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Exact spectral functions of a non-Fermi liquid in one dimension
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We study the exact one-electron propagator and spectral function of a solvable model of interacting electrons
due to Schulz and Shastry. The solution previously found for the energies and wave functions is extended to
give spectral functions that turn out to be computable, interesting, and nontrivial. They provide one of the few
examples of cases where the spectral functions are known asymptotically as well as exactly.
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I. INTRODUCTION

The excitations of a one-dimensional~1D! interacting
Fermi system cannot be explained using quasiparticles o
Fermi-liquid picture. For example, the momentum distrib
tion function has a cusp at the Fermi momentumkF rather
than a jump as in a Fermi liquid.1,2 This behavior is of the
kind first found by Luttinger in the context of his study of a
exactly solvable one-dimensional model.3 The fermionic
Green’s functions are nontrivial, and the asymptotic lon
distance behavior has characteristic singularities that
popularly known as the Tomonaga-Luttinger liqu
behavior.4,5 On the other hand, very little is known beyon
the asymptotic or low-energy regime. A few exact analyti
calculations of the spectral function for model systems
available in literature, and they are all in the strongly cor
lated limit, where the double occupancy of a site is projec
out: this includes the Hubbard model in the limit of infinite
large repulsion6,7 and the 1/r 2 exchanget-J model.8,9

Recently Schulz and Shastry10 introduced a new class o
gauge coupled 1D Fermi systems, which make it possibl
study the behavior of the spectral function starting from
weakly interacting limit. These models are similar in natu
to those of Ref. 11, and are non-Fermi liquids due to
gauge coupling. Details of the various inter-relationships
reviewed in Ref. 12. The model introduced by Schulz a
Shastry~SS! is in fact intimately connected to the origina
Luttinger model, and is best viewed as its reinterpretation
a gauge theory. Particles of different species exert a mu
gauge potential on each other and this is sufficient to des
the Fermi liquid. The asymptotic long-distance behavior
the one-electron correlation function is known~see below!
by one of several arguments, including Luttinger’s origin
one using the asymptotic properties of Toeplitz determina

Our motivation in the present work is to compute t
exact one-electron Green’s function for the SS model, uti
ing our knowledge of the complete spectrum of the sam
and using techniques familiar from Anderson’s treatment
the orthogonality catastrophe issue in the x-ray ed
problem.13 This is of great interest since usually one does
have access to the exact Green’s function even in 1D and
has to be content with the asymptotic behavior. For interp
ing experiments, such as those on photoemission, one w
to know more than just the asymptotics, and this possibi
0163-1829/2002/65~15!/155110~7!/$20.00 65 1551
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is realized here for the particular model of SS. We are abl
see how the Luttinger-liquid spectral function evolves from
noninteracting free fermion case by switching on some in
action parameter.

We first write down the basic lattice Fermi model in 1
and outline the pseudounitary transformation that elimina
the gauge interactions in favor of a twisted boundary con
tion ~Sec. II!. Using this transformation we formulate th
problem of calculating the one-electron Green’s function
Sec. III.

II. THE MODEL

Let us write the model for two-component electrons ho
ping and interacting via the Hamiltonian

H52t (
j 50

L21

(
s

exp~ isa@ n̂ j ,s̄1n̂ j 11,s̄# !cj ,s
† cj 11,s1H.c.,

~1!

where for concreteness we have simplified the origi
model presented in Ref. 10. HereL denotes the number o
sites in the chain,cj ,s

† creates a fermion with spins5↑,↓ at

site j, n̂ j ,s̄5cj ,s̄
†

cj ,s̄ is the occupation operator withs̄5

2s, and byNs we will denote the total number ofs spin
fermions, which is the eigenvalue of the operatorN̂s . Fi-
nally, t is the hopping parameter and the gauge interactio
controlled by the dimensionless parameter in our model,a.
The unitary transformation

U15expS i (
l .m

a@ n̂l ,↑n̂m,↓2n̂m,↑n̂l ,↓# D ~2!

transforms Eq.~1! into a simple hopping Hamiltonian with
twisted boundary conditions.10 To regain a translational in
variant Hamiltonian we apply a second unitary transform
tion

U25 )
l 50

L21

expS 2ia l ~N̂↑n̂l ,↓2N̂↓n̂l ,↑!

