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A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed

by us in an earlier paper, has been used to analyze plane and cylindrical Couette flow.

In this model, the hydrodynamic fields of a classical continuum are supplemented by the

couple stress and the intrinsic angular velocity fields. The balance of angular momen-

tum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat

continuum. As a result, the stress tensor could be asymmetric, and the angular velocity

of a material point may differ from half the local vorticity. An important consequence of

treating the granular medium as a Cosserat continuum is that it incorporates a material

length scale in the model, which is absent in frictional models based on a classical con-

tinuum. Further, the Cosserat model allows determination of the velocity fields uniquely

in viscometric flows, in contrast to classical frictional models. Experiments on viscomet-

ric flows of dense, slowly deforming granular materials indicate that shear is confined

to a narrow region, usually a few grain diameters thick, while the remaining material

is largely undeformed. This feature is captured by the present model, and the velocity
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profile predicted for cylindrical Couette flow is in good agreement with reported data.

When the walls of the Couette cell are smoother than the granular material, the model

predicts that the shear layer thickness is independent of the Couette gap H when the

latter is large compared to the grain diameter dp. When the walls are of the same rough-

ness as the granular material, the model predicts that the shear layer thickness varies as

(H/dp)
1/3 in the limit (H/dp) ≫ 1, for plane shear under gravity and cylindrical Couette

flow.

1. Introduction

The slow flow of densely packed granular materials is a subject of considerable impor-

tance, primarily due to the obvious commercial and technological implications resulting

from a better understanding of granular flows. Granular materials are transported and

processed in a variety of industrial operations, and furthering our knowledge of their

rheology opens up the possibility of improving the design of these processes. The phrase

‘slow flow’ denotes the regime of where the density is high and the deformation rate low,

so that momentum is mainly transferred during sustained contact between the grains,

and the stress generated by grain collisions is insignificant. If we define the ratio of the

stress arising from grain collisions to the total stress, R ≡ ρp d
2
p γ̇

2/N , where ρp and dp

are the density and mean diameter of the grains, γ̇ is the nominal shear rate and N is

the total (normal or shear) stress, the slow flow regime corresponds to R ≪ 1. This is the

case in many terrestrial flows, where gravity consolidates the medium to a state where

sustained frictional contact occurs between the particles.

Experimental observations suggest that the drag force exerted by a granular medium

when it flows slowly past a solid surface is not steady, but fluctuates in time (Budny 1979;
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Tüzün & Nedderman 1985; Munch-Andersen & Askegaard 1993; Nasuno et al. 1998;

Albert et al. 2000). The oscillations diminish in magnitude as the flow velocity increases.

In some cases, the amplitude of the oscillations is of the same order of magnitude as the

mean value. This phenomenon is referred to as stick-slip. The frequency of the oscillations

depends on the relative velocity between the granular material and the surface, and also

on various other factors. In some of the studies cited above, the frequency was in the

range of 0.05 - 100 Hz, and the relative velocity was in the range of 5 µm/s - 10 mm/s.

In this work we do not address the issue of stick-slip; rather we propose a hydrodynamic

model for slow granular flows that can predict only the time averaged values of the stress

and velocity fields. It is assumed that the time-averaging is over a large number of

stick-slip events. A prominent feature of the time averaged stress in slow flow is its rate

independence. For instance, Albert et al. (1999) found the drag force F on a vertical rod

dipped into a rotating bed of glass beads to be independent of the velocity, for velocities

in the range of 0.1 - 1.5 mm/s. Tardos et al. (1998) sheared granular materials in the

annular gap of a vertical Couette cell, and measured the torque required to rotate the

inner cylinder at a constant speed. For speeds in the range of 2.5 - 50 cm/s, which

correspond to nominal shear rates in the range of 2 - 40 s−1, F decreased very slightly

as the shear rate increased; at higher shear rates, F increased with the shear rate.

As a first approximation in modelling the above experiments, we may assume that

the drag force does not vary with the velocity. Within the framework of continuum

mechanics, this is equivalent to the assumption that the constitutive equation relating

the stress tensor to D is unaffected if all components of D are changed by a common

factor. This is termed rate independent behaviour. Rate independent models for slow

flow, which are usually based on concepts in metal plasticity and soil mechanics, have
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used with some success for flow in hoppers and bunkers (Brennen & Pearce 1978; Cleaver

& Nedderman 1993; Michalowski 1987).

However, these models fail for viscometric flows, in which the direction of variation of

the velocity is orthogonal to the direction of flow. Experimental observations of visco-

metric flows, such as flow through vertical channels (Natarajan et al. 1995; Nedderman

& Laohakul 1980) or shear in a cylindrical Couette cell (Tardos et al. 1998) show large

portions of the material not suffering sustained deformation, and shear occurring only

in thin layers (Gudehus & Tejchman 1991; Nedderman & Laohakul 1980). Moreover,

the thickness of the shear layer is influenced by the nature of the boundaries; it is less

when the flowing medium is confined by smooth walls than that in the case of rough

walls (Nedderman & Laohakul 1980). In contrast, conventional plasticity-based models

predict no shear layers (Mohan et al. 1997; Tejchman & Wu 1993), with the entire region

behaving like a rigid block and slipping relative to the walls.

Owing to the occurrence of narrow shear layers, the nominal shear rate differs signif-

icantly from the actual shear rate, making it difficult to interpret rheological data. A

theory that predicts the extent of the locked, or “plug”, region and the velocity field

within the shear layer would therefore be useful.

The inability of frictional models to determine the velocity field in viscometric flows

has been attributed to the absence of a material length scale in their constitutive equa-

tions (Mühlhaus 1986, cited in Mühlhaus & Vardoulakis (1987)). An attempt to correct

this deficiency of the classical frictional models was recently made by Mohan et al. (1999).

They modeled the granular medium as a Cosserat continuum, which includes a material

length scale in the constitutive equations. Cosserat plasticity models have been applied to

problems in granular flow earlier (Mühlhaus 1989; Mühlhaus & Vardoulakis 1987; Tejch-

man & Gudehus 1993; Tejchman & Wu 1993, 1994), but the models in these studies are
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posed in terms of strain increments as they only address unsteady flows, and no results

are reported for steady flow.

In this work, we use the Cosserat model of Mohan et al. (1999) to examine steady

shear between parallel plates and concentric cylinders. Unlike a classical continuum, a

Cosserat continuum involves two additional field variables, namely, the intrinsic angular

velocity vector ω, and the couple stress tensor M. The former represents the local rate

of spin of material elements, and the latter represents the couple per unit area exerted

by the medium. Hence the mass and linear momentum balances must be supplemented

by the angular momentum balance relating the angular velocity vector, the stress tensor

and the couple stress tensor. (In a classical continuum, the angular momentum balance

is identically satisfied, and the angular velocity is equal to half the vorticity.) For steady,

fully developed flow, spatial gradients of M cause σ to be asymmetric. To our knowl-

edge, these effects have not been directly measured in the laboratory so far, and careful

experiments in this direction would be of value. However, the consequences of our model

are easily measurable even in simple viscometric flows, as we shall indicate later.

While there is no direct experimental evidence of stress asymmetry or deviation of

the angular velocity from half of the vorticity, there is, however, sufficient motivation for

treating a granular medium as a Cosserat continuum. In his analysis of the stress in a

fluid composed of diatomic molecules, Dahler (1959) shows that an asymmetric Cauchy

stress can result from the presence of non-central interactions forces between grains.

Grain interactions in slow flows are dominated by frictional forces, which are inherently

non-central. Jenkins et al. (1989) constructed a micro-mechanical model for an assembly

of identical spheres. They found that an asymmetric stress resulted when the distribu-

tion of contact normals was anisotropic. However, they secured symmetry of the stress

tensor by suitably enforcing the rotation of particles. In his simulations of rapid shear of
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rough circular discs between parallel plates (the disks interacted through instantaneous

collisions), Campbell (1993) observed that the stress tensor was asymmetric and that

non-zero couple stresses existed near the walls. Therefore, a frictional Cosserat model

may be an appropriate, and perhaps even the correct description, for slow granular flow.

2. Governing equations

As in a classical continuum, the mass and linear momentum balances are given by

Dρ

Dt
+ ρ∇·u = 0, (2.1)

ρ
Du

Dt
+ ∇·σ − ρ b = 0. (2.2)

Here D/Dt represents the material derivative, u the velocity, ρ ≡ ρp ν is the bulk density

of the medium, ρp is the intrinsic density of the grains, ν is the solids fraction, σ the

Cauchy stress tensor (defined in the compressive sense), and b the body force per unit

mass. As discussed in the preceding section, for a Cosserat continuum these must be

supplemented by the angular momentum balance (Jaunzemis 1967, p. 233), which takes

the form

ρ
D(I ·ω)

Dt
+ ∇·M − ε :σ − ρ ζ = 0. (2.3)

Here I is the intrinsic inertia tensor, ω is the intrinsic angular velocity, M is couple stress,

ε is the alternating tensor and ζ is the body couple. On a plane with unit normal n, the

couple per unit area transmitted to the side towards which n points (by the material on

the other side) is n · M . We follow the commonly used right-hand convention for the

signs of ω and n · M . In general, the distribution of size, shape, and orientation of the

particles is required to determine the inertia tensor I. As the present work is confined to

steady, fully developed flow, the term involving I in (2.3) vanishes.

Constitutive relations for σ and M for slow granular flow were proposed by Mühlhaus
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& Vardoulakis (1987) and Tejchman & Wu (1993) as extensions of the yield conditions

and flow rules used in classical plasticity. Their relations are posed in terms of strains

and strain increments, which they employed to study the temporal development of shear

bands. Here we rewrite these relations in terms of the rate of deformation tensor, to

render them in a form that is appropriate for sustained flow.

2.0.1. Yield condition

A commonly used model for a block sliding on a plane is that the shear force Sf is

proportional to the normal force Nf , the constant of proportionality being the coefficient

of friction µ. When the block does not slide, Sf < µNf . The yield condition is a continuum

analog of this relation. For a classical continuum, it is of the form F (σ, ν) = 0, where

F is a scalar function of the stress tensor σ and the solids fraction ν. As elastic effects

are neglected, the material is rigid if F < 0. If F = 0, either plastic or irrecoverable

deformation occurs, or the material is in a state of incipient yielding. The extended von

Mises yield condition, used in some studies, has F ≡ τ(J2)−Y (J1, ν) where J1 is the first

invariant (i.e. the trace) of σ and J2 is the second invariant of the deviatoric stress tensor

σ′ (see below). To generalise this for a Cosserat continuum, we write τ as a function of

J2 and the couple stress M , as described below.

