Q2 bimodule structure is given by matrix-multiplication
thus:

(x1 · ξ · x2)j = x1 · ξi · θ(x2)
i
j .

In the foregoing equation, we use the natural Q1−Q1 bimodule structure on
L2(Q1) on the right side, and write aij for the entry in the i-th row and j-th
column of a matrix A; also, we have adopted the ‘summation convention’
(of summing over indices which appear once as a superscript and once as
a subscript), and we shall continue to use this convention throughout this
paper.

We call Hθ a ‘standard model’ for the Q1 − Q2 bimodule H; the under-
standing is that its elements are row-vectors with entries coming from L2(Q1),
the left action is by the standard diagonal action, and the right action is
transferred from the natural right action of Md(Q1) via the homomorphism
θ. With the foregoing notation, we shall write dθ = d = dimQ1,−Hθ.

One reason that working with ‘standard models’ is convenient, is the
following simple fact - see [2], for instance:

Suppose Hθ1 and Hθ2 are standard models of two Q1 − Q2 bimodules,
with dθi

= di, i = 1, 2. Then every Q1 −Q2 linear map T̃ : Hθ1 → Hθ2 has
the form

(T̃ ξ)j = ξi · tij (1.1)
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where the matrix T = ((tij)) ∈Md1×d2(Q1) satisfies

θ1(q) T = T θ2(q) ∀ q ∈ Q2 . (1.2)

(Clearly, the matrix equation (1.2) is short-hand for the system

(θ1(q))
i
k t

k
j = tik (θ2(q))

k
j ∀ i, j

of equations. Also, rather than the clumsy use of parentheses above, we shall,
in the future, write θij(q) rather than (θ(q))ij, when given a θ : Q→Md(P ).)

Conversely, any matrix T ∈ Md1×d2(Q1) which satisfies equation (1.2)
defines a unique Q1 −Q2 linear map T̃ via equation (1.1).

In S2, we begin by writing down some explicit ‘standard models’ of irre-
ducible bimodules of the four kinds - N − N, N −M, M − N, M −M -
where N = P ×H and M = P ×G, and P is an arbitrary II1 factor.

In S3, we compute the fusion rules governing the system of bimodules
described in S2.

In S4, we enumerate all the possible intertwiners for our system of bi-
modules; we then deduce the principal and dual graphs of N ⊂ M . (We
show that the system of bimodules discussed in S2 is a complete system of
representatives of the different irreducible bimodules which appear in the
description of these graphs.)

In S5, we determine the connection of the subgroup-subfactor using the
bimodules of S2 and the ‘bases of intertwiners’ obtained in S4, thereby com-
pleting the description of the standard invariant.

In S6, we use the general description obtained in the earlier sections to
show that if H and K are the subgroups of the symmetry group S4 defined
by

H = {(1), (1234), (13)(24), (1432)} ( ∼= Z4 ) (1.3)

and
K = {(1), (12), (34), (12)(34)} ( ∼= Z2 × Z2 ) , (1.4)

then the hyperfinite subfactors R×H ⊂ R×S4 and R×K ⊂ R×S4 have the
same standard invariant and are consequently isomorphic (by [6] and [8]).
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It is a fact that if H is a subgroup of a finite group G and if there exists
a normal subgroup L of G which is contained in H, then the subfactors
(R×H ⊂ R×G) and (R×H/L ⊂ R×G/L) are isomorphic.

Motivated by a search for a ‘relative Dye’s theorem’, Klaus Thomsen
asked the following question - in [9]:

Suppose Hi ⊂ Gi, i = 1, 2 are a pair of inclusions of finite groups, such
that for each i = 1, 2, the subgroup Hi contains no non-trivial normal sub-
group of Gi; suppose, further, that the subfactors (R×Hi ⊂ R×Gi), i = 1, 2,
are isomorphic (meaning, of course that there exists an isomorphism of R×G1

onto R × G2, which maps R × H1 onto R × H2). Does it then follow that
there is a group isomorphism of G1 onto G2 which maps H1 onto H2?

It should be noted that the answer to the above question is affirmative in
the extreme case when Hi = {1}.

Since both the subgroups H and K displayed above, have the property
that they contain no non-trivial normal subgroup of S4; thus, we have an-
swered Thomsen’s question in the negative.

2 The bimodules

Throughout this paper, we write M = P ×α G and N = P ×α|H H, where α
is an outer action of a finite group G on a II1 factor P , H is a subgroup of
G, and α|H denotes the restriction of α to H. Recall that the typical element
of N (resp., M) has the form

∑

h∈H xhh (resp.,
∑

g∈G xgg) where xh, xg ∈ P ,
and that the product is given by (xg)(yg′) = xαg(y) gg

′, and the adjoint is
given by (xg)∗ = g−1x∗ = αg−1(x∗)g−1, whenever x, y ∈ P, g, g′ ∈ G.)

We shall also use the following notation: suppose G =
∐n
t=1 HgtH is the

decomposition of G into H-double cosets where the system {gt : 1 ≤ t ≤ n}
of representatives of the double coset space has been chosen and fixed once
and for all; we assume that g1 = 1.

For fixed t, we write Ht = H ∩ g−1
t Hgt. Notice that under the natural

action of H on H\G (given by (h,Hg) 7→ Hgh−1), the isotropy subgroup of
the right coset Hgt is precisely Ht. Having fixed a t, let H =

∐kt
p=1 h

(t)
p Ht

be the decomposition of H into left Ht-cosets (with the coset representatives
{h(t)

p : 1 ≤ p ≤ kt} having been chosen and fixed once and for all); as before,

we assume that h
(t)
1 = 1 ∀t.
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It follows from the definitions that G =
∐n
t=1

∐kt
p=1Hgt(h

(t)
p )−1 is the

decomposition of G into right H-cosets.
In the sequel, we shall consistently use the notation

I = {(t, p) : 1 ≤ t ≤ n, 1 ≤ p ≤ kt} (2.5)

and we shall write

g(t,p) = gt(h
(t)
p )−1 ∀ (t, p) ∈ I . (2.6)

In particular, we have G =
∐

r∈I Hgr. Consequently, we have an action
of G on I (corresponding to the natural G-action on H\G) thus:

g · s = r ⇔ gsg
−1g−1

r ∈ H . (2.7)

Similarly, for each fixed t, we have an action of H on {p : 1 ≤ p ≤ kt}
(corresponding to the natural H-action on H/Ht), given by

h · q = p ⇔ (h(t)
p )−1hh(t)

q ∈ Ht . (2.8)

Before proceeding further, we make an observation that we shall have
cause to use, viz.

h · (t, q) = (t, h · q) ∀ h ∈ H, (t, q) ∈ I , (2.9)

where the left side is defined by equation (2.7), while the right side is defined
by equation (2.8). Indeed, suppose h · (t, q) = r ∈ I; then it follows that
gr ∈ HgtH, and consequently, we must have r = (t, p) for some p; this means
that gt(h

(t)
q )−1h−1h(t)

p g
−1
t ∈ H, and hence that (h(t)

q )−1h−1h(t)
p ∈ Ht; in other

words, h · q = p, thereby establishing equation (2.9).
In order to simplify notation, if the index t has been fixed, we shall simply

write hp for the correct but cumbersome expression h(t)
p .

For convenience of reference, we single out a fact as a separate lemma;
we omit the elementary proof, since it is a direct application of the definition
of a free action.

Lemma 1 Let g ∈ G.
(a) The following conditions on an element x ∈M are equivalent:
(i) xy = αg(y)x ∀ y ∈ P ; (ii) there exists a scalar C ∈ C such that

x = Cg.
(b) If x ∈ N , then condition (a)(i) is equivalent to the requirement that

there exists a scalar C such that x = 1H(g) Cg.
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We need one more bit of notation before we can define our bimodules; for
1 ≤ t ≤ n, define

H t = H ∩ gtHg−1
t = ad(gt)Ht ,

where we write ad(g) for the inner automorphism of G given by k 7→ gkg−1.

Proposition 2 (a) Fix 1 ≤ t ≤ n, and let π : H t → U(dπ,C) be a unitary
representation of H t. Then there exists a unique normal *-homomorphism
π̃ : N →Mktdπ

(N) such that

π̃piqj(xh) = δp,h·q π
i
j(g(t,p)hg

−1
(t,q)) αg(t,p)

(x) g(t,p)hg
−1
(t,q) , (2.10)

for all 1 ≤ p, q ≤ kt, 1 ≤ i, j ≤ dπ.
(b) The ‘standard model’ Hπ̃ (of an N − N bimodule) is irreducible if

and only if the representation π of H t is irreducible.
(c) If πi, i = 1, 2 are inequivalent irreducible unitary representations of

H t, then the bimodules Hπ̃i
are inequivalent.