L
D . ~3!
©2002 The American Physical Society10-1
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The combined transformationU5U2U1 commutes withT,
whereT is the translational operator that shifts one site to
right ~e.g., Tn̂ jT †5n̂ j 11). The effect ofU on the fermion
operators is

Ucj ,s
† U †5e2 iasNs̄eiasn̂ j ,s̄cj ,s

†

3)
l 50

j 21

exp~2iasn̂l ,s̄! )
l 50

L21

expS 2is~ l 2 j !an̂l ,s̄

L
D ,

Ucj ,sU †5eiasNs̄e2 iasn̂ j ,s̄cj ,s

3)
l 50

j 21

exp~22iasn̂l ,s̄! )
l 50

L21

3expS 22is~ l 2 j !an̂l ,s̄

L
D , ~4!

while the density operators,Un̂ j ,sU †5n̂ j ,s , as well as theSj
z

spin operator are invariant~theSj
1 andSj

2 spin operators are
not invariant under the transformation!. The transformed
HamiltonianH̃5UHU † reads

H̃52t (
j 50

L21

(
s

~e2isans̄cj ,s
† cj 11,s1H.c.!, ~5!

wherens5N̂s /L is the density operator ofs spin fermions.
In a fixed number subspace, we may treatns as a ‘‘c num-
ber.’’ Thus we see that the transformed hopping has a ‘‘
namically generated’’ gauge field. In the eigenvalue probl

H̃uf̃&5Euf̃&; ~6!

the eigenstatesuf̃& are products of noninteracting one
particle states with momentak created with ck,s

†

5L21/2( le
iklcl ,s

† operator,uf̃&5)k,scks
† u0&. The momenta

are quantized asLkj ,s52pIj ,s , Ij ,s being an integer. The
total energy and momentum of the states is

E5(
s

(
j 51

Ns

«s~kj ,s!, P5(
s

(
j 51

Ns

kj ,s , ~7!

and the one-particle energy is

«s~k!522t cos~k12sans̄!. ~8!

Thus we must have the eigenstates ofH,

uf&5U†uf̃&, ~9!

with the energy and momentum given also by Eq.~7!. In the
ground state thek states between the Fermi momentakF,s

2

and kF,s
1 are filled (kF,s

6 56pns22asns̄). In the thermo-
dynamic limit the energyE does not depend ona and is
equal to the energy of the noninteractinga50 case. For
finite-size systemsa enters only through theO(1/L) correc-
tions.

For generala the Hamiltonian breaks both the parity~P!
and time inversion~T! symmetry~the combinedPT symme-
15511
e

-

try is conserved!. In the ground state the gauge interacti
act like a vector potential and generates currents that flow
the opposite directions for opposite spins. As a conseque
the Fermi momenta are also shifted. For thea56p case
both P and T are restored and the Fermi momenta ag
coincide for the two spin directions.

III. SPECTRAL FUNCTIONS

Our goal is to calculate the spectral functions, which
define as

As~k,v!5(
f

z^ f uck,s
† uG& z2d~v2Ef

N111EGS!, ~10!

Bs~k,v!5(
f

z^ f uck,suG& z2d~v2EGS1Ef
N21!, ~11!

whereuG& denotes the ground state. The local (k averaged!
spectral functions are defined as

As~v!5
1

L (
k

As~k,v!, ~12!

Bs~v!5
1

L (
k

Bs~k,v!. ~13!

We concentrate onA↑(k,v), since Bs(k,v) is calculated
analogously.

As mentioned in the Introduction, 1D interacting fermio
behave as Tomonaga-Luttinger liquids, which are charac
ized, among others, by the power-law behavior of the co
lation function for small energies. In our case, as we will s
later, the main contribution for 0,a,p comes from

A↑~k,v!'c1

@~v2«F!22u2~k2k↑
(21)!2# (a/p)2

v2«F2u~k2k↑
(21)!

1c1

@~v2«F!22u2~k2k↑
(1)!2# (a/p)2

v2«F1u~k2k↑
(1)!

1c2

@~v2«F!22u2~k2k↑
(1)!2# (a/p21)2

v2«F2u~k2k↑
(1)!