Following Besdo (1974) (cited in Lippmann (1995)), de Borst (1993), and Tejchman &

Wu (1993), we take the yield condition to be given by

F ≡ τ − Y = 0, (2.4a)

where

τ ≡
(

a1σ
′

ijσ
′

ij + a2σ
′

ijσ
′

ji +
1

(Ldp)
2MijMij

)1/2

, (2.4b)

σ′

ij ≡ σij − (1/3)σkk δij is the deviatoric stress, δij is the Kronecker delta, a1, a2, and

L are material constants, and dp is the grain diameter. de Borst (1993) assumed that
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the yield function Y depends on the mean stress σ ≡ σkk/3 and a hardening parameter

h. Here h is taken as the solids fraction ν, and hence Y = Y (σ, ν). The parameter Ldp

determines the characteristic material length scale, and is perhaps related to the length

of force-chains (Howell et al. 1999).

Only two of the three parameters a1, a2 and L in (2.4b) are independent, because the

third may be absorbed in the definition of Y (σ, ν) (see (2.4a)). Following Mühlhaus &

Vardoulakis (1987) we set a1 + a2 = 1/2, without loss of generality. When M vanishes,

the quantity τ in (2.4b) reduces
√
J2, and hence the extended von Mises yield condition

is recovered.

While it is desirable to determine the parameters independently, neither experiments

nor micro-mechanical models are currently available to guide their choice. However, the

condition τ2 ≥ 0 imposes the bound |a2/a1| ≤ 1, which follows from the result that the

expression for τ2 in (2.4b) is a quadratic form. We retain the value of 10 used by Mohan

et al. (1999) for L, as it nicely fits experimental data for flow down vertical channels,

and also their choice of A ≡ a2/a1 = 1/3. Nevertheless, we explore the sensitivity of the

model predictions to these parameters in §7.

The yield function Y (σ, ν) is usually written in the form Y = Y1(α)σc(ν) sin φ, where

α = σ/σc, and σc(ν) is the mean stress at critical state, which is a state of deformation

at constant density (see, for example, Jackson 1983). The parameter φ is a material

constant called the angle of internal friction. For the problems considered in this paper,

it is shown later that the material is everywhere at critical state, and hence α = 1.

The function Y1(α) may then be set equal to 1 without loss of generality, and the yield

condition reduces to

F = τ − σc(ν) sin φ = 0 ; σ = σc(ν) (2.5)

at a critical state. We expect σc to vanish when the solids fraction is below that of loose
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random packing νmin, when the grains are no longer in sustained contact, and to increase

rapidly as ν approaches the solids fraction at dense random packing, νmax.

However, we simplify the analysis in this work by assuming that the material is in-

compressible. Hence σc is treated as an primitive variable, and an explicit expression for

σc(ν) is not required.

2.0.2. Flow rule

The flow rule relates the rate of deformation tensor to the stress tensor. A commonly

used flow rule in classical frictional models is the plastic potential flow rule, which is

expressed as

Dij ≡ 1

2

(

∂vi

∂xj
+
∂vj

∂xi

)

= λ̇
∂G

∂σji
. (2.6)

Here Dij is the rate of deformation tensor, G(σ, ν) is scalar function called the plastic

potential, and λ̇ is a scalar factor which must be determined as a part of the solution.

As detailed information on the plastic potential G is not usually available, we use the

associated flow rule (Schofield & Wroth 1968, p. 43), for which

G ≡ F = τ − Y. (2.7)

This form for the flow rule, in conjunction with a yield condition defined by (2.4a)-(2.4b),

accounts for density changes accompanying deformation. Together, they constitute a rate-

independent constitutive relation, which is a desirable feature for slow granular flows.

Tejchman & Wu (1993) used the approach of Mühlhaus (1989) to modify (2.6) for a

Cosserat continuum, but posed it in terms of strain increments as they were addressing

unsteady deformation. Because we are interested in sustained flow, we replace the plastic

strain increments used by Tejchman & Wu (1993) by the appropriate deformation rates
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(Mühlhaus 1989), and thereby write the flow rule as

E ≡ ∇v + ε · ω = λ̇
∂F

∂σt , H ≡ ∇ω = λ̇
∂F

∂M t . (2.8a,b)

Here ε is the alternating tensor, and the superscript t indicates the transpose. Equations

(2.8) may be written in Cartesian tensor notation as

Eij =
∂vi

∂xj
+ εijkωk = λ̇

∂F

∂σji
, Hij =

∂ωi

∂xj
= λ̇

∂F

∂Mji
. (2.9a,b)

We note here that Eij is the sum of the rate of deformation tensor Dij and an objective

antisymmetric tensor representing the difference between the spin tensor and the particle

spin −εijkωk. The quantities Eij and Hij are conjugate to the stress σji and the couple

stress Mji, respectively, in the sense that the dissipation rate per unit volume by the

contact forces and couples is given by −(σjiEij +MjiHij) (Mühlhaus 1989).

If M vanishes and σ is symmetric, (2.9) reduces to

Dij = λ̇
∂F

∂σji
. (2.10)

and

εijkωk =
1

2
(
∂vj

∂xi
− ∂vi

∂xj
) ;

∂ωi

∂xj
= 0. (2.11)

Equation (2.10) is identical to the associated flow rule for the classical frictional model

(defined by (2.6) with G = F ). For steady flow, equation (2.11) implies that ω is a

constant, and is equal to half the vorticity. On the other hand, the vorticity need not be

a constant in a classical frictional model. Thus, only some of the features of the latter

are recovered in this special case.

As explained in §10, the most important aspects of our results, i.e. the ability of the

model to predict the velocity fields in viscometric flows and the dependence of the shear

layer thickness on the properties of the material and the flow cell, are not specific to the

particular forms of the constitutive relation chosen above, but have greater validity. The
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forms of the yield condition and flow rule we have chosen above serve to illustrate the

importance of Cosserat effects in slow granular flows.

The application of the above Cosserat model to flow in vertical channels has been

described in Mohan et al. (1999). Here we consider two other viscometric flows: (i) plane

shear, and (ii) cylindrical Couette flow. As rheological measurements are usually made

in these geometries, it is useful to develop models for these cases.

3. Application to plane shear

Consider steady, fully developed flow between horizontal walls which are separated by

a gap H (see figure 1). The upper wall moves in the positive x direction with a constant

speed V , the lower wall is stationary, and a constant compressive normal stress N is

applied to the upper wall. (For the case of zero gravity, considered in section 5.1, the

bottom wall is also subjected to a compressive normal stress of magnitude N .) Typically

in an experiment, the initial gap, before the walls are set in motion, is fixed, at say H0.

Owing to dilation and compaction during shearing, this can change to a different value

H once steady flow is established.

The velocity fields are of the form

vx = vx(y) , vy = 0 , vz = 0 ,

ωx = 0 , ωy = 0 , ωz = ωz(y) ,

(3.1)

and all the stresses are assumed to depend only on the y− coordinate. Equations (3.1)

and (2.1) imply that Dρ/Dt = 0. Hence the material is at a critical state, and the yield

condition is given by (2.5).

The mass balance (2.1) is identically satisfied, and the x− and y− components of the

linear momentum balance (2.2) reduce to

dσyx

dy
= 0 ,

dσyy

dy
= −ρ g. (3.2a,b)
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As there is no externally imposed body couple, the z− component of the angular mo-

mentum balance reduces to

dMyz

dy
+ σxy − σyx = 0. (3.3)

The diagonal components of Eij are zero, and hence the flow rule (2.9) implies that

0 =
λ̇

6τ
(2σ′

xx − σ′

yy − σ′

zz), (3.4a)

0 =
λ̇

6τ
(2σ′

yy − σ′

xx − σ′

zz), (3.4b)

0 =
λ̇

6τ
(2σ′

zz − σ′

xx − σ′

yy). (3.4c)

As σ′

ij = σij − σδij , we have σ′

xx + σ′

yy + σ′

zz = 0. Hence, (3.4) imply equality of the

normal stresses,

σxx = σyy = σzz = σ = σc(ν). (3.5)

¿From (3.1) and (2.9), we have

Exz = Ezx = Eyz = Ezy = 0,

which imply that all the shear stresses except σxy and σyx vanish. Similarly, all the couple

stresses except Myz vanish. Hence the yield condition (2.4a) reduces to

τ2 = a1(σ
2
xy + σ2

yx) + 2a2σxyσyx +
M2

yz

(Ldp)
2 = (σc sinφ)2. (3.6)

The remaining equations of the flow rule (2.9) are

Exy =
dvx

dy
+ ωz =

λ̇

τ
(a1σyx + a2σxy) , (3.7)

Eyx = −ωz =
λ̇

τ
(a1σxy + a2σyx) , (3.8)

Hzy =
dωz

dy
=
λ̇

τ

Myz

(Ldp)
2 . (3.9)
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Eliminating λ̇ from (3.7) - (3.9), we get

dvx

dy
= − (A+ 1)(σxy + σyx)ωz

σxy +Aσyx
, (3.10)

dωz

dy
= − ωz

(Ldp)
2

2(A+ 1)m

(σxy +Aσyx)
. (3.11)

Equations (3.2), (3.3), (3.6), and (3.10) – (3.11) constitute the governing equations for

plane shear. They may be cast in dimensionless form by introducing the dimensionless

variables

ξ =
y
H , u = vx

V , σij =
σij

N ,

m = 1
L
√

2(A+ 1)

Myz

(Ndp)
, and ω = ωz H

V .

(3.12)

The governing equations now take the form

dσyx

dξ
= 0, (3.13)

dσyy

dξ
+Bν = 0, (3.14)

ε α
dm

dξ
+

1

2(A+ 1)
(σxy − σyx) = 0, (3.15)

(σ2
xy + σ2

yx) + 2Aσxyσyx + 4(A+ 1)2m2 − 2(A+ 1)(σc sinφ)2 = 0, (3.16)

du

dξ
+

(A+ 1)(σxy + σyx)ω

σxy +Aσyx
= 0, (3.17)

εα
dω

dξ
+

2(A+ 1)mω

(σxy +Aσyx)
= 0. (3.18)

where ε ≡ dp/H , B ≡ ρpgH/N is ratio of the gravitational head at the base to the

applied normal stress on the top plate, and α ≡ L/
√

2(A+ 1).