Proof: Notice to start with that if h · q = p, then (by equation (2.8)
and the definition of H t) we see that the element gth

−1
p hhqg

−1
t ∈ H t and

consequently, the right side of equation (2.10) is a meaningfully defined ele-
ment of N ; thus π̃ does indeed extend by linearity to a unique map of N into
Mktdπ

(N). An easy verification shows that π̃ is a normal *-homomorphism.
Hence Hπ̃ is indeed an N − N bimodule with left-dimension equal to ktdπ,
thereby establishing (a).

We dispose of (b) and (c) together, as follows: suppose πi : H ti →
U(dπi

,C) is a unitary representation of H ti , for i = 1, 2, and suppose T̃ :
Hπ̃1 → Hπ̃2 is an N − N linear mapping. Then, there exist tpiqj ∈ N
such that equations (1.1) and (1.2) are satisfied (with Q1 = Q2 = N and
θi = π̃i, i = 1, 2).

Since π̃piqj(x) = δp,qδi,jαg(t,p)
(x), the requirement π̃1(x) T = T π̃2(x) for

all x ∈ P shows that

αg(t1,p)
(x) tpiqj = tpiqj αg(t2,q)

(x)

for all p, i, q, j and for all x ∈ P .
It follows from Lemma 1(b) that there exist unique scalars Cpi

qj such that

tpiqj = 1H(g(t1,p)g
−1
(t2,q)

) Cpi
qj g(t1,p)g

−1
(t2,q)

. (2.11)
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However Hgr 6= Hgs for distinct r, s ∈ I; first deduce from this that the
bimodules Hπ̃i

are disjoint (in the sense of not admitting any non-zero N−N
linear map between them) if t1 6= t2. Thus, we may assume without loss of
generality that t1 = t2 = t (say) in the rest of this proof.

Next, deduce from equation 2.11 that

tpiqj = δpq (Cq)
i
j , (2.12)

for appropriate scalars (Cq)
i
j. (We may and do think of the Cq’s as scalar

dπ1 × dπ2 matrices.)
Using the defining equation

π̃piqj(h) = δp,h·q π
i
j(g(t,p)hg

−1
(t,q)) g(t,p)hg

−1
(t,q) ,

and the expression for tpiqj obtained in equation (2.12), and appealing to
equation (2.9) at an appropriate place in the simplification, we find that
the required equation T π̃2(h) = π̃1(h) T may be re-written in the form of
the matrix equations

Ch·q π2(g(t,h·q) h g
−1
(t,q)) = π1(g(t,h·q) h g

−1
(t,q)) Cq ∀t, q, h.

Since H acts transitively on H/Ht, and since h · 1 = 1 if and only if
h ∈ Ht, we may deduce that all the Cq’s are uniquely determined by C1, and
that consequently, the set of N − N linear self-maps of Hπ̃ is in bijective
correspondence with the set of those matrices C (= C1) ∈ Mdπ1×dπ2

(C)
which satisfy the condition

C π2(g(t,1)hg
−1
(t,1)) = π1(g(t,1)hg

−1
(t,1)) C, ∀ h ∈ Ht ,

or, in other words, since ad(gt)(Ht) = H t,

C π2(h) = π1(h) C ∀ h ∈ H t .

The truth of the assertions (b) and (c) are seen to follow easily. 2

The following propositions are proved in an entirely analogous manner;
in fact, the proofs are, if anything, simpler than the case just treated.
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Proposition 3 (a) Let λ : H → U(dλ,C) be a unitary representation of H.
Then there exists a unique normal *-homomorphism λ̃ : M → M[G:H]dλ

(N)
such that

λ̃rksl (xg) = δr,g·s λ
k
l (grgg

−1
s ) αgr

(x) grgg
−1
s , (2.13)

for all r, s ∈ I, 1 ≤ k, l ≤ dλ.
(b) The ‘standard model’ Hλ̃ (of an N −M bimodule) is irreducible if

and only if the representation λ of H is irreducible.
(c) If λi, i = 1, 2 are inequivalent irreducible unitary representations of

H, then the bimodules Hλ̃i
are inequivalent.

Proposition 4 (a) Let ρ : H → U(dρ,C) be a unitary representation of H.
Then there exists a unique normal *-homomorphism ρ̃ : N → Mdρ

(M) such
that

ρ̃mn (xh) = ρmn (h) xh , (2.14)

for all 1 ≤ m,n ≤ dρ.
(b) The ‘standard model’ Hρ̃ (of an M − N bimodule) is irreducible if

and only if the representation ρ of H is irreducible.
(c) If ρi, i = 1, 2 are inequivalent irreducible unitary representations of

H, then the bimodules Hρ̃i
are inequivalent.

Proposition 5 (a) Let σ : G→ U(dσ,C) be a unitary representation of G.
Then there exists a unique normal *-homomorphism σ̃ : M →Mdσ

(M) such
that

σ̃ab (xg) = σab (g)xg , (2.15)

for all 1 ≤ a, b ≤ dσ.
(b) The ‘standard model’ Hσ̃ (of an M −M bimodule) is irreducible if

and only if the representation σ of G is irreducible.
(c) If σi, i = 1, 2 are inequivalent irreducible unitary representations of

G, then the bimodules Hσ̃i
are inequivalent.

Remark 6 Observe that, in the notation of the preceding Propositions, we
have

dπ̃ = [H : Ht] dπ (2.16)

dλ̃ = [G : H] dλ (2.17)

dρ̃ = dρ (2.18)

dσ̃ = dσ . (2.19)
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3 The fusion rules

We recall - see [2], for instance - some notation and facts about tensor prod-
ucts of bimodules.

Suppose Q1, Q2 and Q3 are II1 factors with separable preduals, and H,
K and L are separable Q1−Q2, Q2−Q3 and Q1−Q3 bimodules respectively.
We assume that these are bifinite in the sense of having finite left and right
dimensions and further assume that these dimensions are all positive integers.

The tensor product of H ⊗Q2 K is described most easily using standard
models, say Hθ for H and Hφ for K where θ : Q2 → Mdθ

(Q1) and φ :
Q3 →Mdφ

(Q2); then a standard model for H⊗Q2 K is given by Hθ⊗φ, where
θ ⊗ φ : Q3 →Mdθdφ

(Q1) is defined by: (θ ⊗ φ)ikjl (x3) = θij(φ
k
l (x3)).

By 〈H⊗Q2K,L〉 we denote the (necessarily finite) dimension of the space
of Q1−Q3 linear maps from L to H⊗Q2 K; of course, when L is irreducible,
this number is just the multiplicity with which L features in the irreducible
decomposition of H⊗Q2 K. By Frobenius reciprocity, calculating the fusion
rules between the four kinds of bimodules defined in Section 2 is reduced to
calculating 〈H⊗Q2 K,L〉 when H is either an M −M bimodule or an N −N
bimodule.

In order to derive the fusion rules for N −N bimodules, it will be conve-
nient to analyse and relate two group actions.

One is an action of H t2 on {p1 : 1 ≤ p1 ≤ kt1} obtained by restricting the
natural action of H on this set.

The other action is that of H on a product of the form {p1 : 1 ≤ p1 ≤
kt1} × {p2 : 1 ≤ p2 ≤ kt2} for fixed t1 and t2; denoting (p1, p2) by p, this
action is defined by

h · q = p ⇔
{

h−1
p2
hhq2 ∈ Ht2 and

h−1
p1
g(t2,p2)hg

−1
(t2,q2)hq1 ∈ Ht1 .

(3.20)

It is easily verified that equation (3.20) does define an H-action.
The facts that we will use about these actions are contained in the fol-

lowing lemma.

Lemma 7 (a) The orbits of the H t2-action on {p1 : 1 ≤ p1 ≤ kt1} are
in bijective correspondence with those of the H-action described by equation
(3.20). A bijection is given by [q1] 7→ [(q1, 1)] where [ · ] stands for “orbit
of”.
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(b) If g(t1,q1)g(t2,q2) ∈ Hg(t3,q3) and h·q = p, then g(t1,p1)g(t2,p2) ∈ Hg(t3,p3)

for p3 = h · q3. In particular, t3 depends only on the H-orbit of q.

