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In this paper, we study the thermal response functions for two one-dimensional models, namely, the Hubbard
and spinless fermion #-V model, respectively. By exactly diagonalizing finite sized systems, we calculate
dynamical, electrical, thermoelectrical, and thermal conductivities via the Kubo formalism [J. Phys. Soc. Jpn.
12, 570 (1957)]. The thermopower (Seebeck coefficient), Lorenz number, and dimensionless figure of merit
are then constructed, which are quantities of great interest to the physics community both theoretically and
experimentally. We also geometrically frustrate these systems and destroy integrability by the inclusion of a
second-neighbor hop in the kinetic energy operator. These frustrated systems are shown to have enhanced
thermopower and Lorenz number at intermediate and low temperatures.
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I. INTRODUCTION

Strongly correlated electron systems are currently at the
forefront of physics providing some of the most interesting
theoretical challenges and many experimental systems of
fundamental and technological interest.!? It is at the conver-
gence of the fundamental and the technological that thermal
response functions of strongly correlated systems take on
particular importance. This is certainly true in the high ther-
mopower material sodium cobalt oxide’® as well as other
transition metal oxides such as the high 7, superconductors.
Furthermore, thermal behavior is also important in experi-
mental one-dimensional systems such as carbon nanotubes,’
semiconductor nanowires,® and organic compounds,”!® to
name a few.

In addition to strong electron correlations, frustration!!
has generated much interest in the physics community
throughout the past decades. Recently, it has been shown that
strong electron correlations in conjunction with the elec-
tronic frustration introduced by a two-dimensional triangular
lattice are the keys to understanding the Curie-Weiss metallic
phase in sodium cobalt oxide.® Frustration is also the key to
the emergence of kinetic antiferromagnetism!? and to a de-
scription of quantum spin glasses.!!

In this paper, we concentrate on the electrical and thermal
transport of one-dimensional systems which often display
exotic collective behavior due to the reduced dimensionality,
most strikingly exemplified in the Luttinger liquid at low
temperatures.'> One dimension also allows the existence of a
class of systems known as integrable systems, where there
exists an infinite family of mutually commuting operators
that commute with the Hamiltonian.'#-1

Frustration can be introduced into a one-dimensional sys-
tem by considering kinetic energy hoppings further than
nearest neighbors, i.e., second nearest neighbors. In this
work, we demonstrate that electronic frustration of this sort
also has very interesting effects on transport properties in
addition to the equilibrium properties alluded to above. One
such effect, recently predicted by Shastry and
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co-workers,%!”-1% is the enhancement of the thermopower

compared to the unfrustrated system. This enhancement
arises from electron transport on general grounds related to
electronic frustration; however, a quantitative measure is
only possible by computations such as those described in this
paper. Clearly, this thermopower enhancement is potentially
of great interest to the material science community since it
provides clues in the search for large thermopower materials.

Theoretically, strongly correlated systems are notoriously
difficult to study due in part to the failure and/or tenuous
applicability of perturbation theory. The exact calculation of
dynamical thermal response functions (using the Kubo?® for-
malism) requires knowledge of the full eigenspectrum and,
therefore, progress is made via exact diagonalization of finite
sized systems. Furthermore, recently Shastry!’-'? has intro-
duced a new high frequency formalism for thermoelectrics
(discussed below) that is particularly suited for strongly cor-
related electron systems by essentially disentangling the in-
teractions from the dynamics and one-dimensional systems
provide a good playground in which to gauge and explore
this new high frequency formalism.

The models and systems we study are prototypical
strongly correlated one-dimensional models, namely, the
Hubbard and spinless fermion -V model, respectively. In this
work, we consider rings (periodic boundary conditions) of up
to £=10 sites for the Hubbard model and £=16 sites for the
spinless fermion 7-V model. Of course, newer approximate
theoretical methods, in lieu of exact diagonalization, are con-
stantly being developed, such as the dynamical mean field
theory,?!?? finite temperature Lanczos (FTL) method,? clus-
ter perturbation theory,> etc. In fact, the dynamical mean
field theory approximation has considered some thermoelec-
tric variables for the one-dimensional Hubbard model previ-
ously, although in a limited range of model parameter space
(see Refs. 25 and 26). However, an important first step is to
approach these systems with a rigorously exact method (ex-
act diagonalization) to, if nothing else, provide a benchmark
for further approximate studies and methods.

There are, however, obvious shortcomings to exact diago-
nalization, i.e., finite size effects due to the smallness of the
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system and the computational price paid is often expensive.
That being said, we find only the very low temperature re-
gimes (7<1[t|) troublesome in our studies which, inciden-
tally, are the regimes that other approximations also have
difficulty tackling. These difficulties are expected on general
grounds for any finite system study since the mean energy
level spacing becomes comparable to the thermal energy.
Experimentally, often the most interesting case corresponds
to intermediate temperatures, where we do much better. Fur-
thermore, the high frequency formalism of Shastry is signifi-
cantly less expensive computationally and could lend itself
more profitably to new and existing approximate methods.

We primarily use the Hubbard model for our studies and
carry out the most extensive calculations on it, while the -V
model is mainly supplemental.”’” The thermopower is the
most tractable observable calculated and is, therefore, con-
sidered more extensively. We emphasize that the computa-
tions presented here for the thermopower, Lorenz number,
and dimensionless figure of merit for these strongly corre-
lated models consider the full range of model parameter
space.

The plan of this paper is as follows: In Sec. II, we intro-
duce the models to be studied and provide an overview of
our exact diagonalization procedure. Section III reviews the
Kubo formalism for the thermoelectric conductivities needed
to calculate the physical observables of interest as well as
briefly describes the high frequency formalism of Shastry. In
Sec. IV, we study the thermopower for the Hubbard and -V
models for the unfrustrated and frustrated cases explicitly
demonstrating thermopower enhancement for the frustrated
systems. Sections V and VI present results for the Lorenz
number and thermoelectric figure of merit (FOM) for the
Hubbard model, again for the unfrustrated and frustrated
cases. Conclusions are presented in Sec. VII.