The yield condition (3.16) may be solved for σxy to get

σxy = −Aσyx+
√

(A2 − 1)σ2
yx + 2(A+ 1)σ2

csin
2φ− 4(A+ 1)2m2 (3.19)

where σc = σc/N .
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4. Boundary Conditions

Equations (3.13) - (3.19) require five boundary conditions. We first consider boundary

conditions for the linear and angular momentum balances (3.13)-(3.15). The first is the

specification of the normal stress N acting on the upper wall, i.e.

σyy(1) = 1. (4.1)

If the material slips relative to a wall, we use the usual friction boundary condition

(Brennen & Pearce 1978, Nedderman 1992, p. 41),

−σyx/σyy = tan δ, (4.2)

where δ, the angle of wall friction, is a property of the wall and the granular material. This

is an approximate time-averaged boundary condition and is not expected to capture rapid

events such as stick-slip. For the special case of shear in the absence of gravity between

identical walls, (4.2) applies on both walls, which is equivalent to specifying (4.2) at one

wall and m(ξ = 1/2) = 0, as elaborated in §5.1. We therefore have the requisite number

of boundary conditions for (3.13)-(3.15).

As discussed in Kaza (1982)and Nedderman (1992, p. 161), the classical frictional

model suggests that tan δ ≤ sinφ. A “fully rough” wall is defined as one for which the

angle of wall friction satisfies

tan δ = sinφ. (4.3)

Physically we may try to realize this by coating the wall with a monolayer of the granular

material. In some experiments involving walls coated with sand, polystyrene beads, and

glass beads, the measured values of δ were found to be within 1◦ of the values predicted

by (4.3) (Kaza 1982). However, (4.3) should not be taken too seriously, as it rests on

assumptions which are difficult to verify. Moreover, it is well known that grains do not
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pack as densely near a solid boundary as in the bulk; hence it is reasonable to suppose

that a fully rough wall is an idealization that is difficult to achieve practically.

When the material does not slip relative to a wall, (as is the case in most of the

problems considered in §5), friction is not fully mobilized and an alternative to (4.2)

must be specified. One choice is to specify the value of m (= mw) at the wall. In this

work, we use the condition

σxy = σyx (4.4)

at a wall where the material does not slip relative to it. This is equivalent to specifying

mw, as it can then be expressed in terms of σyx using (4.4) and the yield condition (3.16).

Equation (4.4) was motivated by an expectation that Cosserat effects such as the stress

asymmetry would vanish outside the shear layer. However, the results presented later do

not support this conjecture. Fortunately, the velocity profile is relatively insensitive to

the value of mw, as discussed in section 5.

We now consider boundary conditions for the flow rule (3.17)-(3.18). If the material

slips relative to a boundary, we assume as in our earlier work (Mohan et al. 1999) that

v − vw = −Kdp n×ω, (4.5)

where K is a dimensionless constant which reflects the roughness of the wall, n is the

unit normal at the wall (pointing into the granular material) and vw is the linear velocity

of the wall. This boundary condition relates the angular velocity of the material adjacent

to the wall to the slip velocity. It was introduced by Tejchman & Gudehus (1993) and

Tejchman & Wu (1993), who formulated it in terms of displacement and rotation. Here

we use an equivalent form in terms of velocity and angular velocity.

An explanation of this condition was provided by Mohan et al. (1999), which we repeat

here for the sake of completeness. If we consider a single spherical particle moving past
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a stationary wall, the linear velocity v′ of its center of mass and the angular velocity ω′

about an axis passing through the center of mass are related by v′ = (dp/2)n×ω′ if the

particle rolls without slipping. Conversely, if the particle slides without rolling, ω′ = 0

but v′ is arbitrary. For the boundary condition (4.5), these limits correspond to K → 1/2

and K → ∞, respectively. If the particles are rough or angular, rolling and slipping may

be altogether absent, reducing the lower limit of K to zero. In a continuum description,

we expect that K will decrease as the wall roughness increases. It is reasonable to expect

thatK and the angle of wall friction δ are related, as they both characterize the roughness

of the wall. However, as data bearing on this is lacking, both K and δ will be treated as

independent parameters.

For the present problem, (4.5) may be written in dimensionless form as

u(1) = 1 + εKω(1) (4.6)

if (4.2) holds at the upper wall, and

u(0) = −εKω(0) (4.7)

if (4.2) holds at the lower wall.

If the material does not slip relative to the upper wall, we have

u(1) = 1. (4.8)

Similarly, if the material does not slip relative to the lower wall, we have

u(0) = 0 (4.9)
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5. Results for plane shear

We first consider the case of zero gravity, for which the parameter B in (3.14) is set to

zero. We then consider finite gravity, for which B determines the gravitational overburden

at the base in comparison with the applied normal load.

5.1. Shear in the absence of gravity

We first consider the case where the two walls are identical, i.e. δL = δ, where δL and

δ are the angles of wall friction of the lower and upper walls, respectively. The domain

is symmetric about the mid-plane ξ = 1/2, and (3.13)-(3.18) admit a solution wherein

the stresses are symmetric and m is antisymmetric about ξ = 1/2. Similarly u − 1/2 is

antisymmetric while the angular velocity ω is symmetric about ξ = 1/2. It then suffices

to solve the problem in the half-domain 1/2 ≤ ξ ≤ 1, with boundary conditions

m(1/2) = 0, u(1/2) = 1/2. (5.1)

and (4.1), (4.2)( at ξ = 1), and (4.6). The momentum balances (3.13) and (3.14) and the

boundary conditions (4.1) and (4.2) imply that

σyy = 1 and σyx = − tan δ. (5.2)

Hence (3.5) implies that the solids fraction ν is also a constant, and its value is given by

σc(ν) = 1. Substituting for σxy from (3.19) into the angular momentum balance (3.15)

yields the following equation for the couple stress:

α ε
dm

dξ
= −a∓

√

b2 −m2 (5.3)

where

a =
tan δ

2
and b = (a2 +

1

2(A+ 1)
(sin2 φ− tan2 δ))1/2. (5.4)

This must be solved for m in the region 1/2 ≤ ξ ≤ 1 with boundary condition (5.1). The

shear stress σxy then follows from (3.19).
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Let us consider the choice of signs in the right-hand side of (5.3). If the negative sign

is used in front of the square root, dm/dξ < 0. Equation (5.1) implies that |m| increases

as ξ increases from 1/2. Therefore, for small enough values of ε, m = −b at some value

of ξ = ξr < 1, and hence a real valued solution cannot be constructed for ξ > ξr. We

therefore choose the positive sign in front of the square root. This leads to an acceptable

solution because, though dm/ξ ≥ 0, the structure of (5.3) ensures that |m| ≤
√
b2 − a2.

This choice of roots is used throughout the paper. It corresponds to the use of the negative

sign in front of the square root in (3.19).

The differential equation (5.3) may be integrated by making the substitution m =

b sinψ, to get

ξ − 1/2

α ε
= ψ +

a√
b2 − a2

ln

(

c+ tan(ψ/2)

c− tan(ψ/2)

)

(5.5)

with c =
√
b− a/

√
b+ a. The velocity fields must be determined by integrating (3.17)

and (3.18) numerically subject to the boundary conditions (4.6) and the second of (5.1).

Before discussing results for arbitrary values of the angle of wall friction δ, it is in-

structive to consider the special case of a fully rough wall, defined by (4.3), for which

b = a. In this case, (5.3) and the first of (5.1) imply that m and all its derivatives with

respect to ξ vanish at ξ = 1/2, resulting in m(ξ) = 0. It then follows that

σxy = σyx = − tan δ, (5.6a)

ω = ω1 (constant), and (5.6b)

u = 1/2− 2ω1(ξ − 1/2). (5.6c)

Using the boundary condition (4.6), we get

ω1 = −1/(2 + 2εK). (5.6d)

As expected from the direction of motion of the upper plate (figure 1), ω1 is negative,



Frictional Cosserat model for slow granular flows 19

implying that the particles rotate about the z− axis in the clockwise direction. If the gap

width is large compared to the particle diameter, ε → 0 and therefore u(1) → 1. Thus

the velocity slip at the walls vanishes when thick layers are sheared.

Thus the couple stress vanishes, the stress tensor is symmetric, and the angular velocity

equal to half the vorticity, all of which are features of a classical continuum. However, the

classical frictional model does not lead to a unique velocity profile, unlike the Cosserat

model. As noted earlier, this is because the two models are not identical for this special

case.

For tan δ < sinφ, rather than determining m by solving (5.5) and then the velocity

fields by integrating (3.17)-(3.18), all the fields are obtained by integrating (3.15) - (3.18),

after substituting for σxy from (3.19). This is done because such a numerical solution

procedure is anyway required for plane shear under gravity and cylindrical Couette flow,

as analytical solutions could not be constructed for these problems. The system of equa-

tions were solved numerically using the lsoda routine (Petzold 1983) from the odepack

library in netlib. Our numerical procedure was verified by favourable comparison with

the analytical solution given by (5.5), and the asymptotic solutions in §A (see figures 4

and 7).

Figure 2 shows the velocity and stress profiles for different values of the angle of wall

friction δ. The velocity profile is linear for the case of fully rough walls (tan δ = sinφ),

and becomes curved as the difference between sinφ and tan δ increases. Correspondingly,

the thickness of the shearing layer decreases. Panels (b) and (c) illustrate the deviation

of ω from half the vorticity and the stress asymmetry, respectively. The choice of signs

in (3.19) forces σyx − σxy to be non-negative.

When the angle of friction of the lower wall (δL) differs from that of the upper wall (δ),

the solution is no longer symmetric about ξ = 1/2. We assume without loss of generality
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that δL > δ. If the friction boundary condition (4.2) is satisfied at the upper wall,

−σyx/σyy = tan δ < tan δL. Hence (4.2) is not satisfied at the lower wall. Conversely, if

(4.2) is satisfied at the lower wall, −σyx/σyy = tan δL > tan δ at the upper wall. As this

is not permissible within the present framework, (4.2) is used at the upper wall, along

with the velocity boundary condition (4.6). At the lower wall we use boundary condition

(4.4) for the couple stress, and the no-slip condition (4.9).

Equations (3.15) and (4.4) imply that dm/dξ = 0 at ξ = 0. It then follows from (5.3)

that all higher derivatives of m vanish at ξ = 0. Hence, the couple stress is constant and

the shear stresses are equal,

m = m0 = (b2 − a2)1/2, (5.7a)

σxy = σyx = − tan δ. (5.7b)

Substitution of these in (3.17) yields

du

dξ
= −2ω.