Proof: (a) The map [q1] 7→ [(q1, 1)] is easily seen to be well-defined and
injective. Surjectivity follows from the formula (q1, q2) = hq2 · (q1, 1).

(b) Calculation shows that g(t1,p1)g(t2,p2)g
−1
(t3,p3) = hg(t1,q1)g(t2,q2)g

−1
(t3,q3)h

′

with h = ad(gt1)(h
−1
p1
g(t2,p2)hg

−1
(t2,q2)hq1) ∈ H and h′ = ad(gt3)(hq3h

−1hp3) ∈ H.
2

For a group K, we use the symbol K̂ to denote a complete set of inequiv-
alent, irreducible, unitary representations of K.

Proposition 8 Fix t1, t2 such that 1 ≤ ti ≤ n, and let πi ∈ Ĥ ti. Then,

Hπ̃1 ⊗N Hπ̃2
∼=

⊕

q1

⊕

π3

〈π1 ◦ ad(g(t1,q1))|K ⊗ π2|K , π3 ◦ ad(g(t3,p3)g
−1
t2

)|K〉 · Hπ̃3

(3.21)
where the first direct sum is over the representatives q1 of the distinct orbits
of the H t2-action on {p1 : 1 ≤ p1 ≤ kt1}, the second direct sum is over all

π3 ∈ Ĥ t3 where (t3, p3) is determined uniquely by g(t1,q1)gt2 ∈ Hg(t3,p3), and
K = H t2 ∩ ad(g−1

(t1,q1))H
t1.

Proof: It suffices to show that: (i) for a fixed t3 and π3 ∈ Ĥ t3 ,

〈Hπ̃1 ⊗N Hπ̃2 ,Hπ̃3〉 =
∑

q1

〈π1 ◦ ad(g(t1,q1))|K ⊗ π2|K , π3 ◦ ad(g(t3,p3)g
−1
t2

)|K〉

(3.22)
where the sum is over the representatives q1 of the distinct orbits of the action
of H t2 on {p1 : 1 ≤ p1 ≤ kt1} that satisfy g(t1,q1)gt2 ∈ Hg(t3,p3) for some p3

(this equation also serving to define p3); and that (ii) the left dimensions of
the N −N bimodules on both sides of equation (3.21) are equal.

By definition and equations (1.1) and (1.2) the left hand side of equation
(3.22) is the dimension of the solution space of the system

(π̃3)
p3i3
r3k3

(xh) tr3k3q1j1q2j2
= tp3i3r1k1r2k2

(π̃1 ⊗ π̃2)
r1k1r2k2
q1j1q2j2

(xh). (3.23)

These equations are to be solved for the tp3i3q1j1q2j2
∈ N and are to hold for

all x ∈ P , h ∈ H and all p3, i3, q1, j1, q2, j2 in the appropriate ranges. For
notational convenience we will denote tp3i3q1j1q2j2

by tp3i3q j .
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Using Lemma 1(b) when h = 1 shows that there exist scalars Cp3i3
q j such

that tp3i3q j = Cp3i3
q j 1H(g(t3,p3)g

−1
(t2,q2)g

−1
(t1,q1))g(t3,p3)g

−1
(t2,q2)g

−1
(t1,q1). By Ċp3i3

q j denote

Cp3i3
q j 1H(g(t3,p3)g

−1
(t2,q2)g

−1
(t1,q1)).

Substituting this into the system (3.23) for x = 1 and simplifying, we
obtain the matrix equations

π3(g(t3,p3)hg
−1
(t3,r3))Ċ

r3
q = Ċp3

r

∑

r

(π1(g(t1,r1)g(t2,r2)hg
−1
(t2,q2)g

−1
(t1,q1))⊗π2(g(t2,r2)hg

−1
(t2,q2)) )

where r = h · q and r3 = h−1 · p3. These are to hold for all p3, q and h ∈ H.

We now observe that for a fixed q, if g(t1,q1)g(t2,q2) /∈ Hgt3H, then all Ċr3
q

vanish. On the other hand, if g(t1,q1)g(t2,q2) ∈ Hgt3H, then exactly one Ċr3
q

is possibly non-zero and this r3 is determined by g(t1,q1)g(t2,q2) ∈ Hg(t3,r3).
Further, by Lemma 7(b), the H-orbit of q determines which of these cases
will hold.

We need to consider only those q for which there is a possibly non-zero

Ċr3
q and denote this by C̈q.

One more application of Lemma 7(b) gives the matrix system

π3(g(t3,p3)hg
−1
(t3,r3))C̈q = C̈r(π1(g(t1,r1)g(t2,r2)hg

−1
(t2,q2)g

−1
(t1,q1))⊗ π2(g(t2,r2)hg

−1
(t2,q2)))

where again, r = h · q.
Therefore all the C̈q for q in a single H-orbit are determined by any one

of them, say, C̈(q1,1). Since the stabilizer in H of (q1, 1) is easily calculated to

be Ht2 ∩ ad(g−1
t2 hq1)Ht1 , the equations that C̈(q1,1) satisfies are

π3(g(t3,p3)hg
−1
(t3,p3))C̈(q1,1) = C̈(q1,1)π1(g(t1,q1)gt2hg

−1
t2
g−1
(t1,q1))⊗ π2(gt2hg

−1
t2

)

for all h ∈ Ht2 ∩ ad(g−1
t2 hq1)Ht1 . Finally, replacing h by ad(gt2)(h), we get

that C̈(q1,1) intertwines π1 ◦ ad(gt1h
−1
q1

)|K ⊗ π2|K and π3 ◦ ad(g(t3,p3)g
−1
t2 )|K ,

finishing the proof of equation (3.22).
We next need to verify that the left dimensions of the N −N bimodules

on either side of equation (3.21) are equal. On the right side we have

∑

q1

∑

π3

〈π1 ◦ ad(g(t1,q1))|K ⊗ π2|K , π3 ◦ ad(g(t3,p3)g
−1
t2

)|K〉kt3dπ3 . (3.24)
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For a fixed q1, (t3, p3) is determined by g(t1,q1)gt2 ∈ Hg(t3,p3) and the sum over
terms with this q1 is given by

kt3
∑

π3

〈π1 ◦ ad(g(t1,q1)gt2g
−1
(t3,p3))|L ⊗ π2 ◦ ad(gt2g

−1
(t3,p3))|L, π3|L〉dπ3

where L = ad(g(t3,p3)g
−1
t2 )K. By Frobenius reciprocity, this is

kt3
∑

π3
〈IndL↑Ht3{(π1 ◦ ad(g(t1,q1)gt2g

−1
(t3,p3))|L ⊗ π2 ◦ ad(gt2g

−1
(t3,p3))|L}, π3〉dπ3

= kt3 [H
t3 : L]dπ1dπ2 = [H : L]dπ1dπ2 .

As Hπ̃1 ⊗N Hπ̃2 has left dimension kt1kt2dπ1dπ2 , we are reduced to showing
that kt1kt2 =

∑

q1 [H : L]. This holds since the left side is the cardinality of
{p1 : 1 ≤ p1 ≤ kt1} × {p2 : 1 ≤ p2 ≤ kt2} and the right side is the sum of the
orders of the H-orbits by Lemma 7(a).

2

The proofs of the following propositions are omitted. They are similar to
the proof above. We just remark that in Proposition 9 the natural action of
G on I plays a role. This action being transitive, there is no sum over orbit
representatives.

Proposition 9 Fix t so that 1 ≤ t ≤ n and let π ∈ Ĥ t. Let λ1 ∈ Ĥ. Then,

Hπ̃ ⊗N Hλ̃1

∼=
⊕

λ2

< π ⊗ λ1 ◦ ad(g−1
t )|Ht , λ2|Ht > ·Hλ̃2

where the direct sum is over all λ2 ∈ Ĥ.

Proposition 10 For σ1, σ2 ∈ Ĝ we have

Hσ̃1 ⊗M Hσ̃2
∼=

⊕

σ3

< σ1 ⊗ σ2, σ3 > ·Hσ̃3

where the direct sum is over all σ3 ∈ Ĝ.

Proposition 11 For σ ∈ Ĝ and ρ1 ∈ Ĥ we have

Hσ̃ ⊗M Hρ̃1
∼=

⊕

ρ2

< σ|H ⊗ ρ1, ρ2 > ·Hρ̃2

where the direct sum is over all ρ2 ∈ Ĥ.
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We use the fusion rules to identify contragredients of the bimodules of
Section 2. The notation θ for a unitary representation θ of a group K denotes

the contragredient representation (defined by θ
i

j(k) = θij(k)).