1c2

@~v2«F!22u2~k2k↑
(3)!2# (a/p21)2

v2«F1u~k2k↑
(3)!

,

~14!

where ks
(n)5npns22san2s are the~Fermi! momenta of

the singularities,c1 andc2 are constants, andu is the veloc-
ity of the excitations. In the usual Tomonaga-Luttinger li
uids the velocities of the spin and charge excitations are
ferent and they both appear in spectral functions. In our c
however, due to the gauge origin of the interaction, the s
and charge velocities are equal to the Fermi velocityvF . The
spectral function has a nonanalytical, branch cut structure
only at the Fermi momenta, but for a higher multiple of t
Fermi momenta (k↑

(3)) as well. The latter corresponds, e.g
0-2
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EXACT SPECTRAL FUNCTIONS OF A NON-FERMI . . . PHYSICAL REVIEW B 65 155110
to the 3kF singularity, e.g., in the Hubbard model,2,7 but
unlike in that case, has an exponent that is as large as th
the Fermi pointk↑

(1) . The local density of states near Ferm
energy reads

A~v!'c1~v2«F!2(a/p)2
1c2~v2«F!2(a/p21)2, ~15!

which for the noninteractinga50 reproduces the Fermi
liquid step function.

The exponent were already obtained from the finite-s
analysis of the energy, withd52a in Eq. ~9! of Ref. 10.
Before continuing, let us mention that while we have all t
typical features of a Tomonaga-Luttinger model~the alge-
braic singularities and low-lying excitations at multiples
the Fermi momenta!, the strong asymmetry of the spect
due to the gauge interaction is not a typical feature of
standard Luttinger liquids.

We now consider the exact evaluation of the spec
functions. As a preliminary to the discussion for generala,
let us note the special cases ofa50 anda5p, where the
spectral functions can be calculated more or less trivially

~i! The a50 case is nothing else but the usual tigh
binding Hamiltonian

H52t(
j ,s

~cj ,s
† cj 11,s1H.c.! ~16!

of noninteracting electrons, aseian̂ j51 in Eq. ~1!. For the
spectral functions we recover the familiar

As
(0)~k,v!5d~v12t cosk!Q~v2«F!, ~17!

Bs
(0)~k,v!5d~v12t cosk!Q~«F2v!, ~18!

i.e., a Dirac-delta peak following the cosinelike dispersion
the free fermions.

~ii ! When a5p, the model actually corresponds to th
electron-hole symmetric correlated hopping model14 with
tAA5tBB52t andtAB5t ~the hopping amplitudestAA , tBB ,
and tAB are defined in Ref. 14!,

H52t(
j ,s

~122n̂ j ,s̄!~122n̂ j 11,s̄!cj ,s
† cj 11,s1H.c.

~19!

The Hamiltonian~19! can be diagonalized with the help of
unitary transformation

Ũ5)
j 51

L

~21! n̂ j ,↑n̂ j ,↓, ~20!

which is simpler thanŨ5Ũ1Ũ2 given by Eqs.~2! and ~3!,
and transforms the fermionic operators as

Ũcj ,s
† Ũ†5~122n̂ j ,s̄!cj ,s

† ,

Ũcj ,sŨ†5~122n̂ j ,s̄!cj ,s , ~21!

so the transformed fermionic operators remain ‘‘local.’’ Fu
thermore, this transformation is not any more restricted
the 1D case. The evaluation of the matrix elements is n
15511
of
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e
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w

convenient for operators in site representation, and the
trix element in Eq.~10! becomes

z^ f uck,↑
† uG& z25L z^ f uc0,↑

† uG& z2dk,Pf2PGS
, ~22!

where c0,↑
† creates fermions at site 0. Next, we apply t

canonical transformation to formulate the problem using
transformed wave function@the analog of Eq.~9!#, and for
the spectral function we get

A↑~k,v!5L(
f̃

z^ f̃ u~122n̂ j ,↓!cj ,↑
† uG̃& z2

3d~v2Ef
N111EGS!dk,P

f
N112PGS

.

As the wave functionsu f̃ & and uG̃& are products of the
spin-up and spin-down part, the evaluation is straightforw
and leads to

A↑~k,v!5~122n↓!2A↑
(0)~k,v!

