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We present results on the relationships between persistent currents and the known conservation laws in the
classical Toda ring. We also show that perturbing the integrability leads to a decay of the currents at long times
with a time scale that is determined by the perturbing parameter. We summarize several known results con-
cerning the Toda ring in one dimension, and present new results relating to the frequency, average kinetic and
potential energy, and mean-square displacement in the cnoidal waves, as functions of the wave vector and a
parameter that determines the non linearity.
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I. INTRODUCTION

Toda’s nonlinear lattice1 is one of the very few examples
of nonlinear lattices in condensed-matter physics, where ex-
plicit analytical solutions are available for the dynamics.
There are several aspects of condensed-matter physics where
the Toda lattice is a useful model. Toda himself applied his
nonlinear lattice to understand heat propagation2 and further
studies with added impurities throw interesting light on this
phenomenon.3 Interestingly, the lattice has also found recent
applications in the context of the dynamics of DNA,4 where
the Toda interaction is a reasonable representation of the
known nonlinear couplings between base pairs. It has also
been used to represent the potential of hydrogen and peptide
bonds in the � helix.5

In this paper we study in detail the Toda lattice with pe-
riodic boundary conditions �the Toda ring�. Our aim is two-
fold. First we derive several noteworthy results. Second,
since the Toda lattice and its properties are less well known
to students of condensed matter than they deserve to be, we
collect together some of the basics of the model and its so-
lution in a form and notation that is standard in condensed-
matter physics.

The excitations of this lattice are not phonons as in a
harmonic lattice but can be expressed in terms of nonlinear
excitations that are termed solitonic. For periodic boundary
conditions the excitations are more properly the cnoidal
waves corresponding to a family of waves characterized by a
wave vector and another parameter, related to the nonlinear-
ity of the excitations, namely, the elliptic parameter m dis-
cussed below in Sec. II A. The lattice is very simple to de-
scribe and the solution is both beautiful and instructive.
Surprisingly, we find that the dispersion relation of the exci-
tations given by Toda is only correct in the limit of weak
anharmonicity or long wavelength. Here, we give a complete
expression, which does not seem to have been calculated
before.

Soon after Toda found the exact solution, his model was
found to be exactly integrable,6,7 i.e., it has an infinite set of
“generalized conservation laws.” These conservation laws
are expressed through conserved currents that Poisson com-
mute with the Hamiltonian as well as each other and the
stability of the solitons is understood to arise from the exis-
tence of these currents.

There is considerable interest in the role of the conserva-
tion laws in the transport of heat or energy and the Toda
lattice provides an excellent model to test some ideas about
their role in transport, as detailed below. Since the model is
classical we can study reasonably large systems �up to 64
atoms in our largest studies�, unlike in quantum systems
where the Hilbert space grows exponentially with the num-
ber of sites.

We address two specific issues in transport theory in this
paper. The first is the role of integrability of the model in
determining the exact value of the asymptotic correlation
function of the energy current—this value provides us with
the coefficient of the delta function in the thermal conductiv-
ity at zero frequency. It is known as the Drude term in the
Kubo conductivity and is widely discussed in current litera-
ture. The second issue concerns the role of perturbations of
integrable models, whereby conservation laws are destroyed.
We present results on the decay of the energy current in a
slightly perturbed Toda lattice for various values of the pa-
rameter that destroys integrability and show that there is an
underlying scaling picture which provides a general under-
standing of this phenomenon.

The plan of the paper is as follows. In Sec. II A we define
the Toda ring and in Sec. II B we discuss the extreme limits
of harmonic and anharmonic interactions. The frequency of
periodic solutions �cnoidal waves� of the Toda ring is derived
in Sec. II C In Sec. II D we highlight the differences between
the results for the frequency spectrum derived in Sec. II C
and the spectrum determined by Toda. We also show how, in
the extreme anharmonic limit and at long wavelength, the
cnoidal waves can be viewed as a train of isolated solitons.
Next, in Sec. III, we calculate the kinetic energy in the
modes as a function of wave vector and anharmonicity pa-
rameter, and also the ratio of the kinetic energy and the av-
erage displacement as functions of wave vector and anhar-
monicity. In Sec. IV we list the conserved currents of the
Toda ring obtained from the Lax matrix. Next, in Sec. V, we
analyze the persistence of energy currents by expanding the
energy current in terms of these conserved currents. Compar-
ing with numerical results we show that the persistent part of
the conserved energy cannot be expressed in terms of the
Lax currents alone but quadratic combinations of Lax cur-
rents are also needed to get an accurate description. In Sec.
VI, we consider a Toda ring in which a small interaction is
added which breaks integrability. We calculate numerically
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the decay of the persistent currents as functions of time for
different values of the perturbing parameter. We show that
the results fit a scaling property that is expected but with
substantial corrections to scaling so very long runs are
needed to reach the asymptotic scaling regime. Finally, in
Sec. VII, we summarize the main results of the paper and
comment on them. Appendix A contains some needed results
on elliptic functions. In Appendix B we discuss Toda’s result
for the frequency spectrum �k