Corollary 12 Let 1 ≤ t ≤ n and π ∈ Ĥ t, λ, ρ ∈ Ĥ and σ ∈ Ĝ. Then,
(a) Hπ̃

∼= Hπ̃∗ where π∗ is defined as follows. Consider t∗ defined by
Hgt∗H = Hg−1

t H and suppose that gt∗ = hg−1
t h′. Then, let π∗ ∈ H t∗ be

π ◦ ad(gth
−1).

(b) Hλ̃
∼= Hρ̃ where ρ = λ.

(c) Hρ̃
∼= Hλ̃ where λ = ρ.

(d) Hσ̃
∼= Hσ̃

Proof: We prove (a), the others being, as usual, similar and simpler.
(a) In general, for irreducible N −N bimodules H and K, K ∼= H if and

only if 〈H ⊗N K, L2(N)〉 = 1. For the trivial representation π0 of H1 = H,

we have Hπ̃0
∼= L2(N). Let 1 ≤ t, t∗ ≤ n and π ∈ Ĥ t, π∗ ∈ Ĥ t∗ . It follows

from equation 3.22 that for 〈Hπ̃ ⊗ Hπ̃∗ ,Hπ̃0〉 to be non-zero, there should
exist a q such that 1 ≤ q ≤ kt and g(t,q)gt∗ ∈ H. This uniquely determines t∗
and then q. Suppose that gt∗ = hg−1

t h′. There is only one term in the sum
in equation 3.22 which can be simplified to be 〈π ◦ ad(gth

−1) ⊗ πt∗ , π0|Ht∗ 〉.
This is 1 exactly when π∗ = π ◦ ad(gth

−1). 2

Example 13 Let G be the symmetric group Sn. For 1 ≤ k < n, we regard
Sk as the subgroup of G which fixes each of the letters k + 1, · · · , n. Let
H = Sn−1 (be the subgroup of permutations fixing n). Consider the double
coset decomposition G = Hg1H

∐

Hg2H where g1 = (1) and g2 = (n− 1 n).
Then, H1 = H = H1 and H2 = Sn−2 = H2. In this case the irreducible
N − N bimodules of interest are parametrised by {π : π ∈ Ŝn−1}

∐{ψ : ψ ∈
Ŝn−2}, the irreducible N −M bimodules by {λ : λ ∈ Ŝn−1}, the irreducible
M − N bimodules by {ρ : ρ ∈ Ŝn−1} and the irreducible M −M bimodules
by {σ : σ ∈ Ŝn}. Calculation using Propositions 8 - 10 shows that the fusion
between these is given as follows.

Hπ̃1 ⊗N Hπ̃2
∼= ⊕π3 〈π ⊗ π2, π3〉 · Hπ̃3 ;

Hπ̃ ⊗N Hψ̃1

∼= Hψ̃1
⊗N Hπ̃

∼= ⊕ψ2 〈π|Sn−2 ⊗ ψ1, ψ2〉 · Hψ̃2
;
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Hψ̃1
⊗N Hψ̃2

∼= ⊕π 〈ψ1 ⊗ ψ2, π|Sn−2〉 · Hπ̃

⊕⊕ψ 〈ψ1|Sn−3 ⊗ ψ2|Sn−3 , π|Sn−3〉 · Hψ̃

.

Hπ̃ ⊗N Hλ̃1

∼= ⊕λ2 〈π ⊗ λ1, λ2〉 · Hλ̃2
;

Hψ̃ ⊗N Hλ̃1

∼= ⊕λ2 〈ψ ⊗ λ1|Sn−2 , λ2|Sn−2〉 · Hλ̃2
.

Hσ̃1 ⊗M Hσ̃2
∼= ⊕σ 〈σ1 ⊗ σ2, σ〉 · Hσ̃ .

Hσ̃ ⊗M Hρ̃1
∼= ⊕ρ2 〈σ|Sn−2 ⊗ ρ1, ρ2〉 · Hρ̃2 .

Observe that in this example, the fusion algebra given by the N − N
bimodules is commutative; although, in general, there is no reason why this
should be the case.

4 The intertwiners

We begin this section with a discussion of the possible intertwiners between
the four kinds of bimodules described in S2. (Thus, we use the notations of
Propositions 2, 3, 4 and 5.)

We shall find the following bit of notation convenient in the following
proposition: if Hθ is a ‘standard model’ of a Q1 − Q2 bimodule, and θ is
presented as a map from Q2 into MS(Q1), where S is a set of cardinality dθ,
then we shall write es for the element of Hθ which is the row-vector whose
only non-zero co-ordinate is the identity 1 of Q1 and occurs at the s-th place.

Proposition 14 (a) Let C̃ : Hπ̃ → Hλ̃ be an N −N linear mapping. Then
there exists a unique scalar matrix C ∈Mdπ×dλ

(C) such that

π(h) C = C λ(h) ∀ h ∈ H t , (4.25)

and
C̃(epi) = Ci

k e
(t,p)k (4.26)
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Conversely any scalar matrix C (of the appropriate size) which satisfies
equation (4.25) defines a unique N − N linear mapping C̃ : Hπ̃ → Hλ̃ via
equation (4.26).

Further, if C̃i and Ci are related as above, for i = 1, 2, then the following
conditions are equivalent:

(i) C̃i
∗
C̃j = δij ∀ 1 ≤ i, j ≤ 2, or in words, C̃1 and C̃2 are isometric

N −N linear maps with pairwise orthogonal ranges;
(ii) CiC

∗
j = δij ∀ 1 ≤ i, j ≤ 2.

(b) Let D̃ : Hλ̃ → Hσ̃ be an N −M linear mapping. Then there exists a
unique scalar matrix D ∈Mdλ×dσ

(C) such that

λ(h) D = D σ(h) ∀ h ∈ H , (4.27)

and
D̃(erk) =

∑

r∈I
Dk
a σ

a
b (gr) gr · eb (4.28)

Conversely any scalar matrix D (of the appropriate size) which satisfies
equation (4.27) defines a unique N −M linear mapping D̃ : Hλ̃ → Hσ̃ via
equation (4.28).

Further, if D̃i and Di are related as above, for i = 1, 2, then the following
conditions are equivalent:

(i) D̃i

∗
D̃j = δij ∀ 1 ≤ i, j ≤ 2, or in words, D̃1 and D̃2 are isometric

N −M linear maps with pairwise orthogonal ranges;
(ii) DiD

∗
j = δij ∀ 1 ≤ i, j ≤ 2.

(c) Let Ẽ : Hσ̃ → Hρ̃ be an M −N linear mapping. Then there exists a
unique scalar matrix E ∈Mdσ×dρ

(C) such that

σ(h) E = E ρ(h) ∀ h ∈ H , (4.29)

and
Ẽ(ea) = Ea

m em . (4.30)

Conversely any scalar matrix E (of the appropriate size) which satisfies
equation (4.29) defines a unique M − N linear mapping Ẽ : Hσ̃ → Hρ̃ via
equation (4.30).

Further, if Ẽi and Ei are related as above, for i = 1, 2, then the following
conditions are equivalent:
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(i) ẼiẼj
∗

= δij ∀ 1 ≤ i, j ≤ 2, or in words, Ẽ1 and Ẽ2 are co-isometric
M −N linear maps with pairwise orthogonal initial spaces;

(ii) E∗
iEj = δij ∀ 1 ≤ i, j ≤ 2.

(d) Let F̃ : Hρ̃ → Hπ̃ be an N − N linear mapping. Then there exists a
unique scalar matrix F ∈Mdρ×dπ

(C) such that

ρ(h) F = F (π ◦ ad(gt))(h) ∀ h ∈ Ht , (4.31)

and
F̃ (gr · em) = δr(t,p) (ρ(hp) F )mi epi . (4.32)

Conversely any scalar matrix F (of the appropriate size) which satisfies
equation (4.31) defines a unique N − N linear mapping F̃ : Hρ̃ → Hπ̃ via
equation (4.32).

Further, if F̃i and Fi are related as above, for i = 1, 2, then the following
conditions are equivalent:

(i) F̃iF̃j
∗

= δij ∀ 1 ≤ i, j ≤ 2, or in words, F̃1 and F̃2 are co-isometric
N −N linear maps with pairwise orthogonal initial spaces;

(ii) F ∗
i Fj = δij ∀ 1 ≤ i, j ≤ 2.

