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Abstract 
The notion of f-oscillators generalizing q-oscillators is introduced. For clas- 
sical and quantum cases, an interpretation of the f-oscillator is provided as 
corresponding to a special nonlinearity of vibration for which the frequency 
of oscillation depends on the energy. The f-coherent states (nonlinear 
coherent states) generalizing q-coherent states are constructed. Applied to 
quantum optics, photon distribution function, photon number means, and 
dispersions are calculated for the f-coherent states as well as the Wigner 
function and Q-function. As an example, it is shown how this nonlinearity 
may affect the Planck distribution formula. 

1. Introduction 

In quantum physics, harmonic oscillators are synonymous 
with creation and annihilation operators. For this reason, in 
the first attempts to realize Hopf algebras (quantum groups) 
in terms of creation and annihilation operators (a gener- 
alization of the Jordan-Schwinger map) the resulting oscil- 
lators were named q-oscillators. This pervading property of 
the oscillator formalism in many physical situations has 
induced a lot of interest in looking for physical conse- 
quences, where honest oscillators are replaced by q- 
deformed ones (partition functions, field theories, nonlinear 
optics, etc.). 

Coherent states, defined through creation and annihi- 
lation operators, provide us with a beautiful connection 
between quantum and classical oscillators. The notion of 
coherent states [l-31 permitted the use of language and 
intuition developed from the study of the classical mecha- 
nics of harmonic oscillators in order to treat their quantum 
counterpart, because the trajectory of the center of quantum 
coherent packet is the same as the classical trajectory and 
the width of the packet is the minimal possible one in the 
frame of Heisenberg uncertainty relation [4]. The notion of 
coherent state turned out to be appropriate also to describe 
simple quantum systems like spin [5] and cyclotron motion 
of a charge in magnetic field [6]. On the other hand, the 
notion of the quantum q-oscillator [7, 8) was interpreted [9, 
101 as a nonlinear oscillator with a very specific type of 
nonlinearity, in which the frequency of vibration depends on 
the energy of these vibrations through the hyperbolic cosine 
function containing a parameter of nonlinearity. 

This interpretation of q-oscillators becomes obvious if 
one used the classical counterpart of the original quantum 
q-oscillators. This observation suggests that there might 
exist other types of nonlinearity for which the frequency of 
oscillation varies with the amplitude in a manner different 
from the cosh-dependence; we will label this dependence by 
a function f. Such classical oscillators (and their quantum 
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partners) may be called f-oscillators [9]. It is interesting to 
consider the statistical mechanics of a gas of deformed oscil- 
lators (free energy, partition function behaviour) and to 
compare it with the one associated with standard oscil- 
lators. 

The problems have obvious counterparts in quantum 
mechanics. Here, the role of the phase diagram is played by 
the eigenstates of the Hamiltonian. For stationary systems, 
one could consider such changes of the Hamiltonian, which 
is an integral of motion, that produce new Hamiltonian 
which is some function of the initial one. Then if there are 
no degeneracies in the spectra for the initial Hamiltonian, 
the eigenstates of the new Hamiltonian coincide with the old 
ones. But for the new system the energy spectra are different. 
This produces time evolution of the phase factors of the 
eigenstates such that these vary with different velocities in 
complete analogy to the classical motion of the correspond- 
ing deformed classical systems, moving along their trajec- 
tories in phase space with reparametrized velocities. 

In fact, in more general situations the new quantum 
systems having the same stationary eigenstates as the initial 
ones possess the new Hamiltonian which is a function of the 
usually commuting time independent integrals of motion 
(complete set of observables). This is the analogue of the 
new classical Hamiltonian which was deformed using repar- 
ametrizations depending on all available classical invariants 
which are in involution. 

The aim of our paper is to study the behaviour of clas- 
sical and quantum systems belonging to the subclass 
described above, and to clarify the role of nonlinearities cor- 
responding to these systems. This goal is motivated by the 
fact that q-oscillator belongs to the system of the subclass 
corresponding to the specific q-nonlinearity [9]. 

In classical case, we consider simple linear systems 
(oscillators) and their deformations producing nonlinear 
integrable systems as well as symmetries based on the non- 
linear noncanonical transform of the conjugate variables 
preserving the vectorfield. In the quantum counterpart, we 
study such systems which differ in Hamiltonian but have the 
same set of eigenstates. In these cases, we analyze the possi- 
bility of extending the notion of coherent states of usual 
harmonic oscillator to the case of f-oscillators. Algebraic 
extensions of the notion of q-oscillator coherent states have 
been discussed in [ll, 121 and applications in [13]. The par- 
ticular case of f-coherent states called also as nonlinear 
coherent states for the function f expressed in terms of 
Laguerre polynomials was shown to be created for trapped 
ion in [14]. Shortly f-oscillators were discussed in [lS]. 
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We will study some physical consequences of the exis- 
tence of f-coherent states like the change of the particle dis- 
tribution function, the possibility of having super- or 
sub-Poissonian statistics, influence of f-nonlinearity in the 
black body radiation formula with the particular example of 
the q-oscillators. As a particular example we will apply these 
results to q-nonlinear systems (q-oscillators) and will show 
that for q-coherent states there exists sub-Poissonian sta- 
tistics which mean that q-nonlinearity of their fields 
decreases the fluctuation of the particle number in a q- 
coherent state. 

The next three Sections (2, 3 and 4) illustrate in detail the 
situation in classical mechanics with the examples of one- 
dimensional, two-dimensional and three-dimensional oscil- 
lators. The introduction of the one-dimensional quantum 
analogues (the quantum f-oscillator) is given in Section 5 
and in the following one (Section 6 )  some algebraic relations 
are shown for the operators describing them. Then the 
eigenstates of a one-mode f-annihilation operator (f-coher- 
ent states) are considered in the Fock space (Section 7) as 
well as in different representations (Wigner and Husimi) in 
Section 8. Properties of such states are studied in Sections 9, 
10 and 11, namely, their evolution and completeness rela- 
tions with a remark on the Stone-von Neumann theorem, 
with the main end of underlining that they are not always 
coherent in the ordinary sense [16] .  Extensions to many 
modes are shown to be possible not only when they are 
independent of each other but also when there is a nonlinear 
coupling among them (Section 12). The current setup of 
quantum mechanics having been maintained, an application 
of the above objects in quantum optics is given in the last 
Sections 13, 14 and 15 obtaining new photon distributions, 
squeezing in the nonlinear coherent states, correlation of 
quadratures, and Planck formula deformation. 