II. HUBBARD AND ¢-V MODELS

Here, we describe in detail the considered models,
namely, the unfrustrated (frustrated) Hubbard and 7~V models
with a second-nearest-neighbor hopping amplitude /=0 (¢
#0). In the frustrated scenario, an electron can hop back to
its original starting place in three hops with a hopping am-
plitude (—£)?t' =£*t'. When t’ <0, the system is electronically
frustrated and this, as will be shown, leads to an enhanced
thermopower and Lorenz number.

The Hubbard model is described by a Hamiltonian with a
kinetic energy term allowing electron hopping between sites
j and j+ 7 with probability #(7) and an on-site electron re-
pulsion potential energy governed by parameter U, i.e.,

L 2
A== S S el b+ Hel
=1 =1 o
L

+ U (j = 112) (i, — 172), (1)
j=1

where EJT-U (¢j,) creates (destroys) an electron with spin o

=(7,]) at the lattice site j, ﬁjazéj-aéw is the number opera-

tor, and n=1 and »=2 for first and second nearest neighbor
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hoppings, respectively. The electron operators obey the usual
. . A At _

anticommutation rules {cjg,cj,o,}—é‘jjléwr. We assume #(1)

=t, t(2)=t', and #(7)=0 for all other ». With /=0, this un-

frustrated Hamiltonian is particle-hole symmetric as can be

seen from the local transformation cAl}'U= (—1)jéjg. This trans-
formation leaves ¢t and U invariant, while taking N,— L
—N,, where N, is the total number of electrons with spin o
and the total number of electrons is N=2_N,. The frustrated
case (¢’ #0) breaks particle-hole symmetry since it takes 7’
——t'. However, even for the frustrated case, the above
transformation is useful since it informs us that a quantity
A(NT,Nl,t,[,,U): iA(E—NT,E—Nl,t,—I,,U). Knowing
the value of A up to half-filling for ¢ and —¢’ allows us to
construct the entire dependence on filling in both cases (un-
frustrated and frustrated), provided we know the parity of A
under the particle-hole transformation. We only consider
electron repulsion U>0 and assume periodic boundary con-
ditions (one-dimensional rings).

The spinless fermion 7-V model is governed by a Hamil-
tonian with a kinetic energy term similar to the Hubbard
model (without the spin) and a potential energy describing a
nearest-neighbor repulsion governed by a parameter V, i.e.,

L 2 L
H==2 > t(g)e], ¢+ Hel + VX (A= 1/2) (i — 1/2).
=1 7=1 J=1

(2)

Again, we assume here that #(1)=z, #(2)=¢t', and #(7)=0
for all other » and V>0. This model too has the same
particle-hole symmetry but without the spin. It is clear that ¢’
breaks the particle-hole symmetry and a calculation up to
half-filling (with t' >0 and ¢’ <0) suffices, allowing extrapo-
lation to all fillings.

As with any exact diagonalization procedure, there exist
computational limitations due to the obvious difficulties in
dealing with large matrices. In view of these limitations,?
the Hubbard model is computed for N=1,...,5 and 5,...,8
electrons on £=10 and 8 site systems, respectively. These
particular systems correspond to electron fillings (densities)
of n=N/L£=0.1, 0.2, 0.3, 0.4, 0.5, 0.625, 0.75, 0.875, and 1.
The #-V model allows a larger cluster size stemming from the
lack of the spin degree of freedom (smaller comparative Hil-
bert space) and we present results for L=16 and N
=1,...,8. The large Hilbert spaces can be reduced by con-
sidering systems with a constant z component of spin (for the
Hubbard model). The sector with the smallest z component
of spin has the largest Hilbert subspace dimension and domi-
nates the physics. Linear momentum is a good quantum
number due to the translational invariance of our systems
and we implement this symmetry to further reduce the Hil-
bert space to more manageable proportions. However, we
point out that the bottleneck of our calculations is not neces-
sarily the Hamiltonian diagonalization but the finite tempera-
ture averages of certain operators and the evaluation of the
full Kubo formulas discussed below.

It is well known that density of states of our models for
t'=0 has two Van Hove singularities at the band edges. If
|t'|>0.25t|, another singularity is introduced, which will in-
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variably produce large changes in the thermoelectric proper-
ties. However, we are interested here in the more subtle ef-
fects arising from geometrical frustration and strong
interactions. Hence, by introducing a nonzero [t'|<0.25]¢|,
the density of states maintains only the original two van
Hove singularities. Another motivating factor for choosing
[t']<0.25[¢] is that it is known®® that for |¢#'|=0.5]¢|, a rich
ground state phase diagram is seen for half-filling in the frus-
trated one-dimensional Hubbard model. While interesting in
itself, this would serve to unnecessarily complicate our
present analysis.

In order to display effects of electron correlations, the
interaction parameter U(V) must be at least a few times
larger than the bandwidth which is equal to W=4[t| for both
models. We consider three values of interaction strength for
each model corresponding roughly to the noninteracting case
where the interaction parameter is equal to zero [U(V)=0
< W], the weakly interacting case where the interaction is
equal to roughly the bandwidth [U(V) ~ W], and the strongly
interacting case where the interaction is a few times greater
than the bandwidth [U(V)> W].

III. DYNAMICAL THERMAL RESPONSE FUNCTIONS
AND SHASTRY’S HIGH FREQUENCY FORMALISM

Conductivities are computed via the Kubo linear response
formalism? recently presented in detail by Peterson et al. in
Ref. 31 which closely followed the work of Shastry.!”-! In
particular, we calculate the Kubo formulas for the electrical
o(w), thermoelectrical y(w), and the thermal x(w) conduc-
tivities, respectively, which then allows us to calculate physi-
cal quantities of interest such as the thermopower S (or See-
beck coefficient) (the ratio of the thermoelectrical to
electrical conductivities), the Lorenz number L (the ratio of
the thermal conductivity to the electrical conductivity di-
vided by T under zero current conditions), and the dimen-
sionless figure of merit Z7, given as

Hw,T)

S(w,T) = o) (3)
B Kk(w,T) )
L(w,T) = —TO'(w, 7 - S(w,7T)*, (4)
and
_ S(w,7)
Z(w,T)T = ol (5)

The second term in Eq. (4) is produced by the zero electric
current constraint under a thermal gradient.’? This term is
usually small (especially at low temperatures) for metals and
semiconductors and often ignored. However, as will be
shown, for strongly correlated lattice systems like those stud-
ied here, this term is an important factor especially at high
temperatures.