T of periodic waves, and ex-
plain why this result is only correct in some limiting cases.
Appendix C gives an alternative derivation of the dispersion
relation of the cnoidal waves while Appendix D computes
the potential energy of the Toda ring. A slightly different
version of this paper can be found on the archive.8

II. TODA RING, CNOIDAL WAVES, AND THEIR
SPECTRUM

We summarize some interesting facts about the Toda lat-
tice in this section. By imposing periodic boundary condi-
tions, we deal with a ring of finite extent. The Hamiltonian of
the Toda lattice is

H = �
n=1

N
pn

2

2M
+

a

b
�
n=1

N

�e−b�un+1−un� − 1 + b�un+1 − un�� . �1�

The displacement variable un is defined through Rn=Rn
0+un,

where Rn
0 is the equilibrium position of the nth atom. In

principle the displacement un ranges between ��, so for
consistency, we must either imagine that the lattice constant
Rn+1

0 −Rn
0 is infinite as well or that the displacements are

transverse to the ring. Further we assume un=un+N as appro-
priate for a ring geometry. The two nonexponential terms in
the interaction potential are irrelevant since they add but a
constant to the energy but it is convenient to include them
since the “two-body potential” then explicitly displays a
minimum at zero relative displacement. The variable pn is
conjugate to un satisfying the standard Poisson-Bracket rela-
tion �un , pm�=�n,m, and a ,b ,M are parameters.

The equations of motion follow from Hamilton’s equa-
tions

u̇n =
pn

M
, ṗn = − a�e−b�un+1−un� − e−b�un−un−1�� . �2�

We note that the total momentum ptotal=�npn is a constant of
motion. The dynamics has in fact many more conservation
laws, a consequence of the property of integrability which
was proved by Henon6 and Flaschka7 for this system. The
explicit form of the conservation laws are given later in the
paper, and follow from the Lax structure that underlies the
dynamics. The parameters a, b, and M give us explicit free-
dom to interpolate between the harmonic and extremely an-
harmonic limits.

A. Harmonic and anharmonic limits

A formal Taylor expansion of the exponential interaction
gives us

H = �
n=1

N
pn

2

2M
+

�

2 �
n=1

N ��un+1 − un�2 −
b

3
�un+1 − un�3

+
b2

12
�un+1 − un�4 + ¯� , �3�

where �=ab. As long as the displacements satisfy �uj�b	1,
the anharmonic terms do not become important so we expect
a harmonic response. However for �uj�b
1, the anharmonic
terms will dominate. To recover the harmonic lattice, one
could formally take a limit b→0 and simultaneously let a
→� /b with � remaining finite so that the anharmonic terms
are explicitly killed.

We will see below that the cnoidal waves of Toda, contain
a parameter, the elliptic “m” parameter, which controls the
amplitude of the waves, and varying this parameter gives
harmonic as well as strongly anharmonic response. Physi-
cally, the elliptic parameter m may be viewed as tuning the
anharmonicity with the harmonic limit being m→0 and the
extreme anharmonic limit being m→1. Mathematically, the
parameter m plays a fundamental role in the theory of Jaco-
bian elliptic functions.9

For later use, we note that the harmonic limit has a dis-
persion �k and sound velocity c0 given by

�k = c02	sin
k

2
	 ,

c0 =
ab

M
. �4�

B. Single-parameter formulation

The Toda lattice is also integrable in quantum theory.
Quantum integrability was established by Sutherland,10

Gutzwiller,11 Sklyanin,12 and Pasquier and Gaudin13 using
different formulations which are summarized in the work of
Siddharthan and Shastry,14 who also establish their equiva-
lence. In the viewpoint of Ref. 10 developed by Ref. 14 the
Toda lattice emerges from a crystallization of a gas of im-
penetrable particles with an interaction ��sinh�Rn−Rm��−2.

Quantum mechanically, it is possible to reduce the Toda
lattice to a single-parameter problem.14 We scale un→bun,
pn→ 1

b pn, H→ 1
MbH, and set �=2Ma so that

H = �
n=1

N
pn

2

2
+

�

2 �
n=1

N

�e−�un+1−un� − 1 + �un+1 − un�� . �5�

In this representation �→� gives the harmonic limit since
the displacements become very small so the potential energy
remains small. On the other hand, �→0 corresponds to the
extreme anharmonic limit, since now the displacements are
large, and hence high order terms in the expansion of the
exponential matter, and ultimately dominate. We need to
keep in mind that in this extreme nonlinear limit of the
model, the particles are not allowed to cross so they act as
impenetrable billiard balls14 with free propagation between
successive collisions. Classically, even this one parameter �
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can be removed by a rescaling of the displacements so large
anharmonicity corresponds to large displacements and vice
versa.