2. Construction of Nonlinear Systems from Linear Systems 

It was shown, that in the classical limit the one-dimensional 
q-oscillator is represented by a reparametrized oscillator 
[ 9 ] .  The reparametrization is provided by a constant of 
motion and the associated differential equations exhibit a 
special kind of nonlinearity. Here, we would like to consider 
these systems from a general viewpoint : nonlinear systems 
as “reparametrized” linear ones. 

A linear dynamical system, say on R”, with coordinates 
x = ( x l ,  x 2 ,  ..., x , )  is described for any n x n matrix A by 
the differential equation 

i j = A : X k ;  A ~ E R ,  (1) 
with solutions 

x(t)  = erAxo; xo = x(to). 
To obtain new (nonlinear) systems from the above, we 
replace the globally constant matrix A with a matrix valued 
function B(x) and write the equation 

d d - Bj” = X ” B Z ( X )  - Bj” = 0. 
dt a x ,  

It means that the matrix elements of the matrix B are inte- 
grals of motion for eq. (2). For this new system, we can write 
the solutions as 

x(t)  = exp [ tB(xo)]xo .  

For each initial condition, eq. (2) reduces to eq. (1) and a 
particular case is the orbit-dependent time repar- 
ametrization. 

An example of such a deformed equation in field theory 
has been shown in [17] where a physical parameter was 
made dependent on Cauchy data. A particular family of 
such systems is when 

= f ( x ) A $ ,  

with f any constant of motion of the system. For instance, 
let us consider the three-dimensional isotropic harmonic 
oscillators 

i = wy; 

j , =  --OX; O E  R. (3) 
All constants of motion of this system are functions of 
b,,(x’yJ - dy’)  and aij(yi# + x’xj). If we set new frequency 
52 = 52[(bij(x‘yJ - xjy’), a i j x i  x j  + y i  yj)] and make the 
replacement w -+ 52 in eq. (3), we get a nonlinear system. 
Solution to this system is given by 

For each choice of the functional dependence of 52 on the 
constants of motion, we get a foliation of the carrier space 
R6 with leaves given by 

( 5 )  EA = ((x, y )  E R 6 :  52(x, y )  = A}. 
For each initial condition xo , y o  E EA the oscillatory 
motion has the same frequency for each one of the coordi- 
nates. 

It is however possible to start more generally with 

0 0  
(6) 

and “nonlinearize” the system by making different choices of 
the constants of motion for the different frequencies. For 
instance, we could take 

5 2 1  = f l ( x :  + y: ,  x i  + Y : ,  x: + Y:);  

522 =fz(x: + Y: 9 x:  + Yi > x:  + Y:); 

523 =f3(x:  + y: , x:  + Y: 9 x:  + Y:). (7) 
Now each mode will be “dynamically coupled” to the others 
in a different way. 

If r is the dynamical vectorfield, it should be noticed that 
when we replaced r withJT, i.e., we reparametrize r by a 
constant of motion, we get the same phase portrait for both 
vectorfields. If we reparametrize different modes of vibration 
differently, we change the phase portrait of the new system 
with respect to the original one of r. Thus, our “nonlin- 
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earization” procedure is more than a parametrization of the 
original linear system. 

3. Deformation of Linear Hamiltonian Systems and 

The above variety of choices has to be restricted if we start 
with a system admitting a Hamiltonian description and 
want to preserve the Hamiltonian character after we “repar- 
ametrize” it. The simplest choice to get a reparametrized 
Hamiltonian system is the following: Start with a linear 
Hamiltonian system 

Symmetries 

where 

H = x i  Ai y’ + Bij  yi JJ + Cijxi x j  

(the coordinates yi are the momentum components) and 
consider the new system associated with the Hamiltonian 
R =f(H). We get the new nonlinear equations of motion 
given by 

aH 
aYi 

ii = f ’ ( H )  - ; 

aH 
jj. = -f’(H) - 

axi (9) 

with f’(H) = aflaH. This system can be explicitly integrated 
as any linear system can be. This has already been demon- 
strated in [9]. 

To make contact with [9], we also show, however, a dif- 
ferent path to nonlinear Hamiltonian systems obtained from 
linear systems, from linear symmetries to nonlinear ones. If 
A is any n x n matrix, we denote by X ,  the associated vec- 
torfield setting X, = x i  Ai a/ax,. For a dynamical system, 
we prefer using the notation r instead of X,. The Lie 
algebra of symmetries for r contains all linear vectorfields 
X ,  such that [By A] = 0; this follows trivially from [X,,  
X,] = X[,,,]. In the case of the isotropic harmonic oscil- 
lator, we find that for the m-dimensional oscillator the sym- 
metry algebra is gl(m, C). Now we “reparametrize” any one 
of X, by using constants of motion for I‘. Had we started 
with matrix 9 generating symmetry transformations instead 
of infinitesimal ones, i.e., a- ’ A 9  = A (diffeomorphism in 
the differential geometric language), we could generate non- 
linear changes of coordinates by following the same idea of 
“reparametrization”. Generally, this procedure will turn 
canonical transformations into nonlinear noncanonical 
transformations. 

We deal with the two-dimensional isotropic harmonic 
oscillator on R4 
A. 1 = y: I ¶  j .  I = --xi; i = 1, 2 (10) 

and define the change of coordinates 

with H i  = x? + y?;  fi: R -+ R and no summation on i. In 
these new coordinates, the equations of motion have still a 

Physica Scripta 55 

linear form given by 

q .  = p :  

p . =  - 4  
1 1 ,  

i *  

Without loss of generality, we consider only one degree of 
freedom. In both coordinate systems, the dynamics admits a 
Hamiltonian description given respectively by 

and 

(14) 
d 

(b) {P, 4 )  = 1; R = h(p’ + 4’); f = {R, f}. 

However, using the Poisson bracket of (a) to compute the 
Poisson bracket in (b) for (p, q) as functions of (x, y )  given 
by the system of eqs (1 1) we find 

d 
{ f ( H ) x ,  f ( H ) Y }  = dH (Hf’ (H) )  z 1, 

i.e., the nonlinear transformation we have performed is non- 
canonical. The noncanonical property is there even if F ( H )  
is a constant f: To obtain the same right hand side of the 
Poisson bracket in (b), it is necessary to use for the indepen- 
dent variables (x, y )  the new Poisson bracket 

with it and the Hamiltonian function 

H’(x, y )  = $(x’ + y’)f’(x’ + y’), (1 6 )  

we have another Hamiltonian description in the coordinate 
(x, y )  for r. 

This can be written in symplectic terms as 

i,w = -dH; w = dx Ady (17) 

and 

(18) 
d 

i, 0’ = - d H ;  w’ = d~ (Hf’(H)) dx A dy. 