One is usually interested in the dc (w—0) limit of the
dynamical conductivities. For finite sized systems, this re-
quires the introduction of a level broadening e which
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FIG. 1. (Color online) Probability density of states P(s) with
energy difference s=|g;—&;|. The solid black and dashed blue
(black) lines represent U=4|t| and 12|t|, respectively, for density (a)
n=0.3, (b) n=0.5, and (c) n=0.9. The position of the maximum
probability for the lower Hubbard band is insensitive to the value of
U.

smoothens the divergences caused by the discrete nature of
the eigenspectrum. Often, € is taken to be equal to the mean
energy level spacing of the system which is of order
O(|t|/£). However, for the Hubbard model, as the interaction
energy U is increased, the mean energy level spacing begins
to include upper Hubbard bands. In Figs. 1(a)-1(c), the prob-
ability density of states P(s) with energy difference s=|g;
—g)| (g, is the eigenenergy of state k) is plotted for three
representative cases, namely, fillings n=0.3, 0.5, and 0.9, for
U=4|t| (weakly coupled) and U=12[t| (strongly coupled). It
is clear in Figs. 1(a)-1(c) that the most probable energy dif-
ference between states in the lower Hubbard band is rela-
tively immune to changes in either filling or interaction
strength. However, the appearance of the upper Hubbard
bands in the strongly coupled case yields an e that is very
large (compared to the bandwidth) and strongly U depen-
dent. This large € tends to mask real physical contributions to
the current matrix elements coming from transitions within
the lower Hubbard band at the expense of broadening tran-
sitions between Hubbard bands. Therefore, in this work, we
choose € to be approximately equal to the mean energy level
spacing in the lower Hubbard band for all cases, i.e., €
=0.8[t| for the Hubbard model.??

As discussed previously in detail in Ref. 31, another fre-
quency limit (besides the dc limit) is the infinite frequency
limit, defined for the thermopower, Lorenz number, and fig-
ure of merit as

A

S*(7T) = lim S(w,T) = <(Dj"“>

w—®© T< Txx> ’

(6)
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LY(T) = liirl L(w,T) = %

- [ (1T, (7)
and

. . [S"(T)]?
Z(T= ilirolc Z(w,T)T = %

, (8)

respectively, with the operators 7,,, (IA>XX, and @xx defined in
Refs. 17-19. The benefit of such a limit is that these quanti-
ties can be calculated as equilibrium expectation values of
operators that, while nontrivial, are easier to calculate and
less time consuming numerically than the full dynamical
quantities via the Kubo formulas. All of the interaction ef-
fects remain in these quantities but, importantly, the dynam-
ics has been separated from the interactions. A further ambi-
tion of this work is to determine the evolution of the
considered physical observables as functions of frequency,
temperature, and density from the dc to the infinite frequency
limit allowing a complete picture of the accuracy and/or
limitations of the infinite frequency formalism of Shastry.

IV. THERMOPOWER

The thermopower, being the ratio of the thermoelectrical
to the electrical conductivity, measures the electrical re-
sponse of a material to a temperature gradient. Like the Hall
coefficient, it is often assumed to measure the sign of the
charge carriers in a particular material.

The thermopower S(w,7) can be instructively
rewritten,®3! by isolating the term containing the chemical
potential wu(7), as

S(o,7) =S, (@,T) + Syw(T). )

The first term is due to electrical transport, while the second
is entropic in origin and is the familiar Mott-Heikes** term
Sy (T)==[u(T) - u(0)]/g,T. These two terms both contrib-
ute to the thermopower in different and often competing
ways.

In strongly correlated systems, the first term in Eq. (9) is
usually the most intractable. For many systems, this term is
small (especially at low temperatures) compared to the sec-
ond term and is fruitfully ignored. In this approximation, the
thermopower is dominated by the Mott-Heikes (MH) term.
The MH limit is described as the limit when kzT> |t|. This
limit is achieved either at very high temperatures or at more
modest temperatures in narrow band systems.>* The useful-
ness of the MH term is that at high temperatures, the chemi-
cal potential is linear in 7, leaving the MH limit constant in
temperature but with a nontrivial filling dependence arising
from the particular nature of the Hilbert space. Many of these
MH limits were considered previously>* and below we quote
them for the spinless fermion #-V model for finite and infinite
V in Eq. (11). As will be shown below, the transport term
[first term in Eq. (9)] is very important for low to intermedi-
ate temperatures and using MH term alone for the ther-
mopower is clearly inadequate.

The thermopower is expected to vanish in the zero tem-
perature limit. This is physically intuitive and has been
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shown theoretically for the one-dimensional Hubbard model
via a version of the Bethe ansatz solution.®> In our formal-
ism, this vanishing is accomplished through a subtle balance
of the transport and MH terms as T— 0, and for thermody-
namically large systems, this balance is obtained. However,
for finite systems, even in the noninteracting limit, the bal-
ance is not manifest, resulting in thermopower divergences
as T—0 due to finite size effects. However, this suggests a
rewriting of the thermopower, given in Refs. 6 and 31, in
such a way to ensure that the thermopower vanishes at T
=0 by forcing both the transport [(S,(w,T))] and MH
[(Syu(T))] terms to independently vanish as T— 0. This re-
writing yields a frequency dependent transport term and a
frequency independent MH term.