Thus, the stress tensor is symmetric and the angular velocity is equal to half the vorticity,

as in a classical continuum. However, the couple stress is finite and the velocity field is

uniquely determined, in contrast to the predictions of a classical frictional model. The

velocity fields are readily obtained by integrating (3.17)-(3.18), resulting in

ω = ω1 exp(−k(1 − ξ)/ε), (5.8a)

u =
−2ω1ε

k
(exp(−k(1 − ξ)/ε) − exp(−k/ε)), (5.8b)

where

ω1 = − ε−1(2/k +K − 2e−k/ε/k)−1 (5.8c)
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is the angular velocity at the upper wall and

k = m0/(α a). (5.8d)

We see from equation (5.8b) that the shear layer thickness increases with the roughness

of the upper wall. The velocity profile becomes progressively linear as tan δ → sinφ (or

k → 0). However, the velocity profile in this limit still differs from the uniformly shearing

solution given in (5.6c), owing to the difference in velocity boundary conditions at the

lower wall in the two cases. Profiles of the velocity and angular velocity (which equals half

the vorticity) fields are shown in figure 3 for three values of δ. The increasing localization

of shear near the upper wall as δ decreases is apparent. In this case, the velocity slip

at the upper wall is nonzero in the limit ε → 0. This is in contrast to the case of shear

between fully rough walls, where the velocity slip vanishes in this limit.

When the Couette gap is large compared to the grain size, i.e. ε≪ 1, an approximate

solution may be obtained by an asymptotic analysis, described in Appendix §A. For shear

between identical walls, the couple stress is constant and the Cauchy stress is symmetric,

i.e.

m = m0 = (b2 − a2)1/2, σxy = σyx = − tan δ, (5.9a,b)

except in a boundary layer of thickness ∼ O(ε) near ξ = 1/2. In the boundary layer, m

decreases from m0 to zero at ξ = 1/2, but this variation has no effect on the velocity

fields (see §A.0.1). There is no boundary layer when one of the walls is rougher. The

leading order velocity fields for the two cases, given in (A 3) and (A 4), may be combined

and written as,

ω =
−(1 − u0)

ε(K + 2/k)
exp (−k(1 − ξ)/ε) , (5.9c)

u− u0 =
(1 − u0)2/k

(K + 2/k)
exp (−k(1 − ξ)/ε) . (5.9d)

Here u0 is the reference velocity, equal to 1/2 (the velocity at the symmetry axis) for
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shear between identical walls, and zero (the velocity of the lower wall) for a rougher

lower wall. The rapid decay of ω and u with distance from the wall is apparent. Equation

(5.9) is not valid when the walls are fully rough, as we have assumed in its derivation

that k ≫ ε (see §A.0.1); as stated earlier, all Cosserat effects vanish and the material

shears uniformly in the gap when the walls are fully rough. The asymptotic solution

for the velocity fields (5.9c-d) agrees well with the numerical solution for shear between

identical walls and for the case of a rougher lower wall (figure 4). The dependence of the

shear layer thickness on ε is discussed in §8.

As discussed in §4, we do not have rigourous basis for the boundary condition (4.4) for

the case of a rougher lower wall. A study of the sensitivity of the model predictions to

varying the boundary condition is therefore in order. The imposition of any condition for

the angular momentum at the lower wall is equivalent to specifying the value of the couple

stress there. In particular, the boundary condition (4.4) is equivalent to m(0) = m0,

where m0 is defined by (5.7a). For the shear stress σxy to be real, (5.3) implies that

the maximum value m(0) can take is b, defined in (5.4); for ω and the velocity gradient

to increase in magnitude with distance from the lower wall (as is physically reasonable)

the flow rule (3.17)-(3.18) dictates that the minimum value m(0) can take is zero. As

shown in figure 5, the value of m(0) has a negligible effect on the velocity profile. The

reason for this result is that the couple stress approaches a common asymptote as ξ → 1

for all values of m(0) (see also §A.0.2). As the velocity and angular velocity fields decay

exponentially with distance from the upper wall, with a decay length set by the couple

stress near the upper wall, the boundary condition for m(0) is largely unimportant in

determining the velocity fields.
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5.2. Shear in a gravitational field

Let us first consider the case where both walls have the same roughness, so that δL = δ.

Equations (3.13) and (3.14) imply

σyx = constant,
dσyy

dξ
= −B ν. (5.10)

Hence the ratio |σyx|/σyy decreases with distance from the upper wall, and (4.2) cannot

be satisfied at the lower wall if it holds at the upper wall. Therefore, for the same reasons

given in §5.1 (for the case δ < δL), the boundary conditions are (4.1), (4.2) and (4.6) at

the upper wall (ξ = 1), and (4.4) and (4.9) at the lower wall (ξ = 0).

As the normal stress σyy increases with distance from the upper wall, (3.5) implies

that the solids fraction ν also increases. However, in the regime of high solids fraction,

a moderate change in σc causes only a small change in ν. As gravitational compaction

alone is usually sufficient to bring the solids fraction to a level close to maximum packing,

we treat the material as incompressible, and the mean stress at critical state σc as an

independent field. This approximation is used only to simplify the analysis; the variation

in the body force can be easily be accounted for.

Figure 6 shows results for shear between fully rough walls under gravity, for four values

of the parameter B. The solution for B = 0 corresponds to the uniform shear solution in

the absence of gravity. As B increases, the velocity profile becomes curved, and shear is

localized in a thin layer adjacent to the upper wall for large B. While the couple stress

increases with distance from the upper wall, other Cosserat effects, such as the difference

between ω and half the vorticity and the asymmetry in the Cauchy stress are maximum

at the upper wall.

For large Couette gap, the asymptotic analysis in §A.0.2 provides an approximate

solution. If the walls are not fully rough, the leading order solution for the velocity fields
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is identical to that for gravity-free shear, given by (5.9) with u0 = 0. If the walls are fully

rough, there is a boundary layer of thickness ∼ ε2/3 near the upper wall within which

m deviates from m0. Consequently, the shear layer is thinner than in the zero gravity

case(see §8). The leading order asymptotic solution for the couple stress and velocity

fields are compared with the numerical solution in figure 7, showing good agreement. As

a small value of ε has been used, the slip velocity at the upper wall is negligible.

If δL is sufficiently smaller than δ, the friction boundary condition (4.2) can be satisfied

at the lower wall. Assuming that the density of the material remains constant across the

layer (see above), it is seen that (4.2) holds at the lower wall if tan δL ≤ tan δ/(1 +Bν),

and at the upper wall if tan δL ≥ tan δ/(1+Bν). The shear layer is adjacent to the lower

wall in the former case, and adjacent to the upper wall (as in figure 6.

6. Cylindrical Couette flow

The cylindrical Couette cell is a common device for making rheological measurements.

The material is confined between two vertical coaxial cylinders of radii Ri and Ri +H .

Typically, the inner cylinder is rotated at constant speed, while the outer cylinder is kept

stationary.

Using the cylindrical coordinates indicated in figure 8, the velocity field for steady

axisymmetric flow is assumed to be of the form

vr = 0, vz = 0, vθ = vθ(r). (6.1)

The only non-vanishing component of the vorticity is in the z- direction, and we expect

the same for the intrinsic angular velocity,

ωr = ωθ = 0, ωz = ωz(r). (6.2)

As in the case of plane shear (see §3), the diagonal components of (2.8) imply equality
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of normal stresses,

σrr = σθθ = σzz = σc(ν) (6.3)

It also follows from the flow rule (2.8) that all shear stresses except σrθ and σθr vanish,

and all couple stresses except Mrz vanish.

We note as an interesting aside that, as σrz = 0, there is no shear stress in the vertical

direction on the walls of the Couette cell, regardless of either the wall roughness or the

height of the material in the cell. In contrast, it is well known that the shear stress at

the walls supports a part of the weight of a static granular column, leading to the so-

called Janssen saturation of the stress with distance from the upper surface (Janssen

1895; Nedderman 1992, p. 84). While clear evidence as to whether or not this feature is

preserved during flow is lacking, the data of Tardos et al. (1998) appear to be inconsistent

with the Janssen solution. Nevertheless, measurements of σrz in cylindrical Couette flow

have not been reported in the literature, and such measurements would provide a valuable

check on the model predictions.

We introduce the dimensionless variables

u = vθ
Vi
, ω = ωzH

Vi
, ξ = r −Ri

H , ζ = z
H ,

σij =
σij

ρp g H
, σc = σc

ρp gH
, m = 1

L
√

2(A+ 1)

Mrz
ρp gHdp

,

(6.4)

where Ri and Vi are the radius and the velocity of the inner cylinder, respectively. The

yield condition (2.4a) then reduces to

(σ2
rθ + σ2

θr) + 2Aσθrσrθ + 4(A+ 1)2m2 = 2(A+ 1)(σc sinφ)2. (6.5)

As in §3, the remaining components of the flow rule, after elimination of the factor
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λ̇/τ , yield

du

dξ
− u

(Ri + ξ)
= −(ω +

u

(Ri + ξ)
)
(A+ 1) (σθr + σrθ)

(σθr +Aσrθ)
, (6.6)

εα
dω

dξ
= −(ω +

u

(Ri + ξ)
)

2(A+ 1)m

(σθr +Aσrθ)
, (6.7)

which determine the variation of the velocity fields u and ω. Here, Ri ≡ Ri/H , and

ε ≡ dp/H is the ratio of the particle diameter to the Couette gap. An important point

to note is that we must seek a solution in which the couple stress is negative, so the

magnitude of ω (and the vorticity) decrease with distance from the inner cylinder, as is

physically reasonable.

The mass balance is identically satisfied, and the balances of linear and angular mo-

mentum assume the form

∂σc(ν)

∂ξ
=

C ν u2

(1 + ξ/Ri)
, (6.8)

∂σrθ

∂ξ
+
σrθ + σθr

(Ri + ξ)
= 0, (6.9)

∂σc(ν)

∂ζ
= −ν, (6.10)

ε

(

∂m

∂ξ
+

m

(Ri + ξ)

)

= σrθ − σθr, (6.11)

where C = V 2
i /(Rig) is the Froude number. Note that (6.9) differs from form given in

most books on fluid mechanics, where the symmetry of the stress tensor is implicitly

assumed.