1
4

L2 (
qPFS↓

(
q8P” FS↓

(
k8P” FS↑

d„v2«↓~q8!1«↓~q!

2«↑~k8!…dk,q82q1k8 , ~23!

and a similar equation givesB↑(k,v). In the spectral func-
tion we can identify the following two distinct features:~a! a
Dirac-delta contribution following the cosinelike dispersio
which is the reminder of the noninteracting spectral funct
@Eq. ~17!# suppressed by a factor of (122n↓)2 and ~b! a
broader continuum coming from the propagator dressed w
a single loop. As we increase the filling, the weight of t
Fermi jump for zero magnetization (n↑5n↓5n/2) decreases
as (12n)2 and will disappear at half-filling, leaving us with
an A(v)}v2 density of states@c2;(12n)2 in Eq. ~15! for
a5p#. To illustrate this behavior, we present the evoluti
of the local spectral functions with density in Fig. 1.

Let us now consider the nontrivial generic case 0,a
,p. Like in the previous case, in evaluating the matrix e
ments we exploit the translation invariance to derive the
representation given by Eq.~22!. Next, we apply the canoni
cal transformation to formulate the problem using the tra
formed wave functions

^ f uc0,↑
† uG&5^ f̃ uc0,↑

† eian̂0,↓R̂uG̃&e2 iaN↓, ~24!

where the important global operator@see Eq.~4!#

R̂5)
l

exp~2ia l n̂ l ,↓ /L !. ~25!

As in the transformed basis the wave functions are pr
ucts of the spin-up and -down free fermion wave functio
uG̃&5uG̃↑&uG̃↓& andu f̃ &5u f̃ ↑&u f̃ ↓&, the matrix element factor-
izes, and we get
0-3
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KARLO PENC AND B. SRIRAM SHASTRY PHYSICAL REVIEW B65 155110
A↑~k,v!5L(
f̃

z^ f̃ ↑uc0,↑
† uG̃↑& z2z^ f̃ ↓ueian̂0,↓R̂uG̃↓& z2

3d~v2Ef ,↑1EGS,↑2Ef ,↓1EGS,↓!

3dk,Pf ,↑2PGS,↑1Pf ,↓2PGS,↓.

In the equation abovec0,↑
† creates a fermion with energ

«↑(k8) and momentumk8¹FS↑ , in which case the matrix
element isz^ f̃ ↑uc0,↑

† uG̃↑& z251/L. This allows us to write the
spectral function as a convolution

A↑~k,v!5
1

L (
k8P” FS↑

A↑8„k2k8,v2«↑~k8!… ~26!

with

A↑8~v,k!5L(
f̃ ↓

z^ f̃ ↓ueian̂0,↓R̂uG̃↓& z2d~v2Ef ,↓

1EGS,↓!dk,Pf ,↓2PGS,↓. ~27!

The interesting and nontrivial part of the calculation com
from the ^ f̃ ↓ueian̂0,↓R̂uG̃↓& matrix element. In the next an
crucial step, we eliminateeian̂0,↓. This can be easily accom
plished after the observation that by translating the oper
R̂ a similar factor appears:TR̂T †5exp@2ia(n̂0,↓2n↓)#R̂. So

^ f̃ ↓ue2ian̂0,↓R̂uG̃↓&5exp@ i ~2an↓2Pf ,↓1PGS,↓!#^ f̃ ↓uR̂uG̃↓&.
~28!

Next, we note thateian̂0,↓5(eia1ei2an̂0,↓)/(11eia) and we
end up with the useful identity

FIG. 1. The local spectral functionsB(v) ~darker! and A(v)
~lighter shading! for a5p. The filling increases fromn50 ~top
curve! to n51 ~bottom plot! in increments of 1/3.
15511
s

or

^ f̃ ↓ueian̂0,↓R̂uG̃↓&

5
eia1exp@ i ~PGS,↓2Pf ,↓12an↓!#

11eia ^ f̃ ↓uR̂uG̃↓&.

~29!