Finite sized systems have a few more subtleties which we
now describe. The chemical potential is commonly defined
as w(T)=dF\(T)/ N, where Fy(T) is the Helmholtz free en-
ergy for an N particle system. For our finite systems, we will
approximate this partial derivative as w(T)=[Fy,,(T)
—Fy_((D]/2 for N=2 and necessarily u(T)=Fy,(T)
—F\(T) for N=1. As discussed in Ref. 31, the ground state
degeneracy of a system (if it exists) is discounted when cal-
culating u(7) so as to eliminate a leading order term linear in
T that produces a nonzero S,;(T) as T— 0. Further, finite
systems have discrete energy levels giving rise to an energy
gap. The energy gap causes an exponential behavior in u(7)
which is not a serious problem since it vanishes faster than
T2. Both of these particulars, however, create a chemical po-
tential which does not behave as 72 at low T as expected for
thermodynamically large systems.

In the following figures, the thermopower will be given in
its “natural” units of kg/g,, where g,=—|e| with |e| the value
of the electron charge. For experimental comparison, one
simply replaces kp/|e|=86 uV/K.

A. Hubbard model

The MH term is the high temperature limit kzT>|t| of
Syn(T). As discussed elsewhere,>'** the MH limit of the
finite U situation is essentially the uncorrelated band since
the temperature is necessarily much larger than U. To under-
stand the effects strong interactions play (large U), one must
consider infinite U when calculating this limit.

In the finite U case, the MH limit has a single zero cross-
ing at half-filling n=1 where the thermopower is seen to
change sign and it diverges in the band-insulator limits (n
=0 and n=2). For the infinite U, case there are two addi-
tional zero crossings and one additional divergence. The MH
limit still diverges in the band-insulator limits but now also
diverges for the Mott insulator (n=1). The two additional
sign changes occur for fillings n=2/3 and n=4/3. The MH
limit in the infinite U case for n=1 is found from the MH
limit for 0=n=1 through particle-hole symmetry (n—2
-n and ¢,——q,). There is no ' dependence for the MH
limits; therefore, they lead to the conclusion (for ¢ and ¢')
that the Hubbard model should have interaction induced sign
changes of the thermopower at n=2/3 (and n=4/3 using
particle-hole symmetry).
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t/t=0, U=01tl

S"(kg/q,)

t/t=0, U=4 Itl

FIG. 2. (Color online) S*(7) (black line) as a function of filling
n and temperature 7. For (b) and (c), the orange (gray) dotted lines
are the dc limit S(0,7) of the full thermopower for comparison.
Projected onto the T=5|t| plane are the MH limits for both the finite
[red (gray) line] and infinite U [blue (black) dashed line] situations.

First, we consider results for the unfrustrated Hubbard
model (¢'=0).

1. Unfrustrated thermopower (Hubbard)

Here, we consider the Hubbard model with ¢'=0 in the
noninteracting (U=0), the weakly correlated (U=4|¢|), and
the strongly correlated (U=12[t|) cases, respectively.

Due to the particle-hole symmetry of the ¢'=0 Hubbard
model, u(T) for N=L is

1 Zp_ 1 Z._ U
M(T)=_1H( 5 ‘) =—1n<%)=—, (10)

28 \Zpn) 28 \e?z,,) 2
since an energy eigenstate for N electrons and for 2L-N

electrons are related through &,(N)=g,(2L-N)-(L-N)U
according to Lieb and Wu.*® Hence, Sy5(T) is identically
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t/t=0, U=0Itl

Smu(kp/qe)

(b)

FIG. 3. (Color online) Sy,;(T) (black line) as a function of fill-
ing n and temperature T. For (b) and (c), the orange (gray) dotted
lines are the infinite frequency limit S*(T) for comparison. Projected
onto the T=5l# plane are the MH limits for both the finite [red
(gray) line] and infinite U [blue (black) dotted line] cases.

zero for all T. The transport term S,(7) is also identically
zero for all T due to particle-hole symmetry and hence we
find that S(w,T)=0 for n=1 for all T and w. This argument
equally applies to the spinless -V model for ¢’ =0.

In Figs. 2(a)-2(c), we plot the infinite frequency limit of
the thermopower S”(7) and the dc limit (w—0) of the full
Kubo thermopower S(w,T) versus temperature T and filling
n for U=0[t| (a), 4|7/ (b), and 12|¢| (c). Projected onto the T
=5|¢| plane are the MH limits for finite and infinite U sce-
narios.

For the noninteracting case in Fig. 2(a), there is no fre-
quency dependence as both the charge and heat current op-
erators are diagonal. The thermopower grows monotonically
and, essentially, linearly from zero at T=0 to the MH limit®’
near 7=>5|t|. As the temperature is increased, the slope of the
linear regime is lessened and the thermopower approaches
the MH limit more slowly. Some finite size effects are evi-
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n=0.3, t'/t=0, U=121tl

(S(@)-8")(kp/ae)
0.3

0.2

0.1

0

n=0.5, t'/t=0, U=121tl

n=0.75, t'/t=0, U=121tl

(9)

n=0.875, t'/t=0, U=121dl

FIG. 4. (Color online) S(w,T)—S"(T) as a function of frequency w and temperature T for the weak coupling case U=4[1|, t'=0, and
fillings (a) n=0.3, (b) n=0.5, (c) n=0.75, and (d) n=0.875. Panels (e)—(h) represent the strong coupling case U=12]t| for fillings the same
as those for the weak coupling case. The main frequency dependence occurs near w~ U for low to intermediate temperatures. The largest
frequency dependence near T=0 is likely a finite size effect. There is no frequency dependence for the half-filled case n=1 (not shown).

dent at the largest fillings n=6/8 and 7/8 calculated where
some somewhat strange low temperature effects are ob-
served.

The effect of interactions shown in Figs. 2(b) and 2(c) is
to generally reduce the thermopower for fillings greater than
n=2/3. For fillings below n~ 0.625, the dc and infinite fre-
quency thermopower are essentially identical. At fillings

greater than n=0.625, S(0,7) and S™(T) display slight differ-
ences at low temperatures for the weakly correlated regime
[U=4[t], Fig. 2(b)] and marked differences for the strongly
interacting regime [U=12[t], Fig. 2(c)].