We now show that the forms assumed for the velocity and angular velocity fields in

(6.1)-(6.2) lead to an inconsistency. Equations (6.8) and (6.10) imply that ν = ν(ξ, ζ).

Hence the yield condition (6.5) and the momentum balance (6.9) imply that σrθ, σθr, and

therefore the right-hand sides of (6.6) and (6.7), depend on ξ and ζ. However, their left-

hand sides have been assumed to depend only on ξ. Thus it appears that we must relax

some of the assumptions made above by allowing variation of u and ω with ζ, i.e. in
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the vertical direction, and also to allow a non-zero ωr. This however leads to a large

set of coupled partial differential equations whose solution appears to be a formidable

task. This is contrary to our purpose of developing simple solutions that bring out the

qualitative features of our model. However, it is possible construct a simple approximate

solution, as described below.

For slow flows, the centripetal acceleration is small compared to the acceleration due

to gravity, i.e. C ≪ 1. We may therefore seek a solution as a regular perturbation in

C, i.e. m = m(0) + Cm(1) + C2m(2) + . . . . For C ≪ 1, the exact solution does not

differ significantly from the leading order solution of O(C0), except near the ends of the

Couette cell where additional boundary conditions have to be satisfied. We therefore

determine only the leading order solution below, leaving the higher order corrections to

a later investigation.

At O(C0), it follows from (6.8) that σc is not a function of the radial position ξ, and

hence σc = −ν ζ (the normal stress vanishes at the upper free surface). When this is

substituted in the equations (6.6) and (6.7) to determine the velocity fields, there is no

longer an inconsistency, and hence the simple forms of the velocity fields assumed in

(6.1)-(6.2) are valid; in other words, when scaled by the hydrostatic head, the stress is

independent of ζ. We now replace the definitions of the dimensionless stress and couple

stress in (6.4) by the following:

σij =
σij

ρp g H σc
, m =

Mrz

ρp g H σc dp L
√

2(A+ 1)
. (6.12)

Equations (6.9) and (6.10) remain unchanged even after the above definitions. We note

that our analysis is not applicable at the free surface, where the stresses vanish. To

simplify the analysis, we assume as in §5.2 that the material is incompressible and treat

σc as an independent field.

Consider the case where both walls have the same roughness. Referring to figure 8,
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σrθ < 0 at the inner cylinder (ξ = 0). If it is assumed that σθr has the same sign

as σrθ, (6.9) implies that σrθ decreases in magnitude as ξ increases. (Our results are

consistent with this assumption.) As (6.8) and (6.12) imply that σrr is a constant, the

ratio |σrθ|/σrr decreases with distance from the inner cylinder. Therefore, the friction

boundary condition applies at the inner cylinder, but cannot be satisfied at the outer

cylinder. This situation is identical to that at the lower wall for the case of plane shear

under gravity. We therefore follow the arguments outlined in §5.2 and adopt boundary

conditions

σrθ = σθr, u = 0 (6.13)

at the outer cylinder (ξ = 1). At the inner cylinder (ξ = 0), we use the friction and slip

boundary conditions

σrθ = − tan δ, u = −1 − εKω, (6.14)

where we have the inner cylinder rotating in the anti-clockwise direction (see figure 8). In

the limit Ri → ∞, the first of (6.14) holds at the outer cylinder also. Hence the velocity

boundary condition u = εKω is applied at the outer wall. This corresponds to plane

shear between walls of equal roughness in the absence of gravity, discussed in §5.1.

The governing equations (6.5)-(6.11), with boundary conditions (6.13)-(6.14), are inte-

grated using the procedure described in §5.1. The stress and velocity profiles for the case

of fully rough walls are presented in figure 9 for four values of Ri. As expected, we recover

the uniformly shearing solution for plane shear in the limit Ri → ∞. The localization

of shear near the inner cylinder increases as Ri decreases. Though the magnitude of the

couple stress is maximum at the outer cylinder, the asymmetry of the Cauchy stress and

the deviation of ω from half the vorticity are maximum at the inner cylinder.

The solution for large Couette gap is provided by the asymptotic analysis in §A.0.3.
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The leading order solution is the same as in plane shear (with or without gravity) when

the walls are not fully rough. If the walls are fully rough, the solution is similar in form to

that for plane shear under gravity: the couple stress rises to m0 within a boundary layer

of thickness ∼ ε2/3 near the inner cylinder, and remains at m0 outside the boundary

layer. The velocity fields are determined by the couple stress within the boundary layer,

and are independent of the wall roughness. The leading order asymptotic solution for the

velocity fields is compared with the numerical solution for fully rough walls in figure 7.

6.1. Comparison with experimental data

Experimental measurements of the velocity profile in cylindrical Couette flow of granular

materials have recently been reported by Mueth et al. (2000) and Bocquet et al. (2000).

Mueth et al. (2000) used mustard and poppy seeds and obtained the velocity profiles using

magnetic resonance imaging. Bocquet et al. (2000) used glass beads and measured the

velocity profile by video imaging of the upper surface of the granular column; they also

applied upward aeration across the granular column, and observed that it has negligible

effect on the velocity profile. From the data reported in their papers, we have determined

the parameter R, defined in §1, to be in the range 6×10−9− 10−3 for the experiments of

Mueth et al. (2000), and 7×10−9− 2×10−4 for that of Bocquet et al. (2000). The Froude

number C, defined below (6.11), for the two studies was in the range 10−6 − 6 × 10−2

and 2× 10−6 − 2× 10−2, respectively. As R and C are both small for these studies, it is

appropriate to compare our model predictions with their data. Both find that the shape

of the velocity profile is independent of the rotation rate of the inner cylinder, which, of

course, is also a feature of our model.

The predictions of the velocity profile using our Cosserat model are compared with

the data of Mueth et al. (2000) in figure 10 and with the data of Bocquet et al. (2000)

in figure 11. In both studies, the inner and outer cylinders were coated with a layer of
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particles; we have therefore taken the walls to be at the outer edges of the glued layers

for the purpose of comparison. Neither of the studies has reported the angle of internal

friction of the material they used. For mustard seeds, Tüzün & Nedderman (1985) report

it to be in the range 23-25◦, and we have used φ = 25◦ for our calculations. Data on

this property is lacking for the more angular and rough poppy seeds, and we have taken

the value of 31◦. For glass beads, we have used the value of φ = 28.5◦ reported by

Nott (1991). The value of K was set by matching the wall slip velocity to the reported

values, yielding K = 0.65 for mustard seeds, and zero for poppy seeds and glass beads.

No attempt was made to determine the best-fit values of L and A, and the values used

so far in the paper have been retained, viz. L = 10, A = 1/3. The values of ε and Ri,

determined from reported values of the mean grain diameter and the dimensions of the

Couette cell are: ε = 0.15, 0.058, and 0.067 for mustard, poppy, and glass, respectively,

and Ri = 2.29, 1.89, and 4.25 in the same order.

The dot-dash lines in figures 10 and 11 are model predictions assuming fully rough

walls (tan δ = sinφ), and the solid lines are predictions for δ roughly 2◦ lower than

tan−1(sinφ). We find that the latter fits the data better, in agreement with our argument

in §5.1 that a fully rough wall may be difficult to achieve practically. It is clear that there

is, in general, good agreement between the model predictions and the data. Though our

model underestimates the velocity for glass beads (figure 11), we must bear in mind

that Bocquet et al. (2000) made their measurements at the upper free surface, where the

velocity is expected to be higher than in the bulk. Moreover, we have only made plausible

guesses for almost all the material properties, and have not attempted to achieve a better

fit by adjusting the parameters.

Our model predicts only a small increase in the solids fraction with distance from the

inner cylinder, while the data of Mueth et al. (2000) suggests a substantial variation. In
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spite of this difference, the predicted velocity profiles are in good agreement with their

data. Thus it appears that the velocity field is relatively insensitive to the dilation of the

granular medium.

7. Parameter sensitivity of model predictions

The properties of the material and the boundaries in the Cosserat model are char-

acterized by the angles of internal friction φ, the angles of wall friction δL and δ, the

parameters A ≡ a2/a1 and L occurring in the yield condition (2.4b), and the parameter

K that determines the extent of slip at a boundary in the boundary condition (4.5). The

significance of the angles of friction is well understood; their physical meaning remains

the same as in classical plasticity models. We now consider the sensitivity of the model

to the parameters A and K, which are associated with Cosserat effects in our model. To

this end, we consider the problem of plane shear under gravity, and explore the effect of

varying these parameters.

As discussed in §2.0.1, A can assume values only in the range (-1,1). However, solutions

may not exist for all negative values of A within this range, as illustrated in figure 12.

For the set of values of the other parameters used here, the shear stress σxy assumes

complex values when A < −0.57, and hence a physically acceptable solution does not

exist. Solutions exist for −0.57 < A < 1, and figure 12 shows that in this range of values,

there is not much variation in the velocity profile and even less of the couple stress.

The parameter K determines the extent of velocity slip at the boundaries, but does

not affect the stress and couple stress fields. As shown in figure 13, there is no slip at the

upper wall when K = 0, and the velocity slip increases with K. The important point is

that the shapes of the velocity profiles are unaltered by varying K, a result which is also

shown clearly by the asymptotic solutions in §A.
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8. Shear layer thickness

Though our model assumes that the granular material yields everywhere within the

Couette gap, the results in the preceding two sections show the velocity decaying rapidly

with distance from the upper wall for plane shear (with the exception of gravity-free shear

between fully rough walls), and from the inner cylinder for cylindrical Couette flow. In

the experiments of Mueth et al. (2000) and Bocquet et al. (2000), grain motion is not

detectable beyond a distance of a few particle diameters from the wall. It is therefore

useful to define the dimensionless shear layer thickness ∆ as the distance, in terms of

particle diameters, from the upper wall (or the inner cylinder) at which the velocity

decays to a small fraction f of the wall velocity,

(u(1 − ε∆) − u0) = f (u(1) − u0) for plane shear, (8.1a)

(u(ε∆) − u0) = f (u(0) − u0) for cylindrical Couette flow. (8.1b)

The reference velocity u0 is equal to zero, except in the case of gravity-free plane shear

between identical walls, where it is 1/2 (the velocity at the center). We set f = 0.05, as

in earlier studies, and determine the shear layer thickness as a function of the Couette

gap, or equivalently, ε. While ∆ must in general be determined numerically, an analytical

expression can be obtained in the limit of large Couette gap (ε→ 0), as discussed below.