Proof: (a) Suppose C̃ : Hπ̃ → Hλ̃ is an N−N linear mapping. Then, by
equations 1.1 and 1.2, there exists a matrix T = ((tpisl)) ∈M[H:Ht] dπ × [G:H] dλ

(N)
such that

(C̃ξ)sl = ξpi · tpisl ,
and

π̃(xh) T = T λ̃(xh) ∀ x ∈ P, h ∈ H . (4.33)

Setting h = 1 in equation (4.33), we find that

αg(t,p)
(x) tpisl = tpisl αgs

(x)

for all p, i, s, l, x. Deduce from Lemma 1 that there exist uniquely determined
scalars γpisl such that

tpisl = γpisl 1H(g(t,p)g
−1
s ) g(t,p)g

−1
s .

Since the gr’s are a system of distinct representatives of the right H-cosets,
we deduce that

tpisl = δ(t,p)
s γpisl . (4.34)
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Setting x = 1 in equation (4.33), and substituting equation (4.34) in the
resulting equation, we obtain

δp,h·q δ
(t,q)
s γqjsl π

i
j(g(t,p)hg

−1
(t,q)) g(t,p)hg

−1
(t,q) = δ(t,p)

r δrh·s γ
pi
rk λ

k
l (grhg

−1
s ) grhg

−1
s

(4.35)
for all p, i, s, l, h.

Notice - thanks to equation (2.9) - that both sides of this equation vanish
unless h · s = (t, p), i.e., unless s = h−1 · (t, p) = (t, h−1 · p).

Thus, equation (4.35) is seen to be equivalent to the requirement

πij(g(t,p)hg
−1
(t,h−1·p)) γ

h−1·p,j
(t,h−1·p),l g(t,p)hg

−1
(t,h−1·p) = γp,i(t,p),k λ

k
l (g(t,p)hg

−1
(t,h−1·p)) g(t,p)hg

−1
(t,h−1·p) .

(4.36)
The above equation is to be satisfied for all possible values of p, i, l, h. If we
introduce the notation

(C(p))
i
k = γp,i(t,p),k ,

and think of C(p) as a dπ × dλ scalar matrix, we can re-write equation (4.36)
more compactly as

π(g(t,p)hg
−1
(t,h−1·p)) C(h−1·p) = C(p) λ(g(t,p)hg

−1
(t,h−1·p)) ∀ p, h . (4.37)

Since H acts transitively on the set of p’s we find that all the C(p)’s are
uniquely determined by C(1) via the equation (4.37); and since the isotropy
of 1 is the subgroup Ht, we find that the only condition on C(1) is that

π(gthg
−1
t ) C(1) = C(1) λ(gthg

−1
t ) ∀ h ∈ Ht,

which is precisely the condition (4.25).
Suppose C(1) satisfies the above condition; note that hq · 1 = q, and

that under the specification p = 1, h = h−1
q , the expression g(t,p)hg

−1
(t,h−1·p)

simplifies to gth
−1
q g−1

(t,q) which is just 1, and consequently equation (4.37)
reduces, under this specification, to C(q) = C(1); and this is valid for all q.
Let us simply write C = C(1).

Now deduce from equation (4.34) that

tpisl =

{

Ci
l if s = (t, p)

0 otherwise
,
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and consequently,

C̃(epi) = ((epi)qj t
qj
sl ) · esl

= Ci
l e

(t,p),l ,

and so the bijective correspondence between the C̃’s and the C’s has been
established.

Suppose, next, that C̃i, i = 1, 2 satisfy condition (a)(i) of this proposition.
It is readily deduced from equation (4.26) that

(C̃∗
i e

sl) = δs(t,p) (C∗
i )
l
j e

pj i = 1, 2, ∀ s, l,

where, of course, (C∗)lj = Cj
l denotes the adjoint matrix. Thus, we find

that

δi1i2 δ
p1,p2 δj1,j2 = 〈C̃∗

i2
C̃i1e

p1j1 , ep2j2〉
= 〈 C̃i1ep1j1 , C̃i2ep2j2〉
= δp1,p2 (Ci1)

j1k (Ci2)
j2k

= δp1,p2 (Ci1C
∗
i2
)j1j2 ,

thereby establishing the validity of (ii).
The implication (ii)⇒ (i) is easy.

The proofs of parts (b) − (d) are entirely similar; we shall say nothing
more about those proofs except that in the case of (d), we should note that
the N − M bimodule Hρ̃, when viewed as an N − N bimodule, is the
(orthogonal) direct sum of the N −N submodules generated by the vectors
gr · em, r ∈ I, 1 ≤ m ≤ dρ. 2

Now consider the collections G(N,N) = {Hπ̃ : π ∈ Ĥ t, 1 ≤ t ≤ n}
(resp., G(N,M) = {Hλ̃ : λ ∈ Ĥ}, resp., G(M,M) = {Hσ̃ : σ ∈ Ĝ}, resp.,

G(M,N) = {Hρ̃ : ρ ∈ Ĥ}) of irreducible N − N (resp., N − M , resp.,
M −M , resp., M −N) bimodules.

We list some consequences of Proposition 14 in the following Corollary
(where we use the preceding notation).

Corollary 15 (a) The multiplicity with which the N − N bimodule Hπ̃

is contained in the bimodule Hλ̃, when the latter is regarded as an N − N
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bimodule, is the multpilicity with which the representation π features in the
representation λ|Ht; thus,

〈Hλ̃ ⊗M ML
2(M)N , Hπ̃〉 = 〈ResH↓Ht λ, π〉 . (4.38)

(b) The multiplicity with which the N −M bimodule Hλ̃ is contained in
the bimodule Hσ̃, when the latter is regarded as an N −M bimodule, is the
multpilicity with which the representation λ features in the representation
σ|H ; thus,

〈 NL2(M)M ⊗M Hσ̃ , Hλ̃〉 = 〈ResG↓H σ, λ〉 . (4.39)

(c) The multiplicity with which the M − N bimodule Hρ̃ is contained in
the bimodule Hσ̃, when the latter is regarded as an M − N bimodule, is the
multpilicity with which the representation ρ features in the representation
σ|H ; thus,

〈Hσ̃ ⊗M ML
2(M)N , Hρ̃〉 = 〈ResG↓H σ, ρ〉 . (4.40)

(d) The multiplicity with which the N − N bimodule Hπ̃ is contained in
the bimodule Hρ̃, when the latter is regarded as an N − N bimodule, is the
multpilicity with which the representation π ◦ ad(gt), of the subgroup Ht,
features in the representation ρ|Ht

; thus,

〈NL2(M)M ⊗M Hρ̃ , Hπ̃〉 = 〈ResH↓Ht
ρ, π ◦ ad(gt)〉 . (4.41)

Remark 16 (1) If π ∼= ⊕mi=1 πi, where πi, i = 1, · · · ,m are unitary
representations of H t, it should be clear that Hπ̃ = ⊕mi=1Hπ̃i

; and there are
three similar remarks corresponding to λ, σ and ρ.

(2) If λ0 denotes the trivial representation of H, it is easily verified that
there is a unique N −M linear (norm-preserving) identification of Hλ̃0

and
L2(M) (regarded as an N −M bimodule). (For r ∈ I, the vector er corre-
sponds to gr under this identification.)

(3) Observe that Frobenius reciprocity yields equivalent versions of each
of the equations (4.38) - (4.41). Thus, for instance, the analogue of (4.41)
is

〈ML2(M)N ⊗N Hπ̃ , Hρ̃〉 = 〈IndHt↑H π ◦ ad(gt), ρ〉 .

Now construct two bipartite graphs by the following specifications: the
first graph - call it Γ̃ - has even vertices indexed by G(N,N) and odd vertices
indexed by G(N,M), and the number of bonds that join the even vertex
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labelled by Hπ̃, where π ∈ Ĥ t, to the odd vertex labelled by Hλ̃, where

λ ∈ Ĥ, is given by the common value of the two sides of equation (4.38);
while the second graph - call it Γ̃′ - has even vertices indexed by G(M,M)
and odd vertices indexed by G(M,N), and the number of bonds that join
the even vertex labelled by Hσ̃, where σ ∈ Ĝ, to the odd vertex labelled by
Hρ̃, where ρ ∈ Ĥ, is given by the common value of the two sides of equation
(4.40).