The thermopower at half-filling in all cases is pinned at
zero as discussed. For n=0.875, the effect of interactions is
to reduce the thermopower [Fig. 2(b)], changing its sign
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t/t=-0.2, U=0Itl

S"(kg/q,)
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t/t=-0.2, U=121tl

S (kg/qy)

FIG. 5. (Color online) S*(7) (black line) as a function of filling n and temperature T for (a) U=0, (b) U=4

t

, and (c) U=12]#| and

t'/t=—02. The full S(w,T) [not (Ref. 39)] compares similarly to S*(7) for ¢’ # 0 as for ' =0 (see Fig. 4). The orange (gray) dotted curve is
for ' =0 to facilitate an easy comparison. As an example of the other sign of ¢', namely, ¢’ /t=0.2, (d) shows the expected reduction in S*(T)
for U=4]t| (similar results obtained for U=0 and U=12]¢| are not shown). The MH limits are projected onto the 7=5|¢| plane for finite U [red

(gray) line] and infinite U [blue (black) dotted line].

[Fig. 2(c)], for low to intermediate temperatures. As the tem-
perature is continually raised, the condition [t{|<U<T is
eventually obtained. The thermopower is then entropy domi-
nated and begins to approach its entropy determined MH
limit. This MH limit, of course, is that of the uncorrelated
band since an infinite temperature always dominates any ef-
fects of finite U interactions. Therefore, one only expects the
thermopower of the large U Hubbard model to approach the
infinite U MH limit when the condition |{|<T<U is ob-
tained, which in our calculations is for low to intermediate
temperatures. However, we emphasize that for the highest
temperature 7=5|¢|, the thermopower remains negative for
n=0.875 and U=12]¢.

In Figs. 3(a)-3(c), we plot the MH term of the ther-
mopower [Sy5(T)] versus temperature and filling for U=0,
4]t|, and 12|, respectively. Also shown is S”(T) for compari-
son. Interestingly, the transport term increases the low to
intermediate temperature thermopower for all fillings in the
noninteracting and weakly interacting cases. For the strongly
interacting case in Fig. 3(c), the transport term begins to
decrease the thermopower at low temperatures and high-
fillings (n=0.75).

The results in this section can be directly compared with
Ref. 38 which used the FTL method which allowed rings of
up to L£=14 sites. Their results were for a much lower win-
dow of temperatures 0.2[t| < T<2|t| and show a greater ther-
mopower suppression for more modest values of U com-
pared to the present work. The thermopower in the low
temperature regime is very sensitive to any changes in either

the S,(T) or Syy(T). Considering that Ref. 38 used a larger
system but an approximation, it is unclear as to the nature of
the discrepancy between those results and the present study.
However, the qualitative behavior of both calculations is
consistent.

Next, the full frequency and temperature dependence of
the thermopower is investigated. Figures 4(a)-4(h) plot the
difference in the full frequency dependent thermopower mi-
nus the infinite frequency limit, i.e., S(w,T)—S"(T). For the
weak coupling [Figs. 4(a)-4(d)] case, there is little frequency
dependence except for when w~ U at low to intermediate
temperatures. In what is surely a consequence of the finite
sized system, there appears to be an even-odd effect in that
for even numbers of electrons [Fig. 4(c) and not shown],
S(w,T)-S"(T) is positive for o< U and negative for w> U,
while for odd numbers of electrons [Figs. 4(a)-4(d)], the
opposite effect is observed. Of course, for half-filling there is
no frequency dependence (not shown).

The same qualitative behavior is found for the strongly
correlated regime in Figs. 4(e)-4(h). Again the even-odd ef-
fect is obtained [cf. Fig. 4(g) vs Figs. 4(e), 4(f), and 4(h)] and
the frequency dependence is generally weak except for w
~ U. The main difference between the U=12|¢| and the U
=4t| cases is that the frequency dependence at w~ U in the
former is larger. It should be kept in mind that the largest
frequency dependences occur for the lowest temperatures
and the thermopower for a finite sized system in the low
temperature regime is susceptible to finite sized effects that
could possibly not survive in the thermodynamic limit.
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FIG. 6. (Color online) Sy;(T) (black line) as a function of fill-
ing n and temperature 7. The orange (gray) dotted lines are the
infinite frequency limit S*(7) for comparison. Projected onto the
T=>5|t| plane are the MH limits for both the finite [red (gray) line]
and infinite U [blue (black) dotted line] cases.

Therefore, it is safe to assume that our results are qualita-
tively representative of a thermodynamically large Hubbard
model but perhaps not quantitatively accurate.

Similar qualitative frequency dependence was seen in
Ref. 38 for a low temperature slice (7=0.5|¢|) and high fill-
ings (n>0.7). The difference between that work and the
present work is that the frequency dependence occurred
nearer to w~ U/2 in the former, whereas in the present result
the largest frequency dependence occurs near w = U.

Unless one is concerned with extremely low temperatures
and frequencies similar in magnitude to the interaction
strength U, the infinite frequency thermopower S*(7) is a
good representative of the full thermopower S(w,T). Re-
cently, a similar calculation on the strongly correlated #-J
model for a two-dimensional triangular lattice was carried
out in Ref. 31, where it was found that the frequency depen-
dence was much weaker, justifying the use of S*(T) in place
of S(w,T).

2. Frustrated thermopower (Hubbard)

Here, we investigate the effect of frustration on the ther-
mopower by considering the case of a nonzero second-
neighbor hopping amplitude |¢'|/t=0.2.

Shastry!”!” predicted a low to intermediate temperature
enhancement of the thermopower via a high temperature ex-
pansion of the high frequency limit S*(7) for the geometri-
cally frustrated two-dimensional triangular lattice 7-J model.
In that case, changing the sign of the hopping (making the
system electrically frustrated) was found to enhance the ther-
mopower at intermediate temperatures. Haerter et al.® and
Ref. 31 more thoroughly investigated that particular case.