Because both H and fi are Hamiltonian functions for r, we 
can use H expressed as function of (p, q) through the inverse 
of (11) and the bracket { p ,  q}  = 1 to introduce a new vector- 
field. Otherwise, we can use 

and the Hamiltonian 

1 
2 

H = - (x’ + y’). 
In both cases, we get a “reparametrized” version of har- 
monic oscillator. In comparing the two procedures, it is 
clear that in one approach we have used the same Poisson 
Brackets (“commutation relations”) as before with a new 
Hamiltonian which is a function of the standard quadratic 
Hamiltonian. In the second approach, we use the same 
Hamiltonian function but the “deformed” Poisson brackets 
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(“deformed commutation relations”). It is this second view- 
point which allows the connection with q-oscillators, while 
the first one has suggested the interpretation of the classical 
counterpart as a nonlinear f-oscillator. However, it should 
be clear that both views are legitimate and both of them 
give rise to a nonlinear dynamics out of a linear one by 
taking recourse to a “reparametrization.” 

Having in mind the passage to quantum mechanics, we 
prefer turning now to complex variables in R4 and defining 
complex coordinates 

The complex structure in R4 is given by the matrix 

/ o  1 0 o\ 

satisfying J 2  = - 1. This matrix defines a complex structure 
commuting with the dynamical evolution associated with 
the isotropic harmonic oscillator 

The equations of motion are 

c i=  -ia; 

&* = ia*. (21) 

For the (p, q) coordinates, we have new complex coordinates 

This transformation is not “analytic” (we notice that ana- 
lyticity depends on the complex structure and here we have 
two alternative complex structures compatible with the 
dynamics). 

The equations of motion for these new variables are the 
same as (21) as it was seen earlier, i.e., eqs (21) are form 
invariant under the transformation (23). In these complex 
coordinates, if we take the new point of view, stemming 
from quantum mechanics, which takes the Hamiltonian as a 
primitive concept for the dynamics, we are naturally led to 
consider the following two Hamiltonians 

in the a-coordinates, and 

1 
H 2  = 2  t k t k *  

k 

in the {-coordinates. To compare, we express them in the 
same variables to find 

and 

1 
H Z  = 1 fk’ (nk)nk  * 

k 

We now use the same bracket for them, say 

{Ek, a!} = -i8kj. (28) 
We obtain two different dynamical systems, where the one 
associated with H, is not even necessarily isotropic. The 
evolution goes from a periodic orbit to an orbit whose 
closure is a two-dimensional torus, i.e., the associated 
systems are completely different. Of course, there is no con- 
tradiction. Indeed, to have the same dynamics using H ,  we 
should use different Poisson brackets, as it has been seen 
earlier. 

For the nonlinear oscillator obtained by means of the 
deformation functionJ; the equations of motion are 

d 
ci = -i - dn (nf’(n))a; 

(29) 

and are not invariant under the transformation (23), which 
indeed gives the equations of motion for another system of 
our class but with a different deformation function. They 
admit different Hamiltonian descriptions. For instance, 

d 
dn I. H = aa*; {a, U*} = i - (nf’(n)); 

-1 

o = ($ (nf’ (n)))  da A da*, 

2. H = nf’(n); {a,  a*} = -i; w = daAa*. 

It is now clear, that in the quantum picture these complex 
coordinates will be replaced by creation and annihilation 
operators. Therefore for the corresponding commutators, we 
can repeat what we have said for the Poisson bracket. 

4. Some Examples 

The first example we consider concerns the classical one- 
dimensional q-oscillator [9] where 

sinh Aua* 
r = J  aa* sinh I a ;  

sinh nu&* ‘* = L* sinh 1 
a*. 1 E R  

The Poisson bracket for the new variables can be computed 
using (28) and expressed in terms of themselves, by the use 
of the map ({, r*) + (U, a*), the inverse of (23) (which in this 
case exists). One then obtains 

{t, C*} = -i - 41 + 1 t I4(sinh A),, (32) sinh 1 
Physica Scripta 55 
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so that we can consider a new system described by such 
variables with Hamiltonian function 

H ( 5 ,  5* )  = rr*. (33) 
The equations of motion then are 

g = - .  1- J 1 + 15 I4(sinh 1)' 5 
sinh 1 

(and its complex conjugate) with solutions 

(34) 

(35) 

(and its conjugate). Such a system can be rewritten, of 
course, in terms of (a, a*) variables : in these coordinates, the 
original Poisson bracket is unchanged while the Hamilto- 
nian function is 

sinh 1au* 
sinh L H'(a, U*) = 

It is clear, that this new dynamical system has a phase por- 
trait which is the same as the usual linear harmonic oscil- 
lator. The only difference is in the frequencies, the new one 
being 

cosh la#* 1 
sinh 1 

U=- (37) 

We notice that aa* is a constant of motion for both systems. 
The deformation function used has given both energy and 
frequency exponentially growing with aa*. To have physi- 
cally more acceptable functions, it is not difficult to consider 
a slightly different deformation function. 

The other example we consider is the deformation which 
leads to the classical version of harmonious states to be dis- 
cussed in next sections. Here the deformation function is 
taken to be 

so that 

1 
r(n + 1) r(n t 1) 

The Poisson bracket 

(39) 

where the right hand side is the function of t<* which is its 
transform by the inverse of (23), remarking that the r func- 
tion on the positive real line has well defined derivative as 
well as inverse. 

5. Nonlinear Oscillators in Quantum Mechanics through 

We wish now to deal with the quantum analogue systems: 
we will remain in the usual formulation where the Fock 
space is better to describe the quantum harmonic oscillator. 
To go along the same lines as in the previous sections, we 
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Noncanonical Transformations 

stay in the Heisenberg picture and write the equations of 
motion for the harmonic oscillator amplitude a 

a =  -ioa 

and for its conjugate 

cif = iwa+. 

The transformation (23) is written here as A = af(ata); 
At =f(ata)at. It is noncanonical since it does not preserve 
the commutation relations. The operators A and At evolve 
with the same equations, i.e., 

A = - i d ,  kt = ioA+ 

in complete analogy with the classical case. We have in our 
Hilbert space the vacuum state IO) which satisfies 

a10) = 0, 

as well as 

AIO) = 0. 

This allows us to construct two bases in the vector space 
having this vector in common. One is the standard (Fock) 
basis 

which is orthonormal in standard scalar product 

I m> = 4lfnn 

Another basis is constructed using the operator At, 

- At" 
In) =- IO). J2 
We define a new scalar product in the same vector space 
which gives 

( n  16) = dnmq 

Providedf(ata) to be nonsingular, we can then speak of two 
Hilbert space structures carried by the same vector space. 