To evaluate^ f̃ ↓uR̂uG̃↓&, we put uG̃↓&5) j ckj ,↓
† u0& and u f̃ ↓&

5) ick
i8 ,↓

† u0&. Then we moveR̂ to the right acrossck
†’s so

that it acts on the vacuum state,R̂u0&5u0&. However, as
R̂ck,↓

† 5ck1(2a/L),↓
† R̂, the k momenta are shifted by 2a/L

~this is equivalent to twisting the boundary conditions!,

FIG. 2. The evolution of thev andk dependent spectral func
tion as a function ofa for n51/2 ~left! andn51 ~right plots!. The
shading is proportional toA↑(k,v) and B↑(k,v), the dashed line
denotes the Fermi energy. The shift of the Fermi momenta@Eq.
~35!# is compensated for by introducingq5k1an in the plot. We
omitted the triviala50 case.
0-4
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EXACT SPECTRAL FUNCTIONS OF A NON-FERMI . . . PHYSICAL REVIEW B 65 155110
^ f̃ ↓uR̂uG̃↓&5^0u)
i 51

N↓
ck

i8 ,↓R̂)
j 51

N↓
ckj ,↓

† u0&

5^0u)
i 51

N↓
ck

i8 ,↓)
j 51

N↓
ckj 12a/L,↓

† u0&. ~30!

Here we have to calculate overlap of free fermion wave fu
tions with different phase shifts due to the removal of
↑-spin fermion. This very problem arises, e.g., in the x-r
edge problem~the Anderson orthogonality catastrophe13!,
and the one-dimensional analog was discussed in Ref. 7
the reader’s convenience, we repeat here the main po
ca

ul

-
o-

a

15511
-

y

or
ts.

The anticommutation relation between the operators w
different phase shifts reads

Ai j 5$cki12a/L,↓
† ,ck

j8 ,↓%

5

eiaexpF i

2 S ki2kj81
2a

L D G
L

sina

sinS ki2kj8

2
1

a

L D . ~31!

The overlap of the wave functions can be further calcula
as u^ f̃ ↓uR̂uG̃↓&u25udetAi j u2,
u^ f̃ ↓uR̂uG̃↓&u25I $ck112a/L
† ,ck

18
% . . . $ck112a/L

† ,ck
N↓
8 %

A � A

$ckN↓
12a/L

† ,ck
18
% . . . $ckN↓

12a/L
† ,ck

N↓
8 %
I 2

5
sin2N↓a

L2N↓ I 1

sinS k12k18

2
1

a

L D . . .

1

sinS k12kN↓8

2
1

a

L
D

A � A

1

sinS kN↓2k18

2
1

a

L
D . . .

1

sinS kN↓2kN↓8

2
1

a

L
D
I 2

.

This determinant is actually a Cauchy determinant and
be expressed as a product, so we end up with

u^ f̃ ↓uR̂uG̃↓&u25
sin2N↓a

L2N↓

)
j . i

sin2
kj2ki

2 )
j . i

sin2
kj82ki8

2

)
j ,i

sin2S ki82kj

2
1

a

L D .

~32!

For the speciala50 @where A↑8(v,k)5Ld(v)dk,0# and a
5p cases, taking the suitable limits, we recover the res
of Eqs. ~17! and ~23!, respectively. In thea5p case the
phase shift equals 2p/L, which is exactly the spacing be
tween two adjacentk values, thus the orthogonality catastr
phe is absent.

Following the same approach, for the photoemission p
we get

B↑~k,v!5
1

L (
k8PFS↑

B↑8„v2«↑~k8!,k2k8… ~33!

with
n

ts

rt

B↑8~v,k!5L(
f

z^ f̃ ↓ue2 ian̂0,↓R̂†uG̃↓& z2d~v2EGS,↓

1Ef ,↓!dk,PGS,↓2Pf ,↓. ~34!

FIG. 3. The spectral function fora53p/4 andn51. Here the
Fermi energy is atv50.
0-5
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The product in Eq.~32! can be evaluated numerically an
spectral functions for relatively large systems can be
tained. The numerical result for some large size system
presented in Fig. 2. Starting froma50, we observe tha
there is an overall shift in momentum proportional
22an↓ ~which we compensated for in the figure!, and that
apart from the main contribution, which follows the cosin
like dispersion, additional continuumlike features appear.
nally, for even larger values ofa another cosinelike featur
appears with a considerable weight.