Let B denote the collection of bimodules which index either vertices of Γ̃
or vertices of Γ̃′. Observe the following facts:

(a) It follows from the analysis of S3 that this collection is ‘closed’ under
formations of tensor-products, when defined, (by which, of course is meant
the following: if Qi ∈ {N,M}, i = 1, 2, 3, if H is a Q1 − Q2 bimodule and
K is a Q2 − Q3 bimodule such that H,K ∈ B, and if L is any irreducible
Q1 −Q3 bimodule such that 〈H⊗Q2 K,L〉 6= 0, then there exists an L1 ∈ B
such that L ∼= L1).

(b) It also follows from the analysis of S3 that B is closed under the
formation of contragredients (in the sense of (a) above).

(c) The collection B contains the irreducible N −M bimodule L2(M).

A moment’s reflection on the conditions (a) - (c) above shows that we
have proved that the principal and dual graphs, respectively, of the inclusion
N ⊂ M are the connected components Γ and Γ′, respectively, of Γ̃ and Γ̃′

which contain Hλ̃0
and Hρ̃0 respectively.

Let K = ∩g∈G gHg−1 denote the largest normal subgroup of G which
is contained in H. Observe the following facts:

(i) K is contained in each H t;
(ii) if G1, G2 are subgroups of G such that K ⊂ G1 ⊂ G2, and if ρ (resp.,

σ) is a unitary representation of G1 (resp., G2) which acts trivially on K,
then so also does IndG1↑G2 ρ (resp., ResG2↓G1 σ).

(ii) λ0 (and ρ0) act trivially on K.
It follows easily from (i) - (iii) above that if B0 denotes those bimodules in

B whose corresponding vertex belongs to Γ or Γ′, and if Hχ̃ ∈ B0, then χ acts
trivially on K; in other words, χ, which is à priori a representation of some
subgroup G0 of G, may actually be regarded as a unitary representation of
G0/K.

20



We now wish to show that all these representations ‘occur’, meaning:

B0 = {Hχ̃ ∈ B : χ(k) = idVχ
∀ k ∈ K }. (4.42)

For this, begin by observing that if θ denotes the permutation represen-
tation of G on I (see eq. (2.7)), then Hρ̃0 ⊗N Hλ̃0

∼= Hθ, where ρ0 = λ0

is as in Remark 16(b). However the representation θ descends to a faithful
and self-contragredient representation of G/K; it follows that every σ ∈ Ĝ
which acts trivially on K will be contained in ⊗nθ for some n > 0, and that
consequently Hσ̃ ∈ B0, as asserted.

5 The connection

Once and for all, fix some choices of irreducible representations of H t, 1 ≤
t ≤ n, of H, and of G. For all possible π ∈ Ĥ t, λ, ρ ∈ Ĥ and σ ∈ Ĝ, define

m(π, λ) = 〈ResH↓Ht λ , π〉
m(λ, σ) = 〈ResG↓H σ , λ〉
m(ρ, σ) = 〈ResG↓H σ , ρ〉
m(π, ρ) = 〈ResH↓Ht

ρ , π ◦ ad(gt)〉 ,

and choose the following collections of matrices with the following properties:
(a) Ci = Ci(π, λ) ∈Mdπ×dλ

(C), 1 ≤ i ≤ m(π, λ) with the property that
π(h)Ci = Ciλ(h) ∀ h ∈ H t and CiC

∗
i′ = δii′1dπ

for all 1 ≤ i, i′ ≤ m(π, λ) -
where 1k denotes the k× k identity matrix; and let C̃i be related to Ci as in
Proposition 14(a), for 1 ≤ i ≤ m(π, λ).

(b) Dj = Dj(λ, σ) ∈ Mdλ×dσ
(C), 1 ≤ j ≤ m(λ, σ), with the property

that λ(h)Dj = Djσ(h) ∀ h ∈ H and DjD
∗
j′ = δjj′1dλ

for all 1 ≤ j, j′ ≤
m(λ, σ); and let D̃j be related to Dj as in Proposition 14(b), for 1 ≤ j ≤
m(λ, σ).

(c) Ek = Ek(σ, ρ) ∈Mdσ×dρ
(C), 1 ≤ k ≤ m(ρ, σ), with the property that

σ(h)Ek = Ekλ(h) ∀ h ∈ H and E∗
kEk′ = δkk′1dρ

for all 1 ≤ k, k′ ≤ m(ρ, σ);

and let Ẽk be related to Ek as in Proposition 14(c), for 1 ≤ k ≤ m(ρ, σ).
(d) Fl = Fl(ρ, π) ∈ Mdρ×dπ

(C), 1 ≤ l ≤ m(π, ρ)) with the property
that ρ(h)Fl = Fl (π ◦ ad(gt))(h) ∀ h ∈ Ht and F ∗

l Fl′ = δll′1dπ
for all

1 ≤ l, l′ ≤ m(π, ρ)); and let F̃l be related to Fl as in Proposition 14(d), for
1 ≤ l ≤ m(π ◦ ad(gt), ρ).
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Given this data/choice of ‘intertwiners’, a cell (in the sense of Ocneanu)
is (in our specific case) just a collection ((π, t), Ci, λ,Dj, σ, Ek, ρ, Fl), where

π ∈ Ĥ t and 1 ≤ t ≤ n, λ, ρ ∈ Ĥ, σ ∈ Ĝ, and 1 ≤ i ≤ m(π, λ), 1 ≤ j ≤
m(λ, σ), 1 ≤ k ≤ m(σ, ρ), and 1 ≤ l ≤ m(π, ρ).

Given a cell as above, it is seen that F̃lẼkD̃jC̃i is an N−N linear self-map
of the irreducible N −N bimodule Hπ̃, and is consequently a scalar multiple
of the identity operator. We shall use the symbol

Ci
λ → (π, t)

Dj ↑ W ↓ Fl
σ ← ρ

Ek

, (5.43)

to denote the value of the scalar so obtained.
The symbol W is in conformity with Ocneanu’s notation for the connec-

tion; in fact, the connection, for the subgroup subfactor, is nothing more
than the assignment of the number depicted by the expression in (5.43)
above to the cell (described by the boundary of this figure). The connec-
tion is determined up to the choice of the labelling of the members of Ĥt, Ĥ
and Ĝ, and the initial choice of the ‘bases of partially isometric intertwiners’
Ci, Dj, Ek, Fl.

For fixed (π, t) and σ, we shall writeW ((π, t), σ) to denote the matrix with
rows indexed by triples (Ci, λ,Dj) (where 1 ≤ i ≤ m(π, λ), 1 ≤ j ≤ m(λ, σ)),
and columns indexed by triples (Ek, ρ, Fl) (where 1 ≤ k ≤ m(σ, ρ), 1 ≤ l ≤
m(π, ρ)), and whose corresponding entry is given by (5.43). It is a fact (and
is one half of the so-called biunitarity condition) that W ((π, t), σ) is a unitary
matrix whenever 〈ResG↓Ht σ, π〉 > 0.

The next step is to identify this connection in our context.

Proposition 17 With the foregoing notation, we have

C D σ(gt) E F =

















C
λ → (π, t)

D ↑ W ↓ F
σ ← ρ

E

















· 1dπ
.
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Proof: Using the notation of Proposition 14, we find that, for all 1 ≤
p ≤ kt, 1 ≤ i ≤ dπ,

(F̃ ẼD̃C̃)(epi) = (F̃ ẼD̃)(Ci
k e

(t,p),k)

= Ci
k(F̃ Ẽ)(Dk

a σ
a
b (g(t,p)) g(t,p) · eb)

= Ci
kD

k
a σ

a
b (g(t,p))F̃ (g(t,p) · Eb

me
m)

= Ci
kD

k
a σ

a
b (g(t,p)) E

b
m (ρ(h(t)

p )F )mj epj

= (C D σ(g(t,p)) E ρ(h(t)
p ) F )ij e

pj .