The adjoint with respect to this new scalar product does 
not coincide with the old one. We can then define the oper- 
ators 

b*jfi) =@In 7 1); blii)  = 1); 

where * means the adjoint in the new scalar product. These 
operators satisfy the commutation relations [b, b*] = 1. 
Taking the Hamiltonian H = wb*b we have for the oper- 
ators b, b* the equation of motion of the harmonic oscil- 
lator. This is actually the situation with A and A t .  

In the second Hilbert space, the operators A and At have 
an identical representation as a and U' have in the Fock 
space and so they satisfy the commutation relation [A ,  
At] = 1. Thus, for one and the same vector space, we have 
the possibility to introduce two Hilbert space structures. As 
for the dynamics of the harmonic oscillator, we have two 
different descriptions, which parallel the alternative Hamil- 
tonian descriptions of the classical oscillator. Therefore, 
much as we did for the classical case, we can use the new 
Hamiltonian and the old commutation relations to get a 
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“deformed‘ dynamics, or vice versa. To keep the current 
physical interpretation of the operators a and at, we choose 
to maintain the value of their commutator which is directly 
connected with measurements, while we will consider 
deformed Hamiltonian operators. Then operator of 
“energy” B is 

W B = - (A tA  + AAt) .  
2 

In the Fock space, its eigenvalues are 

w 
E,, = 7 [(n + l)f(n + l)f*(n + 1) + nf(n)f*(n)]. 

L 

We illustrate the situation with an example and consider the 
nonlinear noncanonical transformation such that 

ii sinh I ’  
(43) 

which is invertible, 

5 (44) 
In [I? sinh I + Jfl’ sinh’ I + l]]’’’ 

,=a[ AA 
where 

I? = A ~ A .  (45) 

The operators A, At acting in the same Hilbert space as the 
operators a, at (the original Fock space) satisfy in this case 
the commutation relations 

(46) [ A ,  At] = fl(cosh I - 1) + JI?’ sinh’ I + 1, 

as can be seen expressing all the operators in terms of 
matrices. 

If one has the linear dynamics for the operator a with 
frequency equal to unity, i.e., 

b + ia = 0, (47) 

and boson commutation relation for the operators a and at, 
the same dynamics exists for the operator A :  

(48) A + iA = 0, 

since 

A + iA = (U + ia)f,(ata) (49) 

and the functionf, is an integral of motion. The Hamilto- 
nian for this dynamics may be taken as 

1 
I 

H = - In [A tA  sinh I + J(AtA)2 sinh’ I + 11 + 9, (50) 

and one obtains 

[A ,  HI = A. 

For the same dynamics, it is possible however to have a 
different Hamiltonian formulation. In one case, it is related 
to the above Hamiltonian, while in another Hilbert space 
we define the Hamiltonian 

H = AtA + 3 (52) 

with commutation relation 

[A ,  At] = 1, (53) 

and again 

[A ,  H’] = A.  (54) 
Thus, we see that analogous to classical mechanics there are 
possible alternative descriptions of a quantum system. For 
the same equations of motion, for the operators we have 
two different Hamiltonians with corresponding different 
commutation relations. 

The same situation is anyhow present also for the class of 
nonlinear oscillators we have considered. There, continuing 
with the example of thef, deforming function, we start with 
the dynamics for the q-oscillator [9] given by the equation 

[sinh A(ata + 2) - sinh Iata]a = 0. (55) 
1 

b+ i -  
2 sinh I 

It is worth remarking at this point, that if we multiply the 
last equation from the right hand side by the same function 
f,(ata), for instance, we are led to a new f-oscillator. Since 
this function is an integral of motion for the above q- 
nonlinear equation, we have in fact for operator (43) the 
equation of motion 

sinh 3, 
I k + i -  (cosh Iata)A = 0. 

But after (44), 

1 
uta = - In [AtA sinh I + J(AtA)’ sinh2 I + 13, 

I 

the obtained dynamics is different from the initial one. 

nian description is given by 

(57) 

We return now to consider eq. (55) and the first Hamilto- 
. 

1 
2 sinh I H = -  [sinh I(ata + 1) + sinh Iata]; [a, at] = 1. 

(58) 

In another Hilbert space, let the operators B and Bt evolve 
with the equation 

[sinh I(BtB + 2) - sinh IB+B]B = 0. 
1 

B+i -  
2 sinh 3, (59) 

If we take the commutation relation 

[B, Bt] = BtB(cosh I - 1) + J(BtB)’ sinh’ 3, + 1, (60) 

the form of the Hamiltonian for this system differs from the 
form of Hamiltonian (58). 

The important physical consequence of the existence of 
the same dynamics for quadratures with different com- 
mutation relations is the possibility of existing identical har- 
monic vibrations of two kinds. One vibrational process 
respects the Heisenberg uncertainty relation since quadra- 
tures satisfy standard boson commutation relations. 
Another vibrational process is compatible with different 
uncertainty relation for its quadratures since they satisfy dif- 
ferent commutation relations. Nevertheless, from the view 
point of dynamics (harmonic vibrations) both cases are 
undistinguishable. 

6. f-oscillator Operators 

The operators A and At represent the dynamical variables 
to be associated with the quantum f-oscillators. The well 

Physica Scripta 55 



534 V .  I. Man’ko et al. 

known q-oscillator operators belong to this class. In this 
section, after discussing some algebraic features useful for 
the f-generalization, we refer also to other examples of f- 
oscillators already taken into consideration. 

We start by recalling some notions about the harmonic 
oscillator operators a and a t  whose algebraic structure is [a, 
a’] = 1. In the Fock space with a = (ut)t; A = uta, the basis 
is given by the eigenfunctions of A 

A I n ) = n l n ) ;  n E Z + .  (61) 

We have also 
m 

1 = C  In>(nl; ( n l m )  = d,, 

and Vf: Zf --t C 
0 

m 

f(4 = c fo’) IjXj I * 
j = O  

Consider now a “distortion” of a and ut of the form 

A = a,A) = f(A + 1)a; 

A+ =f’(A)u’ = U’ft(A + 1) (64) 

[A ,  A] = A ;  [At, A] = -A?.  (65) 

and note that 

The functions we are considering can be made dependent in 
general, also on continuous parameters, in such a way that 
for particular values of them the usual annihilation and cre- 
ation operators are reconstructed. We will say then that we 
are in presence of continuous deformations. This was the 
case of q-deformations [18]. In principle, one may consider 
discontinuous deformations, too. 

Since 
m 

a =  1 &In-  l>(nl ;  
f l = O  

the same Fock space is a carrier space for A and A t ,  i.e., 

A = 1 J;;f(n)In- l><nI;  

A+ = 1 J;;j*(n) 1 n>(n - 11. 