In most practical instances of granular flow, the size of the vessel is much larger than

the grain size. It is therefore useful to determine the dependence of the shear layer

thickness ∆ on the system size in the limit ε→ 0. In our earlier work on flow in vertical

channels (Mohan et al. 1999), we showed that in the limit of small ε, ∆ is independent

of ε, except in the singular case of a fully rough wall (tan δ = sinφ), when it grows as

ǫ−1/3. Here, we apply the same approach to determine the asymptotic behaviour of ∆

for plane and cylindrical Couette flow.
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For each of the problems considered, the leading order asymptotic solutions for the

stress and velocity fields are given in the appendix. These suffice to determine the shear

layer thickness. The details of the asymptotic analysis are given in §A, and the solutions

are used here to determine the shear layer thickness.

When the walls are not fully rough, i.e. tan δ < sinφ, the leading order linear velocity

fields for plane shear and cylindrical Couette flow may be written in the common form

(5.9d) (see eqns. A 3b and A4b), where the reference velocity u0 is as defined below (8.1).

The shear layer thickness can now be determined using (5.9d) and (8.1),

∆ = − ln(f)/k =
2.996L tanδ

2(sin2 φ− tan2 δ)1/2
. (8.2)

Thus, we find ∆ to be independent of the Couette gap when the latter is large compared

to particle size (i.e. ε ≪ 1). A feature observed in some experiments is that the shear

layer thickness decreases as the wall becomes smoother (Nedderman & Laohakul 1980),

and this too is captured by (8.2).

We note that the shear layer thickness increases as tan δ approaches sinφ. In the precise

limit of fully rough walls, the solution was already given in §5.1 for plane shear in the

absence of gravity, showing that shear rate is equal throughout the gap, and therefore

∆ = (1 − u0)(1 − f)ε−1. Thus, the parameter L does not determine the thickness of

the shear layer when the walls are fully rough, in contrast to the case of non-fully rough

walls. In the former case, the couple stress vanishes, and hence the governing equations

do not involve L.

For shear under gravity and cylindrical Couette flow, the material does not shear

uniformly for fully rough walls, and the asymptotic velocity profile (5.9d) is not valid

in region of thickness ∼ ε2/3 near the upper wall and inner cylinder, respectively. A

uniformly valid solution is found by rescaling ξ and m in this “inner” region, as shown
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in §A.0.2 and §A.0.3, and the leading order velocity profile then assumes the form

u = 1 − I(ξ̂)/I(∞). (8.3)

where I(ξ̂) ≡ (Ai(0))−2
∫ ξ̂

0 (Ai(z))2dz. Here Ai(x) is the Airy function, and the rescaled

independent variable is

ξ̂ = (1 − ξ) ε−2/3

(

L2

2Bν

)

−1/3

for plane shear under gravity, and

ξ̂ = ξ ε−2/3

(

L2Ri
4

)

−1/3

for cylindrical Couette flow.

(8.4)

The value of ξ̂ at which (8.1) holds is found to be 1.275, resulting in the following

expression for the shear layer thickness:

∆ = 1.275 ε−1/3

(

L2

2Bν

)1/3

for plane shear under gravity, (8.5a)

∆ = 1.275 ε−1/3

(

L2Ri

4

)1/3

for cylindrical Couette flow. (8.5b)

Thus, ∆ grows as the one-third power of the ratio of the Couette gap to grain size when

the walls are fully rough. In contrast, ∆ is independent of the Couette gap (cf 8.2) when

the walls are not fully rough. It also grows as (Bν)−1/3, in plane shear under gravity, as

the gravitational body force is reduced, but the above asymptotic analysis is not valid

when Bν ∼ ε. In the limit B = 0, which corresponds to plane shear without gravity, the

solution in §5.1 shows a linear velocity profile, and therefore ∆ = (1 − u0)(1 − f)ε−1.

Similarly ∆ grows as (Ri)
1/3, in cylindrical Couette flow, as the radius of the inner

cylinder increases, and approaches (1 − u0)(1 − f)ε−1 in the limit Ri → ∞.

The variation of ∆ with ε is shown in figure 14 for plane and cylindrical Couette flow;

panel (a) shows the results for non-fully rough walls and panel (b) for fully rough walls.

The symbols are the numerical results obtained by the procedure described in §5-6, and

the lines are the asymptotic solutions. For non-fully rough walls, the shear layer thickness

for all the four problems converges to the common asymptote of ∆ ≈ 17.67 as ε→ 0, as
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shown in figure 14a. For shear between fully rough walls, the numerical solutions for ∆

asymptote to the forms given by (8.5) as ε→ 0.

9. Other models

Models for the shear of dense granular materials have also been proposed recently by

Savage (1998) and Bocquet et al. (2000). Here we briefly discuss some aspects of their

models.

9.1. The model of Savage (1998)

In a recent paper, Savage (1998) proposed a model that attempts to merge the critical

state theory for quasistatic flows with the results from kinetic theory for rapid flows,

with the stated primary aim of predicting the behaviour of transitional and rapid flows.

The model starts with a yield condition and an associated flow rule (as in this work), but

Savage argues that the rate of deformation tensor D at any location fluctuates in time,

with a standard deviation ǫ. The mean stress tensor 〈σ〉 is determined by computing

its average with respect to a Gaussian distribution of deformation rates. In the limit

|〈Dij〉| ≪ ǫ, whereDij is a component of D, a Newtonian constitutive relation is obtained

for 〈σ〉, with the shear viscosity given by σcA/ǫ, where σc is the frictional mean stress at

a critical state and A is a material constant. In order to obtain a theory which resembles

kinetic theories for rapid flow, it is assumed that σc may be replaced by σc1(ν)+σc2(ν, T ).

Here σc1 is the frictional mean stress, σc2 is the mean stress obtained from kinetic theory,

and T is the grain temperature or equivalently, the kinetic energy of velocity fluctuations.

To proceed further, it is assumed that ǫ is proportional to
√
T , and the proportionality

constant is determined by matching the form obtained for large values of T with the

corresponding kinetic theory result.

The idea of accounting for fluctuations in the deformation rate appears to have merit,
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but we find the following aspects of the model unconvincing. (i) The physical origin of

large fluctuations in the velocity gradients relative to the mean velocity gradients is not

clear. Data bearing on this issue do not appear to be available in the literature. (ii)

Even though the constitutive relations are derived by assuming that |〈Dij〉| ≪ ǫ, this

ratio turns out to be O(1) in the examples discussed in Savage (1998). Thus the theory

is applied beyond its range of validity. As noted by Savage (1998), some of the kinetic

constitutive equations also suffer from this defect when applied to plane shear. (iii) As

the velocity gradients are decomposed into mean values and fluctuations, it appears that

the inertial terms, which involve products of velocity fluctuations, may contribute non-

zero terms to the averaged momentum balances. Such terms have been omitted in the

analysis. (iv) The solution of bounded flow problems requires the specification of the

grain temperature at the boundaries, which is usually unknown a priori ; realistically one

would like to determine the temperature as part of the solution.

9.2. The model of Bocquet et al. (2000)

This is a minor variant of the high density kinetic theory of Haff (1983), though Bocquet

et al. (2000) have arrived at the high density limit using the kinetic theory of Jenkins

& Savage (1983). The only change the authors have made is in proposing a modified

expression for the shear viscosity; this gives a better fit for their data of the grain tem-

perature as a function of the shear rate. Making some simplifying assumptions about the

form of the temperature profile, they determine the velocity profile with three adjustable

parameters. It is shown that the profile provides a good fit to their data for shear in a

cylindrical Couette cell (see figure 11). However, their solution is derived for plane shear,

whereas the data they compare with (and achieve a good fit) is for cylindrical Couette

flow.

More importantly, it seems likely that the underlying assumptions of kinetic theory,
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such a molecular chaos and instantaneous binary collisions will break down in the limit of

small deformation rate and high solids fraction. Therefore, as in the case of Savage’s model

discussed above, it appears that the theory has been used beyond its range of validity.

Even if one were to just view the high density kinetic theory as a phenomenological model,

its applicability to slow granular flow is suspect as it does not yield a rate-independent

stress for small deformation rates.

10. Summary and conclusions

We have shown that our frictional Cosserat model for slow granular flows captures the

formation of thin shear layers in viscometric flows. The principal features of our contin-

uum model are: (1) the presence of a couple stress field, which is a result of tangential

frictional forces between grains; (2) an angular velocity field which is not necessarily

determined by the local vorticity; (3) solution of the balance of angular momentum, in

addition to the balances of mass and linear momentum; (4) the extension of the yield

condition and flow rule used in classical plasticity to incorporate the couple stress and

the angular velocity. By including these features, we incorporate a microscopic length

scale in our model, which determines the thickness of the shear layer.

For plane shear in the absence of gravity, we have considered two cases: in the first, the

two walls are of equal roughness, and in the second, the upper wall is smoother. In the

former, for which the shear rate is symmetric about the mid plane, we find that Cosserat

effects (a finite couple stress, asymmetry of the Cauchy stress tensor and deviation of

the angular velocity from half the vorticity) are maximum near the solid boundaries,

and decay with distance from the boundaries. In the second case, the couple stress is

finite everywhere in the gap, but other Cosserat effects are absent. In both cases, the

velocity fields decay rapidly with distance from the upper wall if the Couette gap is large
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compared to the grain size. If the roughness of the granular medium is exactly equal to

that of the wall, it shears uniformly in the entire gap.

For shear between walls of equal roughness in a gravitational field (and in cylindrical

Couette flow), the couple stress is finite throughout the Couette gap, but other Cosserat

effects are present only in the shear layer near the upper wall (inner cylinder). Here

too the velocity and angular velocities decay rapidly with distance from the upper wall

(inner cylinder). While experimental measurements of the couple stress or asymmetry in

the Cauchy stress have not been reported, our predictions are in good agreement with

the velocity measurements reported recently by Mueth et al. (2000) and Bocquet et al.

(2000).

If the wall roughness is less than that of the granular medium (i.e. tan δ < sinφ), the

shear layer thickness ∆ increases with the Couette gap, but reaches an asymptotic value

independent of the Couette gap in the limit H/dp → ∞ (H and dp are the Couette gap

and grain diameter, respectively). Further, ∆ decreases when the angle of wall friction δ

is reduced, and vanishes when the wall is perfectly smooth, in qualitative agreement with

available experimental data. In the singular case of fully rough walls (tan δ = sinφ), the

material shears uniformly over the entire Couette gap for plane shear in the absence of

gravity; for plane shear under gravity or cylindrical Couette flow, ∆ increases with the

Couette gap as (H/dp)
1/3, and does not depend on φ.