In one dimension, it is similarly expected that an enhance-
ment of the thermopower will occur when a second-neighbor
hop is added to the kinetic energy which frustrates the lattice
and destroys integrability.

Figures 5(a)-5(d) show S™(7) versus temperature and fill-
ing for the electrically frustrated values of ¢'/r=—-0.2 [Figs.
5(a)-5(c)] and ¢'/r=0.2 [Fig. 5(d)]. For this case, we do not
plot the full frequency dependence but remark that it is simi-
lar qualitatively and quantitatively to the t'=0 case.®

PHYSICAL REVIEW B 76, 125110 (2007)
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FIG. 7. (Color online) S*(7) (black line) as a function of filling
n and temperature 7. Projected onto the T=>5|t| plane are the MH
limits for both the finite [red (gray) line] and infinite V [blue (black)
dotted lines] situations.

When >0 and ¢’ <0, the system is electronically frus-
trated and thermopower is enhanced at low temperatures.
The enhancement is seen to arise almost purely from the
transport term of the thermopower [first term in Eq. (9)].
Figure 6 shows S*(T) and the MH term S,,,(T) for ¢'/t=
-0.2 and U=4|t| as a representative example. Similar to the
results displayed in Fig. 3, the low temperature thermopower
is dominated by the transport term, and in the case of ¢/t
=-0.2, that domination is even more pronounced as it pro-
duces an enhancement peak.

For small fillings, the enhancement has weak U depen-
dence although the noninteracting case seems to be tending
to diverge at very low temperatures [n=0.1 and n=0.2 in
Fig. 5(a)], which is most certainly a finite size artifact. In
fact, for frustrated U=0 case, the thermopower has been cal-
culated exactly for the thermodynamically large system by
computing (numerically) the necessary Fermi-Dirac integrals
and no such divergent tendency was obtained at any tem-
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FIG. 8. (Color online) S*(T) as a function of filling n and temperature T for (a) V=0, (b) V=8|t|, and (c) V=12[¢t|. The full S(w,T)
compares similarly to S*(T) as for the ¢ =0 case (see Fig. 4). The orange (gray) curve is S*(T) for t'=0 to facilitate an easy comparison. As
an example of the other sign of ', namely, ¢’ /t=0.2, (d) shows the expected reduction in S*(T) for V=8||. The MH limits are projected onto
the T=>5|¢| plane for finite V [red (gray) line] and infinite V [blue (black) dotted line].

perature or density. At fillings above n=0.5, there are inter-
action effects which are visible at low temperatures. For the
frustrated case discussed here, the thermopower still mostly
achieves its MH limit by 7=>5]¢| as expected.

For the situation when ¢ and ¢’ are both positive, there is a
suppression of the thermopower at low temperatures [see
Fig. 5(d)], hence the opposite effect. Only the weakly corre-
lated U=4|t| case is plotted to illustrate this.

For both signs of ¢ at half-filling (n=1), the thermopower
is no longer identically zero since the addition of a nonzero
t' destroys the particle-hole symmetry; however, the ther-
mopower remains quite small at this density.

B. -V model

Most of the considerations of the thermopower for the
Hubbard model also apply to the #-V model. In particular,
this model too has particle-hole symmetry at half-filling (n
=0.5 instead of n=1 as for the Hubbard model, since the spin
degree of freedom is absent) and thus the thermopower is
identically zero at all temperatures. The thermopower is once
again divergent in the band-insulator limits (n=0 and n=1)
and also in the vicinity of the Mott insulator (2=0.5) in the
presence of strong correlations (large V). In the high tem-
perature limit (kzT>1t), the thermopower is pinned by the
entropy as in the Hubbard model. The MH limit can be cal-
culated in a straightforward manner in the V=0 and V=2
regimes from the expressions already derived for the ex-
tended Hubbard model (on-site U and nearest-neighbor V).3*

The -V model corresponds to setting U= and removing the
spin degeneracy. We thus obtain

ks m(ﬂ) i
qe n

: (1
@ln<(1 ~2n) ) (ii).

qe

T—®
n(l-n)

where Eq. (11)(i) corresponds to finite V and 0<n <1, while
Eq. (11)(ii) corresponds to infinite V and 0<n<0.5. As
mentioned previously, the expressions in Eq. (11) were first
considered in Ref. 34 with the second line (the infinite V
limit) being the third equation of Table 1 in Ref. 34 with the
spin degeneracy removed.

An important distinction between the Hubbard model and
the -V model is that the energy current operator commutes
with the Hamiltonian in the latter. From the Kubo formula,
this implies that in Eq. (9), S,(w,7)=0 for all ®#0 and
S(w,T)=S,,4(T) for all @+ 0. Since S*(T)=S(w—0,T), this
leads to S*(T)=S,,(T) at all temperatures and fillings in this

model. From Eq. (6), we have that <<I3xx>=— u{7), a fact that
has been verified numerically. A further consequence is that
k(w,T)/To(w,T)=S(w,T)* for all ®#0 and consequently
L(w>0,T7)=0, implying Z(w>0,T)T=% in this system.
Physically, the energy current commuting with the Hamil-
tonian means that the system is unable to transport any heat
at finite frequency in the presence of a temperature or poten-
tial gradient without transporting charge. In zero current con-
ditions, where there is no charge transport, there is no heat
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transport as well and the thermal conductivity is zero. This
causes the Lorenz number to be zero and the FOM to be
infinite. All the above considerations rely on the fact that the
energy current commutes with the Hamiltonian. This is no
longer true with ¢' # 0 and all the quantities mentioned above
will have nonzero values at w # 0.