(0 

f l = O  

m 

(67) 
0 

This realization may or may not be irreducible depending 
on the assumed functional form off(n). 

Following the choice of not deforming the commutators 
of the physical variables (a, at), the commutator between A 
and At can be easily computed and by using (67) reads 

F(A) = [A ,  A’] = (‘i + l)f(ri + l ) ( f (A + 1))’ 

- fif(f(yi)df(A))’, (68) 
while the “q-commutator” is 

G(A) + [ A ,  At], A AA’ - qAtA 

= (A + l ) f (A + l ) ( f (A + 1))’ 

- qAf(fi)df(A))’; q E R. (69) 
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We have, also 

F(2)  - G(A) = (4 - l)Af(Ap(A). (70) 
Since only fft occurs, the phase off is irrelevant and we 
may, without loss of generality, choosefto be real and non- 
negative : 

f’(A) =f(A). (7 1) 
Alternatively, given the functions F or G, assumed hermitian, 
we obtain the following solution to eqs (68) and (69) 

and 

f(n) = - 1 qJG(n - j  - 1) ; n # 0, (73) J;; r‘ j = o  Y’z 
respectively, with f(0) arbitrary in both cases. Such solutions 
are unique, having been obtained by construction. Of 
course, we may use complexfto construct the functions F 
and G in (68) and (69). However, to obtainffrom F and G, 
we remark that F has to be real as well as G. Then in (64), 
we have the freedom of choosing an n dependent phase off, 
which corresponds to construction of generalized coherent 
states [19, 201. These generalized coherent states were 
analyzed in [21] were different types of interesting new 
states were introduced. 

As was mentioned earlier, in the case of the q-oscillator 
operators, the function f depends also on a continuous 
parameter in order to obtain the harmonic oscillator oper- 
ators as a limiting case. Starting with the q-commutation 
relation [7, 81 

(74) G(A) = q-’; I = log 4; I E R, 
using (73) one obtains 

(75) 

setting 

fq(0) = 1. (76) 
We see from (58)  that the eigenvalues of the “energy” oper- 
ator grow exponentially with increasing occupation number. 

One can remark that the phase operators V ,  V i  in [22] 
are actually deformations of the Bose operators of the kind 
we are studying and lead to the harmonious states [23] to 
be considered below. In this case, 

f(n) = - fh , (77) 
1 

6- 
so that 

A In) = 1 n - 1); At In)  = In + 1); n # 0; A 10) = 0. 

(78) 
When many degrees of freedom are involved, we have two 
possible choices. The first one defines q-oscillators which 
satisfy q-commutation relations among a single degree of 
freedom, but mutually commuting between different degrees 
of freedom, possibly with different functions for the various 
degrees of freedom. Another choice is to make f dependent 
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on the total occupation number operator 

A,,, = A i .  
i 

For two degrees of freedom, this was discussed in [SI. 

7. Nonlinear Coherent States 

(79) 

Coherent states were originally introduced as eigenstates of 
the annihilation operator for the harmonic oscillator and 
then widely used in physics, particularly in quantum optics. 
This is therefore a concept of algebraic origin and having 
now constructed a similar annihilation operator it is 
natural, following the same procedure, to construct a new 
class of f-coherent states in the Fock space. This construc- 
tion is in general different from other ones [24]. Further the 
f-coherent states may not be preserved under time evolution. 
Nevertheless, we are willing to call them f-coherent states 
for an easy identification, of the kind already proposed for 
the eigenstates of the q-annihilation operator which were 
named q-coherent states [7, 251. 

Let us take for the one-mode case the operator A (64). 
Then one can consider the eigenfunctions la, f )  of A in a 
Hilbert space. They therefore satisfy the equation 

A l a , f )  = a l a , f ) ;  a E C. (80) 
Looking for the decomposition of I a, f )  in the Fock space 

W 

we obtain for the coefficients c, the following recurrence 
relation 

This .gives 

c, = C O  

in which 

a" 

J" ' 
(83) 

To fix co , we use the condition 

and obtain 
/ W  I "12 ,  \ -112 

To emphasize the dependence of co on f and 1 a 1 ,  we will 
write 

CO = Nf,= (87) 

and in order to have states belonging to the Fock space it is 
required that 

0 -= N f , &  -= 0 0 ;  (88) 

therefore not anyfand I a I are allowed. We will denote with 
p the positive number such that, given f, the above series 
converge V I a I G /5. The scalar product is easily written 

(89) 
No further constraints are then put on f and p .  

any real function on Z', the state I a, C) defined by 
It should be remarked furthermore that, given C(n) = C, 

is an eigenfunction of some A. In fact, the corresponding 
functionfis found to be 

1 cfl-1 f(n) = - - 
&l c, 

Such eigenstate can be normalized if the f so obtained 
satisfies (86). In the case 

fb) = 1, (92) 
1 a, 1) denotes the usual coherent state and 

(93) 

a can be any complex number. 
As anticipated, the known q-coherent states [7, 251 turn 

out to be a particular case of f-coherent states, which we 
might also call fq-coherent states. Normalization factor of 
such states is 

in which 

[n]! = - 

Using the notation (84) we can also write 

. . . I  sinh I n  sinh I(n - 1) 
sinh A sinh I (9 5) 

[n] ! = [nf,z(n)] !. (96) 
It is seen that a can be any complex number. For the scalar 
product, we have 

I a IZn 1 
(alp) = (zoE)-l(;og)-l n=O 2 ---(a*@)". Cnl! (97) 

Harmonious states [23] are eigenstates of the annihilation 
operator deformed by the factor fh (77) to which corre- 
sponds the normalization 

Nh,# = (1 - la12)-li2, (98) 
and the acceptable tl must have modulus less the 1 . Follow- 
ing (80) they can be denoted 1 a , f h )  and their scalar product 
is 

(99) 

8. Nonlinear Coherent States in Different Representations 

Since the state 1 a , f )  is given as series of Fock states, we can 
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easily write the wave function of these states in different rep- 9. f-Coherent State Evolution 
resentations explicitly. 