Many of the above predictions regarding the behaviour of ∆ have so far not been

confirmed experimentally. We believe that these are important issues to be probed in

future experimental investigations, as they will serve to distinguish between existing

models for slow granular flows. Another prediction we make, also requiring experimental

verification, is that the shear layer is located near the lower wall (outer cylinder) if it
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is sufficiently smoother than the upper wall (inner cylinder), and the material elsewhere

suffers little deformation.

While the predictions of our model are for the particular forms of the constitutive

relations (viz. the yield condition and the flow rule) and the boundary conditions we have

chosen, we believe that the main qualitative features of our results have a general validity.

For instance, the yield condition (2.4a) is a modification of the extended von Mises yield

condition, a relation between the first and second invariants of σ; by incorporating the

couple stress in this relation, we introduce a microscopic length scale naturally into

the constitutive relations. Any other yield condition, such as that proposed by Lade &

Duncan (1975) (extended to allow critical states) which involves also the third invariant,

could also be modified in the same spirit, and the qualitative effect would be the same:

the microscopic length scale will set the length scale for the thickness of the shear layer.

In cylindrical Couette flow, our model predicts a small increase in the solids fraction

(depending on the magnitude of the Froude number C) as we move towards the outer

cylinder. This increase, however, is substantially smaller than what was observed in the

experiments of Mueth et al. (2000). This defect may perhaps be corrected by incorporat-

ing elastic effects in the model, which is a direction worthy of further study. For example,

Tejchman & Gudehus (2001) have found that the use of a Cosserat model based on hy-

poplasticity permits the density to vary across the shear layer. Nevertheless, we believe

that our model is a natural extension of classical plasticity models for slow granular flows.

While the models of Bocquet et al. (2000) and Savage (1998) also attempt to explain

thin shear layers, they do not yield a rate independent stress, which has shown to be

an important characteristic of slow flows. In any case, further experiments are required

to assess the performance of our model and others in various flow problems, before

attempting to decide which model, if any, is more realistic.



40 L. S. Mohan, K. Kesava Rao and P. R. Nott

Appendix A. Asymptotic solution for small ε

To determine the asymptotic behaviour for small ε, we seek a perturbation solution of

the form

m = m(0) + εm(1) + ε2m(2) + . . . (A 1)

for the couple stress, and similarly for the other fields. For each of the problems con-

sidered, we derive only the leading order solutions of O(ε0) for the stress and velocity

fields, as they suffice to determine the shear layer thickness. However, we ensure that

the asymptotic expansion is uniformly valid by checking that the ratio m(1)/m(0) is O(1)

everywhere in the domain 0 < ξ < 1.

A.0.1. Plane shear in the absence of gravity

On substituting (A 1) in (5.3), we find that the leading order solution for the stresses

are

σ(0)
xy = σyx = − tan δ, (A 2a)

m(0) = m0 ≡
√

b2 − a2, (A 2b)

and the solutions at all higher orders in ε vanish. The constants a and b are defined in

(5.4). This asymptotic solution is valid only in the outer region ξ− 1/2 ≫ ε; in the inner

region (ξ− 1/2) ∼ ε, m deviates from m0 to satisfy the first of (5.1), as evident from the

exact solution (5.5). For fully rough walls, m0 = 0, and hence (A 2) is a uniformly valid

solution as it satisfies the boundary condition m(1/2) = 0.

The ω and u fields in the outer region are obtained from (3.17)-(3.18) and (A2),

yielding

ω =
−1/2

ε(K + 2/k)
exp (−k(1 − ξ)/ε) , (A 3a)

u =
1

2

(

1 +
2/k

(K + 2/k)
exp (−k(1 − ξ)/ε)

)

, (A 3b)
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where k is defined in (5.8d). Thus, the linear and angular velocities decay rapidly with

distance from the walls. The variation of m within the inner region near ξ = 1/2 has

little influence on the velocity and fields, as they are negligibly small within this region.

When the two walls are of different roughness, the exact solution is given in §5.1. The

couple stress is constant, m = m0, regardless of ε, and the solutions for ω and u given in

(5.8b) reduce in the asymptotic limit to

ω =
−1

ε(K + 2/k)
exp (−k(1 − ξ)/ε) (A 4a)

u =
2/k

(K + 2/k)
exp (−k(1 − ξ)/ε) (A 4b)

It should be noted that if the couple stress at the lower wall is changed by replacing

(4.4) with an alternative boundary condition (see §4), the asymptotic solution for m in

the outer region ξ ≫ ε will still be m = m0, but the solution in the inner region ξ ∼ ε

will be different. However, the velocity fields are affected only by the couple stress in the

outer region, as they decay rapidly with distance from the upper wall, and therefore the

boundary condition for m at ξ = 0 does not influence the velocity profile in the limit

ε→ 0.

A.0.2. Plane shear under gravity

An equation for the couple stress, similar to (5.3) for zero gravity, can be obtained by

combining the yield condition and the angular momentum balance, to get

α ε
dm

dξ
= −a+

(

b2 + c2
[

(1 +Bν(1 − ξ))2 − 1
]

−m2
)1/2

, (A 5)

where c2 = sin2 φ/(2A+ 2), and a and b are defined in (5.4).

Substituting (A 1) in (A 5), the solution at the first two orders in ε is

m(0) =
(

m2
0 + c2

[

(1 +Bν(1 − ξ))2 − 1
] )1/2

, (A 6a)

m(1) =
a c2α

m(0)2

[

B2ν2(1 − ξ) +Bν
]

, (A 6b)
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with m0 defined in (A 2b). Unlike in §A.0.1, the expression for m(0) above is valid in

the entire domain 0 < ξ < 1, as it satisfies the boundary condition (4.4) at the lower

wall. To determine if the expansion is uniformly valid, we inspect the ratio εm(1)/m(0).

When tan δ < sinφ, the ratio is O(ε). Thus the above asymptotic expansion is uniformly

valid when the walls are not fully rough. The leading order solutions for the velocity and

angular velocity, obtained by integrating (3.17) and (3.18) are,

ω(0) = ω1 exp

(

−k
ε

∫ 1

ξ

(

1 + (
c

m0
)2
[

(1 +Bν(1 − ξ′))2 − 1
]

)1/2

dξ′

)

, (A 7a)

u(0) = −2

∫ ξ

0

ω(ξ′)dξ′, (A 7b)

where ω1 = ω(1) and k is defined in (5.8d). To simplify the above expressions, we antic-

ipate the rapid decay of the velocity within a region of thickness O(ε) from the upper

wall, substitute ξ = (1− ξ)/ε and expand the above expressions in ε. Retaining only the

leading order terms for consistency, we get expressions for the velocity fields which are

identical to (A 4), the latter corresponding to shear in the absence of gravity.

For the singular case of fully rough walls (tan δ = sinφ), m(0)(1) = 0. Hence the

asymptotic expansion (A 6) is not valid in a region near the upper wall where (1 − ξ) ∼

ε2/3, because the ratio εm(1)/m(0) is O(1) within this region. Noting that the scaling

for the latter is exactly what we obtained for flow through a vertical channel (Mohan

et al. 1999), we follow the same procedure to determine a uniformly valid asymptotic

expansion in the entire domain 0 < ξ < 1.

To determine the solution within the inner region near the upper wall, we follow the

prescription of Van Dyke (1964, p. 104) and introduce the following rescaled variables

ξ̂ = (1 − ξ) ε−2/3

(

L2

2Bν

)−1/3

, m̂ = mε−1/3(4aαBνc2)−1/3, (A 8)

and seek a solution a solution of the form m̂ = m̂(0) + f(ε)m̂(1) + . . . . Upon substituting
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the above in (A 5), we get at leading order

−dm̂(0)

dξ̂
+ (m̂(0))2 − ξ̂ = 0. (A 9)

This is a Riccati equation, whose solution can be written in terms of the Airy functions

(Bender & Orszag 1984, p. 20, 569),

m̂(0) = − d

dξ̂
ln
(

c1Ai(ξ̂) + c2Bi(ξ̂)
)

. (A 10)

where Ai(ξ̂) and Bi(ξ̂) are the two independent Airy functions and c1 and c2 are constants

of integration. The constants are determined by matching the inner and outer solutions

in an overlap region, as suggested by Van Dyke (1964, p. 105). Upon writing the outer

solution ( A 6a) in terms of the inner variable ξ̂ and expanding for small ε, we determine

the leading order term to be (4aαBνc2)1/3ε1/3 ξ̂1/2. This must match with the leading

order outer expansion of the inner solution, which is

−(4aαBνc2)1/3 ε1/3 ξ̂1/2 if c1 = 0, and (4aαBνc2)1/3 ε1/3 ξ̂1/2 if c2 = 0. (A 11)

Hence c2 = 0 and the solution at leading order in the inner region is

m(0) = −ε1/3 (4aαBνc2)1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂)), (A 12)

from which we may derive the uniformly valid (additive) composite solution in the entire

domain,

m(0) = c
(

[1 +Bν(1 − ξ)]2 − 1
)1/2 − (A 13)

ε1/3 (4aαBνc2)1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂)) − (2Bνc2(1 − ξ))1/2.