Notice, now, that

C D σ(g(t,p)) E ρ(h(t)
p ) F = C D σ(gt) σ(h(t)

p )−1 E ρ(h(t)
p ) F

= C D σ(gt) E F ;

since we aleady know that (F̃ ẼD̃C̃) is a scalar operator, this completes the
proof; but we can also directly see that the matrix (C D σ(gt) E F ) is a scalar
matrix; indeed, to see this, it suffices to check that this matrix commutes with
π(h) for all h ∈ H t; so pick such an h, note that g−1

t hgt ∈ Ht ⊂ H, and
compute thus, using the intertwining properties of C,D,E and F :

π(h) (C D σ(gt) E F ) = C D σ(hgt) E F

= C D σ(gt) σ(g−1
t hgt) E F

= C D σ(gt) E ρ(g−1
t hgt) F

= (C D σ(gt) E F ) π(h) ,

as desired. 2

Remark 18 Recall - from the end of the last section - that the irreducible
representations (of the various groups G,H,H t) which label the bimodules fea-
turing in B0 are precisely those that act trivially on the subgroup L = ∩g∈G
gHg−1; in other words, these are precisely those irreducible representaions
that lie in the images of the canonical embeddings of ˆG/L, ˆH/L, ˆH t/L in

Ĝ, Ĥ, Ĥ t. It follows from our description of the connection that the standard
invariants of the two subfactors (P×H/L ⊂ P×G/L) and (P×H ⊂ P×G)
are naturally identifiable with one another. In particular, we may conclude
that

(R ⊂ R×G/L) ∼= (R× L ⊂ R×G) .

Of course, it is possible to also give a direct proof of this assertion.
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6 The example

Throughout this section, the symbol G will denote S4 (the symmetric group
on the four symbols 1,2,3,4), and the symbols H and K will denote the
subgroups defined by equations (1.3) and (1.4) respectively. We define

g1 = (1) , g2 = (14)(23) , g3 = (123) , (6.44)

and note that all the gi’s are even permutations and that {gt : 1 ≤ t ≤ 3} is
simultaneously a system of representatives of the distinct double-cosets of H
as well as of K; thus,

G =
3

∐

t=1

HgtH =
3

∐

t=1

KgtK .

In fact, slightly more is true about this choice of representatives; namely,
g2 normalises H as well as K. Thus, imitating the notation we have been
using so far and writing

Kt = g−1
t Kgt ∩K , Kt = ad(gt)(Kt) ,

we find that
H1 = H2 = H
H3 = K3 = {1}
K1 = K2 = K
H1 = H2 = H
H3 = K3 = {1}
K1 = K2 = K .

We denote the (1-dimensional) irreducible representations of H by the
value they attain on the generator (1234); thus, we write

Ĥ = {1, i, − i, − 1} , (6.45)

and the understanding is that im ( (1234)k) = imk. (Naturally, we use the

same notation for Ĥ t, t = 1, 2; and we simply write 1 for the only (trivial)
irreducible representation of H3.)

We denote the (1-dimensional) irreducible representations of K by or-
dered pairs (which denote the powers of (−1) which correspond to the values
they attain on the generators (12) and (34) respectively; thus, we write

K̂ = {00, 10, 01, 11} , (6.46)
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and the understanding is that (ij) ( (12)m (34)k) = (−1)mi+jk. (Naturally,

we use the same notation for K̂t, t = 1, 2; and for the sake of symmetry, we
use the symbol 00 for the only (trivial) irreducible representation of H3.)

Next, we write
Ŝ4 = {1 , π , ρ , ǫπ , ǫ} ,

where 1 and ǫ denote the trivial and alternating (1-dimensional) representa-
tions, ρ is 2-dimensional, and π and ǫπ are 3-dimensional.

The representation ǫπ is defined by (ǫπ)(g) = ǫ(g) π(g), while we regard
π as the subrepresentation of the natural permutation representation of G on
C4 which is afforded by the orthogonal complement of the constant vector;
since all the gi’s are even permutations, we find, thus, that

π(g1) = ǫπ(g1) =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











|
V (4)⊥

, (6.47)

π(g2) = ǫπ(g2) =











0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0











|
V (4)⊥

, (6.48)

π(g3) = ǫπ(g3) =











0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1











|
V (4)⊥

, (6.49)

where V (4) is the set of vectors (in C4) with all co-ordinates equal.
We shall regard the representation ρ thus: the first thing is to notice

that S3 is a quotient of S4; the convenient way to write the homomor-
phism φ of S4 onto S3 is thus: if g is a transposition, which transposes i
and j, then φ(g) is the transposition (ij) or the transposition (kl), where
{k, l} = {1, 2, 3, 4} \ {i, j}, according as 4 /∈ {i, j} or 4 ∈ {i, j}. As in the
case of π above, the natural permutation representation of S3 on C3 leaves
invariant the subspace V (3) of vectors (in C3) with all co-ordinates equal;
let ψ denote the subrepresentation of this natural representation afforded by
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the subspace V (3)⊥; then ρ = ψ ◦ φ. Since

φ(g1) = φ(g2) = (1), φ(g3) = (123) ,

we thus write:

ρ(g1) = ρ(g2) =







1 0 0
0 1 0
0 0 1







|
V (3)⊥

, ρ(g3) =







0 0 1
1 0 0
0 1 0







|
V (3)⊥

.

In the following discussion, we will find it convenient to refer to Figures
1 and 2; so we pause to make some remarks on how these figures are to
be interpreted. The subfactor R × L ⊂ R × G, where L denotes H or K,
has finite depth, and is consequently completely determined by the canonical
commuting square, viz:

N ′ ∩M2n ⊂ N ′ ∩M2n+1

∪ ∪

M ′ ∩M2n ⊂ M ′ ∩M2n+1

where {Mn} denotes the usual tower of Jones’ basic construction. The in-
clusions of these algebras are described by four Bratteli diagrams; this grand
Bratteli diagram is what is shown in Figures 1 and 2 (for the case L = H
and L = K respectively. The idea is that the vertices in the north-east
(resp., north-west, resp., south-west, resp., south-east) label the minimal
central projections in N ′ ∩M2n+1 (resp., N ′ ∩M2n, resp., M ′ ∩M2n, resp.,
M ′ ∩M2n+1), and the graph contains the data of all the four inclusions.

Next, notice the following pleasant feature of the ‘multiplicity data’ for
restriction between these various groups and subgroups - see Figures 1 and
2: if G1 ⊂ G2 is any one of the inclusions H t ⊂ H, Kt ⊂ K, H ⊂ G or
K ⊂ G, and if χi ∈ Ĝi, i = 1, 2, then 〈ResG2↓G1 χ2, χ1〉 is either 0 or 1.
Consequently, if this multiplicity is 1, then there is, up to multiplying by a
complex scalar of unit modulus, a unique isometric G1-linear map from Vχ1

into Vχ2 .
Using a natural blend of the notation of Proposition 14 and the notation

used in Figures 1 and 2, we explicitly list out, below, a specification of all
pertinent (i.e., non-zero) ‘intertwiners’:
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The intertwiners for the subfactor (R×H ⊂ R×G):

C((1, 1), 1) = C(1, 2), 1) = [1] ;
C((i, 2), i) = C((i, 1), i) = [1] ;

C((−i, 1),−i) = C((−i, 2),−i) = [1] ;
C((−1, 1),−1) = C((−1, 2),−1) = [1] ;

C((1, 3), 1) = C((1, 3), i) = C((1, 3),−i) = C((1, 3),−1) = [1] .

D(1, 1) = D(−1, ǫ) = [1] ;
D(1, ǫπ) = D(−1, π) = 1

2
[1 − 1 1 − 1] ;

D(i, ǫπ) = D(−i, π) = 1
2

[1 − i − 1 i] ;
D(−i, ǫπ) = D(i, π) = 1

2
[1 i − 1 − i] ;

D(1, ρ) = 1√
6

[1 − 2 1] ;

D(−1, ρ) = 1√
2

[1 0 − 1] .

E(1, 1) = E(ǫ,−1) = [1] ;

E(ǫπ, 1) = E(π,−1) = 1
2











1
−1
1
−1











;

E(ǫπ, i) = E(π,−i) = 1
2











1
i
−1
−i











;

E(ǫπ,−i) = E(π, i) = 1
2











1
−i
−1
i











;

E(ρ, 1) = 1√
6







1
−2
1





 ;

E(ρ,−1) = 1√
2







1
0
−1





 ;
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F (1, (1, 1)) = F (1, (1, 2)) = [1] ;
F (−i, (i, 2)) = F (i, (i, 1)) = [1] ;
F (−i, (−i, 1)) = F (i, (−i, 2)) = [1] ;
F (−1, (−1, 1)) = F (−1, (−1, 2)) = [1] ;

F (1, (1, 3)) = F (i, (1, 3)) = F (−i, (1, 3)) = F (−1, (1, 3)) = [1] .