In coordinate representation, the wave function is Here we offer a few considerations with the aim of under- 
lining the peculiarities of the new classes of states in the 

" 1  Fock space, cautioning against relying too much on the 

We consider our field mode evolution to be guided bv the 
a, e-Xz'2 (s) H n ( x ) 5  (loo) abuse of their name. qg) = R- 1 1 4 ~  

n = O  2 n![f(n)l! 
Y 

where H, is the Hennite polynomial of degree n. 
For the momentum representation, the formula is the 

same. 
For the Bargmann representation (the usual coherent 

states), the wave function ( z  I a, f),  where we use the basis 

equation of motion with the quantum Hamiltonian 

( 109) 
i.e., in the variables (a, at) it is the system with the selfin- 
teraction described by the Hamiltonian 

A = ) ( A 4  + AA+), 

I z ) ( z  E C )  with a I z )  = z I z ) ,  takes the form 
00 

For a continuous parameter dependent f, in the limit f+ 1 
the usual wave function is recovered 

= exp ( 1 4 2  - la12 + z*a) 
2 

In the Wigner-Moyal representation [26] the density 
matrix for the f-coherent state reads 

x (-a)na*m[J5(x - ip)]m-"~;-n(2(x~ + p2) ) ,  

(103) 

where Lk denotes a generalized Laguerre polynomial. For 
the particular case of q-oscillatorf =f , ,  

x (-aya*m[$(x - ip)lm-"~;-"(2(x~ + p 2 ) ) .  (104) 

Finally, we consider Husimi-Kano [27] Q-function of f- 
coherent states. In the definition, Q&z, z*) is the diagonal 
matrix element of the density operator I $)($ I for the state 
I $) in the usual coherent state basis. For an f-coherent state 
1 a, f) ,  we can write 

. (105) 
a f f (z*a)m (za*)" 

Q,(z, z*) = e-IZ1'N?, 
m = O  n = O  m![f(m)]! n ! [ f ( n ) ] !  

For q-coherent state, the Q-function is 

A = i[riffz(ri) + (ri + l)f2(ii + l)]. 
Then the evolution operator 

~ ( t )  = exp ( -  itA(ri)) (111) 
for this quantum nonlinear oscillator gives the following 
solution to the Heisenberg equation of motion for the oper- 
ator a(t) 

a(t) = Ut(t)aU(t) = a exp [ -iw(ri)t], 

o(ri) = a[(?? + l)f2(i2 + 1) - (ri - l ) f2(r i  - l)]. 

(112) 

(113) 

where 

Thus, we see then that also the quantum f-oscillator vibrates 
with a frequency depending on the amplitude. 

Turning to the Schrodinger picture, we can remark that 
at time t the harmonic oscillator has become a deformed 
oscillator of the kind we discuss. The deformation function 
is actually complex of modulus 1 and we will denote it with 

F f ( n ,  t )  = exp it 

(114) 

I. (n  + l)f2(n + 1) - (n - l)f2(n - 1) 
2 [ 

It is possible, in fact, to introduce the notion of f-coherent 
states also for complex deformation functionsf as all formu- 
lae go through unaltered. 

Then it can be seen, that if initially the state was the usual 
coherent state, i.e., in an eigenstate of the operator a, then it 
evolves becoming at time t an F f(t)-coherent state. Physi- 
cally it means that f-nonlinearity creates the Ff(t)-coherent 
states in the evolution of a usual coherent state. Due to this, 
the photon statistics of the initial coherent state, to be dis- 
cussed later, is influenced by the f-nonlinearity of the field 
vibrations. It is evidently different from the usual coherent 
states. Interesting physical example of the f-nonlinear 
systems is quartic nonlinear oscillator usually used for mod- 
elling the Kerr medium. 

For the harmonious states, the Wigner-Moyal function is 

Wh(x, p )  = 2(1 - I a 12)e-(xZ+pZ) 

10. Irreducibility and Deformation 

The usual Stone-von Neumann theorem states that the 
operators q and p (or a and at) have no invariant subspaces 
in the Hilbert space of the oscillator states. Iff(n) is chosen 
to have no zeroes in Z', the operators A and At are irre- 
ducible over the Fock space. If there are one or more double 
zeroes, the Fock space breaks up into a countable number 
of irreducible representations (compare with Master Analy- 
tic representations [28]). If the zeroes are simple zeroes, 
some of the reduced pieces will not allow a unitary 

x 8 ( -  a)"u*mC@(x - ip)lm-n 
m=O n = O  

('07) x L;-"(2(x2 + p") 

and the Husimi-Kano function 

Q h ( Z ,  Z* )  = e-'z12(1 - 101 1') 
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- ( z * u ) ~  -, (za*)" 
(108) 

m = O  n = O  J7 f i  resepresentation. 
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It is easy to prove, that if the functionf(n) has no zeroes 
at positive integers, the Stone-von Neumann theorem can 
be extended to the case of the operators A, A t .  So for the 
q-oscillator, we are just in this case. Here the map a + A  is 
invertible and the statement is obvious. More interesting 
situations arise when, for example, the function f(n) has one 
double zero at the integer no, i.e., f(no) = f'(no) = 0. Then 
the subspace of the states 

n=O 

is an invariant subspace for the operators A,  At constructed 
by means of such functionf(n), The subspace of the states 

m 

I$')  = C SnIn) (116) 
n = n o + i  

is another invariant subspace for the above operators. Thus, 
the coherent states defined in this case do not contain the 
states with photon numbers less or equal to no .  In this case, 
the coherent state contains the states with photon numbers 
starting from no + 1, 

(117) 
U" OD 

l a , " f>=N I n), 
n=no+1 f i [ f ( n ) l !  

where 

i i !  = n(n - l)(n - 2)...(n0 t l), 

c . ~ ) I  =f(n)f(n - 1) - - .f(no + 11, 
(1 18) 

(119) 

and 

n = n o + i  

11. Completeness Relations 

In this section, we will show how the f-coherent states form 
a complete system of states in the Hilbert space for non- 
singular f(n), so that any state vector may be represented as 
a superposition of the f-coherent states. There may be differ- 
ent forms of completeness relations since the set of f- 
coherent states are over complete. 

We introduce first an integral representation for the iden- 
tity operator which uses the analyticity of the f-coherent 
states and the Cauchy theorem. By construction, the state 
N;,',Icl) is an analytic vector valued function of the 
complex variable a. Hence, the following relation holds 

Inserting this formula into the known resolution of identity 
(62) we obtain 

x (Afl N~,',N,1S(aB*)-"-'n!(Cf(n)l !I2. (122) 
These are line integrals along contours taken in a region of 
the complex planes where the convergence is guaranteed for 
the series considered in Section 7 to define the normal- 
ization constant Nf, ol. The introduced nondiagonal 
resolution of identity permits us to calculate the coefficients 
necessary to represent any vector as a superposition of f- 

coherent states. We also point out that the components of 
the f-coherent state in any basis are the generating functions 
for components of the Fock states. It means that for any 
matrix representing an operator in Fock basis, the matrix 
elements of the same operator in f-coherent state basis are 
the generating functions. 