1. Unfrustrated thermopower (t-V)

The behavior of the thermopower for the #-V model is
quite similar to that of the Hubbard model even though the
thermopower has no transport term for '=0 and is, there-
fore, simply S,,4(T). Plotted in Figs. 7(a)-7(c) is the ther-
mopower S"(T) for three values of the interaction strength,
V=0, V=8¢, and V=12t]. At low densities, the ther-
mopower very rapidly rises to nearly its full MH limit by
T=2|t|. The initial (mostly) linear slope is reduced as the
filling is increased. The effects of interactions are not readily
seen until the somewhat large filling of n=0.4375, where the
thermopower is markedly reduced for all temperatures
shown. Eventually, as the temperature is raised, the interac-
tion effects are washed out as the thermopower approaches
its MH limit.

Compared to the Hubbard model, however, the interaction
effects appear weaker (perhaps due to the absence of the
transport term) and affect only the highest fillings studied
(other than the half-filled case n=0.5 which is pinned at zero
due to particle-hole symmetry).

2. Frustrated thermopower (t-V)

Adding a second-neighbor #’ hopping term has an effect
very similar to the one in the Hubbard model, again destroy-
ing the integrability and the particle-hole symmetry of the
model. A result of the latter is that the thermopower is no
longer identically zero at half-filling. As in the Hubbard
model, a more interesting aspect of introducing a second-
neighbor hopping is that it produces frustration depending on
its sign.

The thermopower is plotted as a function of temperature
and filling for V=0, V=38|t|, and V=12|¢| for the case of
t'/t=-0.2 in Figs. 8(a)-8(c) and for V=8[t| for the case of
t'/t=0.2 in Fig. 8.

A positive sign of ¢’ reduces the value of S*(T) compared
to t'=0, while a negative sign enhances it. S*(7) starts out
being zero at 7=0 and approaches the Mott-Heikes limit as
T— o independent of the value of ¢'. Since S*(7) for ¢’ =0 is
a monotonically increasing function of 7, it stands to reason
that S*(7) reaches a maximum at some value of T for ¢’
<0 and decreases toward the Mott-Heikes limit. This is in-
deed what is seen in our calculations, as demonstrated in Fig.
8, similar to the situation of the Hubbard model. This is very
interesting since it affords the possibility of thermopower
enhancement through frustration.

Even though we do not explicitly calculate S(w,T) for the
t-V model when ¢’ # 0, we comment that the introduction of
t' causes the energy current operator not to commute with
the Hamiltonian. Consequently, S(w,T) is now no longer in-
dependent of w and approaches S*(7) as w— as in the
Hubbard model. Presumably, the full frequency dependence

PHYSICAL REVIEW B 76, 125110 (2007)

t'/t=0, U=0 Itl

FIG. 9. (Color online) L*(T)/L, as a function of filling n and
temperature 7 (black line). The orange (gray) dotted line is the dc
limit L(0,7T) for comparison. Note that for U=0 (a), there is no
frequency dependence of L(w,T) and L*(T)=L(0,T). The full
L(w,T) (not shown) compares similarly to the frequency depen-
dence of the thermopower for U=4t| and 12[¢| in Fig. 4.

is similar to that seen in the Hubbard model but has not been
calculated explicitly.

Although not shown for the -V model, we point out that
similar to the Hubbard model, the thermopower enhance-
ment peak arises from the transport term of the thermopower
almost exclusively as discussed in Sec. IV A 2 and shown in
Fig. 6.

V. LORENZ NUMBER

The Lorenz number [Eq. (4)] is an important quantity as it
measures the ratio of the thermal to the electrical conductiv-
ity. Further, it is a key ingredient to the FOM (containing
both the thermopower and Lorenz number) which measures
the efficiency of a thermoelectric material. Note that there is
usually a contribution to the Lorenz number coming from

125110-10



DYNAMICAL THERMAL RESPONSE FUNCTIONS FOR...

t/t=-0.2, U=0Itl

1.25

0.75
0.5
0.25

FIG. 10. (Color online) L*(T)/L, as a function of filling n and temperature T for (a) U=0, (b) U=4

lattice vibrations (phonons). In this work, however, we only
consider the electronic contributions to the Lorenz number.

As noted in Ref. 31, the chemical potential is absent from
Eq. (4) and the Lorenz number can be understood completely
within the canonical ensemble. Evidently, it is determined
through electron transport alone. At zero temperature, it is
well known that the Lorenz number is equal to the constant
Ly=(mky/\3g,)*> which is just the Wiedemann-Franz
law. 3240

As discussed in Ref. 31, for noninteracting systems, the
limit lim;_,oL(w,T)=L, comes from two effects. Similar to
the thermopower, we attempt to limit the finite sized system
induced divergences of the Lorenz number by forcing the
subtle balances necessary to ensure a finite Lorenz number as
T— 0. The exact method used here is the same as in Ref. 31
and not repeated. Ultimately, we are able to control the di-
vergences to a large degree; however, we are unable to an-
swer the very interesting question of whether the value of L,
is a universal constant independent of electron interactions.

Below, we present L*(T) as a function of temperature and
filling. The frequency dependence of L(w,T) (not shown
here) is comparable to S(w,T) in that it is generally weak
with a feature near w=U.

A. Unfrustrated Lorenz number (Hubbard)

Figures 9(a)-9(c) show the “normalized” high frequency
Lorenz number L*(T)/L, as a function of temperature and
filling for the noninteracting, the weakly coupled, and the
strongly coupled situations for the case of #'=0. In Figs. 9(b)

PHYSICAL REVIEW B 76, 125110 (2007)
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t
compares similarly to frequency dependence of the thermopower. The orange (gray) dotted curve is the t'=0 case to facilitate an easy
comparison. (d) is an example of the other sign of 7', namely, ¢'/=0.2.

, and (c) U=12|t]. The full L(w,T)

and 9(c), the dc limit of the full frequency dependent Lorenz
number is also plotted, i.e., L(0,T)/Ly.