The intertwiners for the subfactor (R×K ⊂ R×G):

C((00, 1), 00) = C(00, 2), 00) = [1] ;
C((10, 1), 10) = C((01, 1), 01) = [i] ;
C((10, 2), 10) = C((01, 2), 01) = [−i] ;
C((11, 1), 11) = C((11, 2), 11) = [1] ;

C((00, 3), 00) = C((00, 3), 10) = C((00, 3), 01) = C((00, 3), 11) = [1] .

D(00, 1) = D(11, ǫ) = [1] ;
D(10, ǫπ) = D(01, π) = 1√

2
[0 0 − i i] ;

D(01, ǫπ) = D(10, π) = 1√
2

[1 − 1 0 0] ;

D(11, ǫπ) = D(00, π) = 1√
8

[(−1− i) (−1− i) (1 + i) (1 + i)] .

D(00, ρ) = 1√
6

[1 1 − 2] ;

D(11, ρ) = 1√
2

[−1 1 0] ;

E(1, 00) = E(ǫ, 11) = [1] ;

E(ǫπ, 10) = E(π, 01) = 1√
2











0
0
−i
i











;

E(ǫπ, 01) = E(π, 10) = 1√
2











1
−1
0
0











;

E(ǫπ, 11) = E(π, 00) = 1√
8











−1 + i
−1 + i
1− i
1− i











;
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E(ρ, 00) = 1√
6







1
1
−2





 ;

E(ρ, 11) = 1√
2







−1
1
0





 ;

F (00, (00, 1)) = F (00, (00, 2)) = [1] ;
F (10, (10, 1)) = F (10, (01, 2)) = [1] ;
F (01, (10, 2)) = F (01, (01, 1)) = [1] ;
F (11, (11, 1)) = F (11, (11, 2)) = [1] ;

F (00, (00, 3)) = F (10, (00, 3)) = F (01, (00, 3)) = F (11, (00, 3)) = [1] .

We have chosen the intertwiners as above with some care; certain numbers
of unit modulus have been specifically chosen and ‘standard’ multipliers have
been multiplied by these numbers, in order that the connections for the
two subfactors turn out to be identical - after we identify the two sets of
bimodules in accordance with the prescription forced by Figures 1 and 2. If
the connections are the same, then the ‘canonical commuting squares’ of the
two subfactors coincide and the subfactors are conjugate, by [6] and [8].

We shall display the connections using the notation discussed in the para-
graph preceding Proposition 17. In writing out the connections, we shall em-
ploy the following conventions: for either subgroup-subfactor, we will list out
the several possible unitary matrices of the form W ((χ, t), ζ) for all ζ ∈ Ĝ
and for 1 ≤ t ≤ 3 and χ a 1-dimensional character of Lt, where L is H or
K depending on which subfactor we are looking at. In either case, (χ, t) will
label one of the vertices in the north-east corner, while ζ will label one of
the vertices in the south-west corner of the corresponding figure (1 for H,
and 2 for K). The rows (rep., columns) of the matrix W ((χ, t), ζ) will be
indexed by vertices in the north-west (resp., south-east) corner which are
simultaneously a neighbour of (χ, t) as well as of ζ.

We first display all thoseW ((χ, t), ζ) which are 1×1 matrices; for instance,
the remarks of the preceding paragraph say that the matrix W ((i, 2), π) has
its unique row (resp., column) indexed by the vertex labelled i (resp., −i)
which is in the north-west (resp., south-east) corner of Figure 1.

W ((1, 1), 1) = W ((00, 1), 1) = [1] ;
W ((1, 1), ǫπ) = W ((00, 1), π) = [1] ;
W ((1, 1), ρ) = W ((00, 1), ρ) = [1] ;
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W ((1, 2), 1) = W ((00, 2), 1) = [1] ;
W ((1, 2), ǫπ) = W ((00, 2), π) = [−1] ;
W ((1, 2), ρ) = W ((00, 2), ρ) = [1] ;

W ((i, 2), ǫπ) = W ((10, 1), π) = [i] ;
W ((i, 2), π) = W ((10, 1), ǫπ) = [−i] ;

W ((i, 1), ǫπ) = W ((10, 2), π) = [1] ;
W ((i, 1), π) = W ((10, 2), ǫπ) = [1] ;

W ((−i, 1), ǫπ) = W ((01, 2), π) = [1] ;
W ((−i, 1), π) = W ((01, 2), ǫπ) = [1] ;

W ((−i, 2), ǫπ) = W ((01, 1), π) = [−i] ;
W ((−i, 2), π) = W ((01, 1), ǫπ) = [i] ;

W ((−1, 1), ρ) = W ((11, 1), ρ) = [1] ;
W ((−1, 1), π) = W ((11, 1), ǫπ) = [1] ;
W ((−1, 1), ǫ) = W ((11, 1), ǫ) = [1] ;

W ((−1, 2), ρ) = W ((11, 2), ρ) = [1] ;
W ((−1, 2), π) = W ((11, 2), ǫπ) = [−1] ;
W ((−1, 2), ǫ) = W ((11, 2), ǫ) = [1] .

In displaying those remaining W ((χ, t), ζ)’s which are unitary matrices
with more than one row and column, we shall adopt the following convention:
we shall ‘border’ the matrix with an extra row and column (at the right and
bottom respectively) whose entry, which will appear inside parentheses, will
indicate the vertex labelling the relevant row or column. The ‘non-trivial’
matrices in the connection are:

W ((1, 3), ǫπ) = 1
2











0 -1-i -1+i (1)
1-i -1 -i (i)
1+i i -1 (-i)
(1) (-i) (i)











,

W ((00, 3), π) = 1
2











0 -1-i -1+i (00)
1-i -1 -i (10)
1+i i -1 (01)
(00) (10) (01)











,
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W ((1, 3), ρ) = 1
2







-1 -
√

3 (1)√
3 -1 (-1)

(1) (-1)





 ,

W ((00, 3), ρ) = 1
2







-1 -
√

3 (00)√
3 -1 (11)

(00) (11)





 ,

W ((1, 3), π) = 1
2











-1 i 1+i (i)
-i -1 1-i (-i)

-1+i -1-i 0 (-1)
(-i) (i) (-1)











,

W ((00, 3), ǫπ) = 1
2











-1 i 1+i (10)
-i -1 1-i (01)

-1+i -1-i 0 (11)
(10) (01) (11)











.

Thus, we see that the two commuting squares become identical when we
make the following identifications:

G(N,N) :

(1, 1) (00, 1)
(1, 2) (00, 2)
(i, 2) (10, 1)
(i, 1) (10, 2)
(1, 3) (00, 3)
(−i, 1) (01, 2)
(−i, 2) (01, 1)
(−1, 1) (11, 1)
(−1, 2) (11, 2)

G(N,M) :

1 00
i 10
−i 01
−1 11

G(M,N) :

1 00
−i 10
i 01
−1 11
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G(M,M) :

for H for K
1 1
ǫπ π
ρ ρ
π ǫπ
ǫ ǫ

.

Remark 19 The above counter-example to Thomsen’s conjecture is ‘small-
est possible’, in the following sense: suppose Hi is a subgroup of a finite group
Gi such that Hi contains no non-trivial normal subgroup of Gi, for i = 1, 2,
and [G1 : H1] = [G2 : H2] ≤ 6, and suppose the subfactors (R×Hi ⊂ R×Gi)
are isomorphic but the subgroups (Hi ⊂ Gi) are non-isomorphic; then after
re-labelling, if necessary, we may deduce that (H1 ⊂ G1) ∼= (H ⊂ S4) and
(H2 ⊂ G2) ∼= (K ⊂ S4). (The way we verified this was with the help of a
list of transitive group actions on small sets that we found in [1].)

In conclusion, we raise the following natural questions:

Questions:

(1) Is there a more transparent group-theoretic description of what it takes
for two pairs Hi ⊂ Gi to satisfy:

(a) Hi contains no non-trivial normal subgroup of Gi, and
(b) (R×H1 ⊂ R×G1) ∼= (R×H2 ⊂ R×G2) ?

(Or, equivalently, is there a non-computational proof of the fact that the
counter-example given here to Thomsen’s question is indeed a counter-example?)

(2) What is the answer to Thomsen’s question, if one requires that the sub-
group H is, in addition to containing no non-normal subgroup of G, also a
maximal subgroup of G (in the sense that there are no non-trivial interme-
diate subgroups (equivalently, subfactors)?

(3) What are some more examples of the sort described in S6?
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Figure 1: The cells for the subgroup H
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Figure 2: The cells for the subgroup K
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