In order that such states can be considered as coherent 
states in the usual definition [24], one should write a diago- 
nal resolution of the identity 

where p(a) is the weight function. Then the following rela- 
tions have to be satisfied 

2n [pp2n+1[Nf(p)]2p(p) dp = n!([f(n)]!)2; Vn E 2'. 

(124) 

These are actually an infinity of moment equations for the 
measure p. For the usual coherent states, as well as for the 
eigenstates of the q-deformed annihilation operators, such 
measures exist [25] and in both cases the integral is over the 
entire complex plane. 

As far as the harmonious states of Section 7 are con- 
cerned, applying the general resolution of identity (62) one 
obtains 

(125) 

after having inserted the normalization constants (98) for 
the harmonious states 1 a, fh) and I !, fh). We can make this 
integral along two contours as an integral over the phases of 
a and b, if the contours are chosen according to 

a = ae'+; fl = ae'@, (126) 

and 0 < a < 1. Then the double contour integral transforms 
into 

I = -  4n2(1 a2 - a2)2 S ' * l f f d 4  d* 

- @) 

a 2 e ~ ( 4 - @ )  - 1 lae'+,f)(ae'@,f,I. (127) 

We conclude remarking that for each a E (0, 1) there is a 
completeness relation in terms of projectors on harmonious 
states. 

It is possible, however, to have a resolution of the identity 
with the integral depending on one parameter only, once 
states with norm not necessarily strictly positive are 
allowed. In [23] such states have been considered after 
having introduced the following scalar product 

(.I!> = (1 - a*/% 

Then, since 

/ a , f , )  =(1 - d i n ) ;  la1 < 1, 
OD 

n = O  
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we have 

and 

Hence, 

12. Two-mode f-Coherent States 

For usual multimode harmonic oscillators, there exist gener- 
alized correlated states [29, 301 in which the mode quadra- 
tures are statistically dependent. The quasidistributions for 
these states have Gaussian form and the photon distribution 
function is described by multivariable Herrnitte polynomials 
[31]. It is possible to extend nontrivially the construction of 
one-mode f-oscillator to many modes. In particular, for 
two-mode state we consider the two operators 

A, = a f ( A ) ;  i = 1, 2, (128) 

A = A, + A,; Ai = a: a, (129) 

where 

(the operators ai satisfy boson commutation relation). These 
operators commute and for this reason we can construct 
algebraically the two-mode f-coherent state I a,, a2 ,  f )  
defined by the following equations 

Ai I ai, ~2 f) = ai I a2 7 f), i = 132. (130) 
Considering the series expansion 

where the Fock states 1 n,, n2 ) satisfy 

4.1 I n,, n 2 )  = n ,  I n,, n 2 ) ;  n1 E z+ 

4 a2 In,, n 2 )  = n2  I n,, n 2 ) ;  

(132) 

(133) 

and 

E 2’. 

The solution of the recurrence relation which is obtained for 
the cnlnz’s is 

(1 34) 

with coo,  fixed as before by normalization, being 

\n1=o n 2 = 0  / 

(135) 
The two-mode f-coherent state can be now defined as 

x In,, n z ) ;  ui E C; i = 1, 2. (136) 

It should be remarked that in this form there is a coupling 
between the two modes, as there is a dependence of each of 
them on the total energy, this interaction between the two 
modes in general is nonlinear. 

Another generalization for two-mode coherent states is of 
course obtained by means of the product of two one-mode 
f-coherent states, so that there is no interaction between the 
two modes. After defining 

Ai = af,(ni); i = 1, 2 (137) 

and finding their eigenstates, we can make the tensor 
product obtaining 

la,, a,,f,,f2) = ( 2  i I ~ 1 1 2 n 1 / ~ 2 / 2 n z ~ ~ l ~ ~ 2 ~ ~ - ’  
n1=o n 2 = 0  

x In,, n z ) .  (138) 

In the case f, = f2 = 1, we have the usual two-mode coher- 
ent states, namely, 

(139) 

13. Physical Application of f-coherent States 

We give the examples of how the notions so far discussed 
might be of some interest in dealing with physical problems. 
With the choice made and repeatedly illustrated, we can 
continue interpreting In)  as the state containing n quanta, 
also when it appears in a series representing an f-coherent 
state. Recalling the wide use made in quantum optics of the 
harmonic oscillator formalism, denoting by I n )  a state con- 
taining n photons, our examples will all be related to this 
interpretation. 

In the usual coherent state I a, l), the particle distribution 
is given by the Poissonian function 

with mean photon number 

( n ) ,  = IaI2 (141) 

and dispersion 

Then the ratio of the above quantities c, ,  , /(n), = 1. 

become 
In the case of f-coherent state the above equations 

(143) 
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The mean photon number and dispersion are 
m 

and 
m / m  \ 2  

while their ratio af,,/(n)f can be less or greater than 1, 
producing for a given f either sub-Poissonian or super- 
Poissonian statistics. 

For the case considered in Section 10, where f has zeroes, 
the photon distribution function P(n) vanishes for n < no 
and 

The photon distribution in the first of the two gener- 
alization for two modes (128) is 

(147) 

and for the second one (137) reads 

Pfi, fz ,  a i .  az = P f i ,  a i p f z ,  az (148) 

We emphasize the fact that in the latter case the two modes 
are independent and there is no correlation. 

On the contrary, in the previous two-mode generalization 
a correlation exists between the modes: in facts if one gives 
the interpretation to the f-coherent states as the states 
related to deformation of the annihilation operator due to a 
specific f-nonlinearity, in the first case, this happens through 
the total energy and then we can now conclude that this 

and the dispersion depends of course on the nonlinearity 
parameter A. 

The photon distribution demonstrates the fast decreasing 
of the distribution function in comparison with the Poisson 
distribution function; the q-nonlinearity makes photon sta- 
tistics sub-Poissonian. The q-nonlinearity and some other 
types of f-nonlinearities may influence the statistical proper- 
ties that can be checked by Hanbury Brown-Twiss-like 
experiments and the presumed detection of sub-Poissonian 
counting distribution in quantum optics. 