For the noninteracting case [Fig. 9(a)], L (T) is sup-
pressed at low temperatures as the filling increases toward
half-filling. For a thermodynamically large system, the Lo-
renz number starts at L, and quickly decreases as a function
of temperature, similar to what is shown here. In the weakly
coupled regime [Fig. 9(b)], L*(T) is very similar to the non-
interacting case for fillings below approximately n=0.4. For
n=0.5, however, it is enhanced at low temperatures. The dc
limit is quite similar to the infinite frequency limit showing
the usefulness and accuracy of L*(T) in the weakly coupled
regime. When the interactions are strong [Fig. 9(c)], there is
a much stronger enhancement of L*(T) for n=0.3 and the
enhancement persists to higher temperatures. The dc limit in
this case is not as similar to L*(7) as it is for the weakly
coupled regime.

B. Frustrated Lorenz number (Hubbard)

For nonzero t', we plot L*(T)/L, as a function of filling
and temperature along with L*(T)/L, for the t'=0 to ease
comparison in Figs. 10(a)-10(d).

For the electronically frustrated scenario (¢’ <0), the Lo-
renz number in Figs. 10(a)-10(c) is also enhanced compared
to the unfrustrated (' =0) situation at low temperatures. This
enhancement is also more pronounced for low than for high
fillings and increases with increasing interaction strength U,
especially close to half-filling.

When ' >0 in the weakly coupled regime [Fig. 10(d)],
the Lorenz number is very slightly suppressed compared to
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the ¢’ =0 situation as one would expect from the ' <0 results
and the previous investigation of the thermopower.

Generally, for both #'=0 and ¢’ # 0, the Lorenz number is
appreciably below L, for all temperatures above approxi-
mately 7~ 1.5]¢.

VI. FIGURE OF MERIT

The figure of merit is the number that is most important
when it comes to technological applications regarding ther-
moelectrics, as mentioned above, being a measure of thermo-
electrical efficiency. In our calculations, we are ignoring the
lattice contribution to the Lorenz number so our FOM calcu-
lated is that due to electronic contributions only.

Using the “tricks” to handle finite size effects for S*(T)
and L(T) (see Ref. 31), we calculate the high frequency
expansion of the FOM [Z"(T)T] given in Eq. (8).

A large FOM can arise in essentially two ways. One way
is for the thermopower, which is squared in the numerator, to
be large. The other is for the Lorenz number in the denomi-
nator to be small. The Lorenz number has been shown in
Sec. V to tend to zero as the temperature tends to infinity.
The thermopower, on the other hand, reaches a constant, and
finite, MH limit as 7— . Hence, the electronic contribution
to the FOM will eventually grow to infinity as the tempera-
ture is increased without bound.

In the following sections, we plot Z(w,T)T as a function
of T and filling n.

A. Unfrustrated figure of merit (Hubbard)

Figures 11(a)-11(c) show the FOM for the unfrustrated
(f'=0) Hubbard model for the noninteracting case, the
weakly coupled case, and the strongly coupled case. Also
plotted is the dc limit of the full frequency dependent FOM.
In the noninteracting case [Fig. 11(a)], the FOM grows ap-
parently quadratically in temperature with a coefficient that
decreases inversely with filling. This behavior is seen in the
weakly coupled and strongly coupled cases as well [see Figs.
11(b) and 11(c)], although the FOM is decreased more for
lower fillings.

The full frequency behavior of the FOM (not shown) is
very similar to the high frequency limit, evidently because
the differences in the two limits for the thermopower and
Lorenz number largely cancel one another out.

B. Frustrated figure of merit (Hubbard)

In Figs. 12(a)-12(d), we investigate the effects of frustra-
tion on the FOM for the ' <0 and ¢’ >0 cases, respectively.

For the electronically frustrated system (¢’ <0), the FOM
is suppressed compared to ' =0 except for the noninteracting
case where they are very similar. The larger interaction
strength has the effect of further suppressing the FOM espe-
cially for low fillings.

Alternatively, the case of ' >0 that produced suppression
in both S(7) and L*(T) has a very slight enhancement in the
FOM shown in Fig. 12(d). This nicely illustrates the compli-
cated way in which the thermopower and Lorenz number
combine to produce the FOM.

PHYSICAL REVIEW B 76, 125110 (2007)
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FIG. 11. (Color online) Z*(T)T as a function of filling n and
temperature T as the solid black line for (a) U=0, (b) U=4|¢|, and
(c) U=12]t|. The orange (gray) dotted curve is the dc limit of the
full Z(w,T)T for comparison, i.e., Z(0,T)T. Note that for U=0 (a),
there is no frequency dependence.

VII. CONCLUSION

In this paper, we have computed thermoelectrical proper-
ties of the Hubbard model and the spinless fermion #-V
model on one-dimensional rings investigating, in particular,
the thermopower (Hubbard and ¢-V), Lorenz number, and
figure of merit (Hubbard only). Our calculations are detailed
calculations of these thermoelectric variables for strongly
correlated models in that they consider the full range of
model parameter space. By adding a second-neighbor hop-
ping term with amplitude #’, both positive and negative, we
were able to destroy the integrability of these models and
induce frustration. The electronically frustrated (' <0) Hub-
bard and #-V models displayed an enhanced thermopower at
low to intermediate temperatures. For the Hubbard model,
the Lorenz number was also found to have low temperature
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FIG. 12. (Color online) Z*(7T)T as a function of filling n and temperature 7 for (a) U=0, (b) U=4

t

,and (c) U=12[¢|. The full frequency

dependent Z(w,T)T compares similarly to the frequency dependence of the thermopower. The orange (gray) dotted curve is for t'=0 to
facilitate an easy comparison. For an example of the other sign of ¢, we plot the situation ¢ /t=0.2 in (d).

enhancements. However, the FOM did not produce the same
enhancement but instead a suppression for nonzero interac-
tion strength U. Nevertheless, the FOM was modestly en-
hanced by the opposite sign of hopping ¢’ >0 at low fillings.

For the Hubbard model, the thermopower had a generally
weak frequency dependence other than a sometimes large
feature near w~ U. This behavior was also obtained, but not
shown here, for the Lorenz number and FOM. This has the
consequence that the high frequency versions of the ther-
mopower, Lorenz number, and FOM recently proposed by

Shastry!”~1° provide a good approximation to the full dy-

namical quantities for most values of the system parameters.
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