In the same manner, the uniformly valid solutions for the velocity fields at the leading

order are found to be

ω = ω1

(

Ai(ξ̂)

Ai(0)

)2

, (A 14a)

u− u1 = ε2/3

(

L2

2Bν

)1/3

2ω1I(ξ̂), (A 14b)
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where ω1 = ω(1), u1 = u(1) and

I(ξ̂) ≡ (Ai(0))−2

∫ ξ̂

0

(Ai(z))2dz. (A 15)

Enforcing the boundary condition u(0) = 0 and the velocity boundary condition (4.6) at

the upper wall, the angular velocity and velocity at the wall can be determined, giving

to leading order

ω1 =
−ε−2/3

2

(

L2

2Bν

)−1/3
1

I(∞)
, u1 = 1. (A 16a,b)

The uniformly valid velocity profile to leading order therefore is

u = 1 − I(ξ̂)/I(∞). (A 17)

A.0.3. Cylindrical Couette flow

Subtracting (6.11) from (6.9) and integrating, we get the following relation between

the shear stress σrθ and the couple stress,

σrθ =
− tan δ

(1 + ξ/Ri)
2

+ 2(A+ 1)ε α

(

m

(Ri + ξ)
− m(0)Ri

(Ri + ξ)2

)

. (A 18)

At O(ε0), (6.11) and (A18) result in σθr = σrθ = − tan δ/(1 + ξ/Ri)
2, which when

substituted in the yield condition (6.5) gives the leading order couple stress,

m(0) = −
(

m2
0 + d2

[

1 − 1

(1 + ξ/Ri)
4

])1/2

(A 19)

where d2 = tan2 δ/2(A+ 1). At O(ε), (6.5) and (6.11), together with (A 18) yield,

m(1) =
aα

(m(0))2 Ri (1 + ξ/Ri)
3

(

m2
0 + d2

[

1 − 3

(1 + ξ/Ri)
4

])

− 2aαm(0)(0)

m(0)Ri (1 + ξ/Ri)
4

(A 20)

Here too εm(1)/m(0) ∼ O(ε), except when tan δ = sinφ. Therefore the above expansion is

uniformly valid when the wall is not fully rough. On integrating (6.6)–(6.7) and expanding

the results for the region ξ ∼ ε near the inner cylinder, we see that the leading order

velocity fields are again identical to (A 4).
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As in §A.0.2, the above asymptotic expansion for m is not uniformly valid when the

inner cylinder is fully rough, as the ratio εm(1)/m(0) is O(1) in the inner region ξ ∼ ε2/3.

A solution in the inner region may be found by re-scaling the variables,

ξ̂ = ξ ε−2/3

(

L2Ri

4

)−1/3

, m̂ =
m

d
ε−1/3

(

4L

Ri

)

−1/3

, (A 21)

yielding the following equation for m̂(0):

dm̂(0)

dξ̂
+ (m̂(0))2 − ξ̂ = 0. (A 22)

Following the procedure given in §A.0.2, the uniformly valid expression for the couple

stress is

m(0) = − d

(

1 − 1

(1 + ξ/Ri)
4

)1/2

+ ε1/3 d (4L/Ri)
1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂)) + d(4ξ/Ri)

1/2, (A 23)

and for velocity fields is

ω =
−ε−2/3

2

(

L2Ri

4

)−1/3
1

I(∞)

(

Ai(ξ̂)

Ai(0)

)2

, (A 24a)

u = −1 + I(ξ̂)/I(∞), (A 24b)

where I(ξ̂) is defined by (A15).
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Géotechnique 37, 271–283.

Munch-Andersen, J. & Askegaard, V. 1993 Silo model tests with sand - and grain. In Proc.

RELPOWFLO II . Norway.

Nasuno, S., Kudrolli, A., Bak, A. & Gollub, J. 1998 Time-resolved studies of stick-slip

friction in sheared granular layers. Phys. Rev. E 58, 2161–2171.

Natarajan, V. V. R., Hunt, M. L. & Taylor, E. D. 1995 Local measurements of velocity

fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304,

1–25.

Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge: Cambridge

University Press.

Nedderman, R. M. & Laohakul, C. 1980 The thickness of shear zone of flowing granular

materials. Powder Technol. 25, 91–100.

Nott, P. R. 1991 Analysis of granular flow in aerated and vibrated chuetes. PhD thesis, Prince-

ton University.

Petzold, L. 1983 Automatic selection of methods for solving stiff and nonstiff systems of

ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136–148.

Savage, S. B. 1998 Analyses of slow high-concentration flows of granular materials. J. Fluid

Mech. 377, 1–26.

Schofield, A. N. & Wroth, C. P. 1968 Critical State Soil Mechanics. London: McGraw-Hill.

Tardos, G. I., Khan, M. I. & Schaeffer, D. G. 1998 Forces on a slowly rotating, rough

cylinder in a couette device containing a dry, frictional powder. Physics of Fluids 10, 335–

341.

Tejchman, J. & Gudehus, G. 1993 Silo-music and silo-quake experiments and a numerical

Cosserat approach. Powder Technol. 76, 201–212.

Tejchman, J. & Gudehus, G. 2001 Shearing of a narrow granular layer with polar quantitites.

Intl. J. Num. Anal. Methods Geomech 25, 1–28.



Frictional Cosserat model for slow granular flows 49

Tejchman, J. & Wu, W. 1993 Numerical study of patterning of shear bands in a Cosserat

continuum. Acta Mech. 99, 61–74.

Tejchman, J. & Wu, W. 1994 Numerical study on sand and steel interfaces. Mech. Res. Comm.

21 (2), 109–119.
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x
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Figure 1. Plane shear between parallel walls. The lower wall is stationary and the upper wall

moves at a constant speed V . A constant normal stress N is applied on the upper wall. The

angles of wall friction of the lower and upper walls are δL and δ, respectively.
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Figure 2. Results of the Cosserat model for shear between identical walls in the absence of

gravity, for different values of the angle of wall friction δ. Panel (b) shows the difference between

ω and half the vorticity (−1/2 du/dξ), and panel (c) shows the asymmetry in the shear stress.

The material shears uniformly when the walls are fully rough (solid line). The thickness of the

shear layer decreases as the difference between sin φ and tan δ increases. Parameter values are:

φ = 28.5◦, ε = 0.04, L = 10, A = 1/3 and K = 0.5.
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Figure 3. The velocity and angular velocity profiles for plane shear in the absence of gravity

when the lower wall is rougher than the upper wall, i.e. δL > δ. For this problem, the stress

is symmetric, the couple stress is constant (see eqn. 5.7), and the angular velocity is equal to

half the vorticity. The material shears uniformly when the upper wall is fully rough (solid line).

Other parameters are given in the caption of figure 2.
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Figure 4. Comparison of the asymptotic solutions (for small ε) for the (a) linear velocity and (b)

angular velocity fields with their respective numerical solutions, for plane shear in the absence of

gravity. The solid line and circles represent numerical and asymptotic solutions, respectively, for

shear between identical walls. The dashed line and diamonds represent numerical and asymptotic

solutions, respectively, for the case of a rougher lower wall. Parameter values are: φ = 28.5◦,

δ = 20◦, ε = 10−3, L = 10, A = 1/3 and K = 0.5.
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Figure 5. Effect of m(0), the boundary condition for the couple stress, on the (a) couple stress

and (b) linear velocity fields, for shear in the absence of gravity. The curves are for four values

of m(0) in the allowed range 0 < m(0) < b; the solid line is for m(0) = b. The velocity profiles

for all the cases are indistinguishable. Here δ = 10◦, δL > δ, and other parameters are given in

the caption of figure 2.
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Figure 6. Predictions of the model for plane shear between fully rough walls under gravity. Panel

(b) shows the difference between ω and half the vorticity, and panel (c) shows the asymmetry

in the shear stress. The solid line is absent in panel (b) because ω + 1/2 du/dξ = 0 for this case.

The parameter B ≡ (ρpgH)/N , indicates the strength of the gravitational body force. Other

parameters are as in the caption of figure 2.
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Figure 7. The asymptotic solutions for small ε compared with the numerical solutions for

plane shear under gravity (solid line and circle), and cylindrical Couette flow (dashed line and

diamond). The lines represent numerical solutions, and the symbols asymptotic solutions. The

walls are fully rough for both cases. Parameter values are: φ = 28.5◦, ε = 10−3, L = 10, A = 1/3,

and K = 0.5. In addition, B = 1 for plane shear and Ri = 1 for cylindrical Couette flow (see

§6).
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Figure 8. Schematic figure of cylindrical Couette flow. The outer cylinder is stationary and

the inner cylinder rotates at constant angular velocity ω.
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Figure 9. Profiles of the stress and kinematic fields for shear between fully rough walls in a

cylindrical Couette cell for four values of Ri, the ratio of the inner cylinder radius to the Couette

gap. Panel (b) shows the difference between ω and half the vorticity, and panel (c) shows the

asymmetry in the shear stress. The solid line is absent in panel (b) because ω + 1/2 du/dξ = 0

for this case. Ri = ∞ (solid line) corresponds to plane shear, for which ω is equal to the vorticity

and the Cauchy stress is symmetric. Parameter values are: φ = 28.5◦, ε = 0.04, L = 10, A = 1/3

and K = 0.5.
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Figure 10. Comparison of model predictions (lines) with the data (symbols) of Mueth et al.

(2000) for shear of (a) mustard seeds and (b) poppy seeds in a cylindrical Couette cell. In the

experiments, a layer of particles was glued to the cylinders. The data points to the left of ξ = 0 in

the figures are the velocity of the glued layer. The dot-dash line represents the model prediction

for fully rough walls (tan δ = sin φ, see eqn. 4.3). See text for other parameters.
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Figure 11. Comparison of model predictions (curves) with the data (symbols) of Bocquet et al.

(2000) for the shear of glass beads in a cylindrical Couette cell. In the experiments, a layer of

particles was glued to the cylinders. The dot-dash line represents the model prediction for fully

rough walls (tan δ = sin φ, see eqn. 4.3). See text for other parameters.
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Figure 12. Sensitivity of model predictions to the parameter A in the yield condition (3.16).

The solutions are for plane shear between fully rough walls under gravity with B = 1. As

discussed in §2.0.1, |A| must be ≤ 1, and for the set of parameters used here, solutions do not

exist for A < −0.57. The values of other parameters are as in the caption of figure 2.
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Figure 13. Sensitivity of model predictions to the parameter K in the kinematic boundary

condition (4.5). The solutions are for shear between fully rough walls under gravity with B = 1.

As K increases, the slip velocity at the upper wall increases and the magnitude of the angular

velocity at the wall decreases. The stress and couple stress profiles are not affected by the value

of K, and are given by the dotted lines in figure 6. The values of parameters other than K are

as in the caption of figure 2.
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Figure 14. The shear layer thickness ∆ as a function of ε for plane shear and cylindrical

Couette flow. The results shown in panel (a) are for a non-fully rough upper wall (or inner

cylinder), while panel (b) gives results for fully rough walls. In both panels, the curves represent

asymptotic solutions for small ε, given in §8, and the symbols represent numerical solutions.

The circles and crosses are for plane shear in the absence of gravity between identical walls

and with a rougher lower wall, respectively; the asterisks are for plane shear under gravity and

the diamonds are for cylindrical Couette flow. Parameter values for panel (a) are: φ = 28.5◦,

δ = 20◦, L = 10, A = 1/3 and K = 0.5, B = 1 (for plane shear under gravity) and Ri = 1 (for

cylindrical Couette flow). Parameter values for panel (b) are the same with the exception that

δ = tan−1 sin φ = 25.5◦.