Alternatively, for the low-energy part, further analytic
considerations can be applied.7 Starting from Eq.~32!, the
weights of the peaks can be expressed viaG functions in the
L→` limit, leading to the power-law behavior of th
Tomonaga-Luttinger liquid spectral function~Fig. 3!, and the
exponents can be associated with the phase shift. We
singularities where the momenta of the final state are clo
packed. These happen at

k↑
(n)5npn↑22an↓ , ~35!

with n an odd integer. The most important ones for smala
are those withn561, which coincides with the Fermi mo
mentakF,↑

6 . As we can follow in Fig. 2, by increasinga we
get the weight for the tower atk↑

(3) , which eventually be-

FIG. 4. The local spectral functionsB(v) ~darker! and A(v)
~lighter shading! for n52/3. a changes from 0~noninteracting
case, top curve! to p ~bottom plot! in increments ofp/4. To mini-
mize finite-size effects, the curves show the average ofL5303,
279, 255, 231, 207, and 183.

TABLE I. The exponents in the local spectral function@Eq.
~15!#.

a 0 p/4 p/2 3p/4 p

2(a/p)2 0 1/8 1/2 9/8 2
2(a/p21)2 2 9/8 1/2 1/8 0
15511
-
is

-
i-

nd
ly

comes symmetric withk↑
(1) for a5p, while the weight of the

tower atk↑
(21) disappears at the same time. The primed sp

tral functions in Eq.~26! have a simple behavior neark50,

A↑8~k,v!}@~v2«F!22u2k2# (a/p)221, ~36!

while neark52pn↓ ,

FIG. 5. To illustrate the weight transfer for smalla, we compare
the local spectral function fora5p/4 ~solid line! to thea50 case
~dashed!. The a5p/4 case behaves asA(v);uv2«Fu1/8 near the
Fermi energy.

FIG. 6. The evolution of the momentum distribution functio
n↑(k) as a function ofa for n51/2 ~left! andn51 ~right plots! ~as
in Fig. 2!. The shift of the Fermi momentak↑

(n) is compensated for
by introducingq5k1an in the plot.
0-6
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EXACT SPECTRAL FUNCTIONS OF A NON-FERMI . . . PHYSICAL REVIEW B 65 155110
A↑8~k,v!}@~v2«F!22u2~k22pn↓!2# (a/p21)221.
~37!

This leads to the power-law behavior of theA↑(k,v) as pre-
sented in Eq.~14!. The values of the exponents are tabula
for some selecteda in Table I.

The weight transfer can be quantified by observing
sum rules. While the zeroth momentum is constant,

E
2`

«F
B↑~v!dv5n↑ ,

E
«F

1`

A↑~v!dv512n↑ , ~38!

the first integral already shows the large weight transfer
~Figs. 4 and 5! to energies far from the Fermi energy,

E
2`

«F
vB↑~v!dv5(

i
^Guci ,↑

† @H,ci ,↑#uG&

52
2t

p
sin~pn↑!

2
4t

p
n↑sin~pn↓!~12cosa!,

E
«F

1`

vA↑~v!dv5(
i

^Guci ,↑@H,ci ,↑
† #uG&

5
2t

p
sin~pn↑!1

4t

p
~12n↑!

3sin~pn↓!~12cosa!. ~39!
tt.

15511
d

e

d

The weight transfer to higher energies is the largest foa
5p and at half-filling.

Finally, in Fig. 6 we present the momentum distributio
functionn↑(k). We can clearly observe the algebraic disco
tinuity at k5k↑

(61) ,k↑
(3) for 0,a,p. For a5p ~lower

plots! there is a jumpDn↑(k)5(122n↓)2 atk5k↑
(1) andk↑

(3)

coming from the coherent part in the spectral function giv
by Eq. ~23!.

IV. CONCLUSIONS

We have presented the exact one-electron Green’s fu
tion for a model Fermi system in 1D with a non-Fermi-liqu
behavior for essentially any value of the interaction streng
The Green’s function for this system obtained here does
quire some numerics and is not totally analytical. Howev
unlike the situation in projected models, such as thet-J
model, it satisfies the sum rules familiar from text books
weakly interacting Fermi liquids~e.g., the complete electro
sum rule with largev behavior ofG as 1/v). This feature
makes the present model particularly interesting in the c
text of the program of reconstruction of the spectral funct
from its moments~e.g., see Ref. 15!.
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