14. Squeezing and Correlation 

Now we will calculate the squeezing and correlation of the 
quadrature components in the introduced f-coherent states. 
We face, in fact, the problem since the discussed nonlin- 
earity (for example, q-nonlinearity) of the field produces the 
state which is f-coherent state. Then this nonlinearity yields 
the phenomenon of squeezing and correlation of the field 
(photon) quadrature components. It is possible to calculate 
the dispersion and correlation of the quadratures explicitly. 
To do this we will take advantage of eq. (66), which gives 
the expression 

1 a=- 
f(Tz + 1) A ;  

Then the quadrature mean values are expressed through 
m I 1211 

yelding 
particular nonlinearity of the field produces a correlation 
among the modes. In the case of q-oscillators, we obtain for 
the photon distribution in the one-mode q-coherent state 

( a , f l  

I a Izn 
X 

[sinh Anlsinh A]! ’ 
(149) 

The property of this distribution is that, for large 
n(n % A-’), the probability to have n photons differs essen- 
tially from Poissonian distribution due the exponentially 
decreasing of the denominator. The mean photon number 
(n), is given for q-nonlinear field by 

j = o  [sinh Aj/sinh A] 

n I a 1 2 n  m zo [sinh An/sinh A] ! ’ 

the second moment by 

(n’)q = ( jo [sinh Aj/sinh A ]  ! 

n2 I a IZn m zo [sinh Inlsinh A ]  ! ’ 

(a,  fl P 

The dispersions may be calculated from the relations 
m 

m I U iZn 

(157) 

as 

m I IZn 

(158) 

Physica Scripta 55 



540 I/. 1. Man'ko et al. 

m I 12n 

(159) 

Thus, for quadrature dispersion 6, = (a, f l  x2 I a, f) - (a, 
f l  x la,f)', we have 

(160) U, = 3 + pxa 2 + p:a*2 + vxaa*, 

where 

I f m  I _ _  12n 

and 

For the other quadrature dispersion gP = (a, f l  p 2  I a, f )  
- (a, f l  P 1 a, f > 2 ,  we have 

(163) bp = f + ppa2 + ,uLp*a*' + vpaa*, 

where 

and 

/ m  I _. 1 2 n  

Depending on the function f ( n )  the dispersion o,(r~~) may 
become less than 1/2 , It means squeezing. One can calculate 
correlation of the quadrature components in f-coherent 
states as 

a2 - a*2 

2i = x p  = 

Then the quadrature correlation coefficient r = c x p / f i p  
is not equal to zero. Thus, the f-coherent state has the pro- 
perty of being a correlated state [29]. The invariant =,up 
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minimize the Schrodinger uncertainty relation [32,33]. 
is larger than 1/4. Thus, the f-coherent states do not 

15. Deformation of Planck Formula 

We will discuss what physical consequences may be found if 
the considered f-nonlinearity influences the vibrations of the 
real field mode oscillators like, for example, electromagnetic 
field oscillators or the oscillations of the nuclei in polyato- 
mic molecules. 

First, it will be seen that this nonlinearity changes the 
specific heat behaviour. To show this, we have to find the 
partition function for a single f-oscillator corresponding to 
the Hamiltonian H = (AAt + AtA)/2 

n = m  

Z(T)  = C ~ X P  (-BEn), (167) 
n=O 

where the variable 1 is the inverse temperature T -' and E, 
was given in eq. (42). For the evaluation of the quantum 
partition function for an ensemble of q-oscillators [9] we 
first note that in this case 

[sinh A(n + 1) + sinh An]; A = log 4, 
1 

sinh A 
E, = - 

and obtain that the specific heat decreases for T -+ CO as 

1 
CK- 

In T '  

Thus, the behaviour of the specific heat of the q-oscillator is 
different from the behaviour of the usual oscillator in the 
high temperature limit. This property may serve as an 
experimental check of the existence of vibrational nonlin- 
earity of the q-oscillator fields. 

The q-deformed Bose distribution can be obtained by the 
same method and one has [9] 

A 2  1 -2 (n>  = n o  - B a CzKn 10 - (Elo2 

+ 4((n3), = -iio(n2)o) + (n")o - ii0(n3)0], (169) 

in which ti, is the usual Bose distribution function and 

(170) 
B "  
2 n = O  

- 
(nk)o = 2 sinh - nke-p(n+1/2) 

Calculating the partition function for small q-nonlinearity 
parameter we have also the following q-deformed Planck 
distribution formula 

( n )  = e)io/kT - 1 kT (ehw/kT - 
e3hw/kT + 4e2ho/kT + efiw/kT 

- A 2  - 1 

(171) 
It means that q-nonlinearity deforms the formula for the 
mean photon numbers in black body radiation [19]. 

One can write down the high and low temperature 
approximations for the deformed Planck distribution 
formula [34]. For small temperature, the behaviour of the 
deformed Planck distribution differs from the usual one 
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For the high temperature, the nonlinear correction to the 
usual mean photon number also depends on temperature 

(1 73) 

As it was seen, the discussed q-nonlinearity produces a cor- 
rection to the Planck distribution formula (mean oscillator 
energy) and this may also be subjected to an experimental 
test. 

As it was suggested in [lo] the q-nonlinearity of the field 
vibrations produces blue shift effect which is the effect of the 
frequency increase with the field intensity. For small nonlin- 
earity parameter 1 and for large number of photons n in a 
given mode, the relative shift of the light frequency is 
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w 2 ,  

This consequence of the possible existence of a q- 
nonlinearity may be relevant for models of the early stage of 
the Universe. 

Another possible phenomenon related to the q- 
nonlinearity was considered in [35], where it was shown, 
that if one deforms the electrostatics equation using the 
method of deformed creation and annihilation operators, a 
point charge acquires a form factor due to q-nonlinearity. 

- 

16. Conclusion 

Starting with the example of the harmonic oscillator, we 
have exhibited a family of associated nonlinear systems 
which are completely integrable, both in classical and 
quantum physics. 

We have shown that q-nonlinearity, associated with 
quantum groups, is a subclass of a more general class of 
possible nonlinearity. These aspects are related to the exis- 
tence of alternative Hamiltonian descriptions for the har- 
monic oscillator. 

A class of states has been considered in the Fock space 
through the deformation process applied to the harmonic 
oscillator operators. Such states have been described as f- 
coherent states (or nonlinear coherent states), harmonious 
states and q-coherent states being particular examples of 
them. Their different representation have been constructed, 
like the Wigner-Moyal and Husimi-Kano distributions. It 
is shown how nonlinear couplings between different modes 
are easy to obtain. 

Keeping unaltered the current physical identification of 
the Fock states, a possible use is presented in the field of 
quantum optics, obtaining deformed photon distributions 
and related physical quantities. Physical consequences of the 
deformed vibrations, like the Planck distribution deforma- 
tion, are then reviewed for the q-oscillators, where a blue 
shift effect exists. The related phenomena were studied 
recently [36-38). In [36] the estimation of upper limit of 
q-nonlinearity of the electromagnetic field vibration was 
done. 

The studied nonlinearities, if they exist, for the electro- 
magnetic field or for the gluons, may influence the particle 
decays, correlations in particle multiplicities, and a change 
in the Hanbury Brown-Twiss experiment results. It would 
naturally affect the stimulated emission rates and hence the 
radiative equilibrium in the presence of matter. 
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