C. Cnoidal wave solutions

We derive here the formulas for the excitation spectrum of
the Toda ring. The relation with Toda’s work is discussed in
the Appendix B. His papers1,2 and book15 focus on a set of
dual variables and give a solution for the displacement but
we point out that his dispersion relation is not appropriate for
the periodic boundary conditions �i.e., a ring� which is the
focus of this paper. Here we present an explicit solution for
this case, which is not available in literature as far as we can
tell.16 Our Eq. �41� below, concerning the total energy to
mean square amplitude ratio, and related results, also seem to
not have been published previously. We feel that they, too,
are helpful in appreciating the Toda system from a condensed
matter point of view.

The Toda Hamiltonian in Eq. �1� leads to the following
equation of motion for the displacement:17

bün =
ab

M
�e−b�un−un−1� − e−b�un+1−un�� . �6�

We seek a special kind of solution namely a constant profile
solution

buj�t� = dk� j�t�� ,

 j�t� = kj − �kt = k�j − ckt� = 2� j

�
− �t� , �7�

where  j�t� is the usual phase factor depending linearly on
space and time with wave vector k �or equivalently wave-
length ��, and angular frequency �k �or equivalently fre-
quency ��, and we have defined the velocity by ck=�k / �k�.
We will often omit the argument of the phase for brevity. We
set

k =
2�

N
� , �8�

where the N integers � obey 1���N. Consequently, the
Brillouin zone is the range 0�k�2�. Periodic boundary
conditions, un=un+N, are satisfied if the function dk is peri-
odic, i.e., dk�x�=dk�x+2��. Here �k is yet to be determined,
along with the form of dk. We now define a scaled frequency
�̄k by �k=
ab

M �̄k so the equation of motion, Eq. �6�, reduces
to a nonlinear, differential, difference equation

�̄k
2dk��� = edk�−k�−dk�� − edk��−dk�+k�. �9�

This equation is satisfied by the choice

dk�� = log� �4 − k

2
�

�4

2
� � , �10�

where we summarize, in Appendix A, the necessary defini-
tions of the elliptic theta functions as needed for this work.18

To see that Eq. �10� solves Eq. �9� we use the Jacobi addition
formula for the � functions19 and write the first term in the
right-hand side �RHS� of Eq. �9� as

edk�−k�−dk�� =

�4 − 2k

2
��4

2
�

�4
2 − k

2
�

=
1

�4
2�0���4

2 k

2
� − �1

2 k

2
��1

2 − k

2
�

�4
2 − k

2
�� .

�11�

The second term in the RHS of Eq. �9� is obtained by replac-
ing  by +k. Upon using the relationship between the theta
functions and the Jacobian elliptic functions20

�1�x�
�4�x�

= m1/4 sn2K

�
x� , �12�

we find the RHS of Eq. �9� is given by

RHS Eq.�9� =

�1
2 k

2
�

�4
2�0� � �1

2

2
�

�4
2

2
� −

�1
2 − k

2
�

�4
2 − k

2
�� ,

=m1/2
�1

2 k

2
�

�4
2�0� �sn2K

�
 − sn2K

�
� − k�� , �13�

where K�K�m� is defined in Eq. �A2�. The left-hand side of
Eq. �9� is

1

2
�̄k

2 d

d��4� − k

2
�

�4 − k

2
� −

�4�

2
�

�4

2
��

and, on using21

d

dz
�4��z�

�4�z�
� =

4K2

�2 �1 −
E

K
− m sn22Kz

�
� , �14�

we find

LHS Eq.�9� = �̄k
2mK2

�2 �sn2K

�
 − sn2K

�
� − k�� . �15�

Thus Eq. �9� is satisfied provided we assign the frequency as
one of two equivalent expressions

�̄k =
�

m1/4K

	�1 k

2
�	

�4�0�
=

2

�1��0�
	�1 k

2
�	 �16�

with the help of the following standard relations22 among
Jacobi’s constants:
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�1��0� = �2�0��3�0��4�0�, �2�0��3�0� =
2

�
m1/4K . �17�

Equation �16� does not appear to have been published before
but an equivalent result has been obtained by Sutherland16 in
unpublished notes. To summarize this section, the displace-
ment given by the expression in Eq. �10� satisfies the equa-
tion of motion, Eq. �9�, for the Toda ring with the frequency
given by Eq. �16�.

D. Connection between the frequency spectrum of the cnoidal
waves and Toda’s spectrum

Toda’s result for the frequency of wavelike solutions of
the Toda lattice is

�̄k
T =

�

K�E

K
− 1 +

1

sn2 kK

�
��

−1/2
. �18�

The difference between our result for the dispersion relation
in Eq. �16� and Toda’s in Eq. �18� is shown in Fig. 1. For
small m these are very close indeed, whereas for m→1 our
solution always has a higher frequency. The difference be-
tween these dispersions also plays a role in determining the
average potential energy as we show below in Eq. �37�. As
pointed out in Appendix B, the dispersion �k

T comes from a
calculation which does not respect the boundary conditions
and hence the discrepancy with our result is not surprising.
Perhaps what is surprising is that they are so close for small
k and differ significantly only for m close to unity.

In order to appreciate the role of the non linearity, we may
usefully express the displacement and spectrum as expan-
sions in power of the elliptic nome parameter q defined in
Eqs. �A1� and �A3�

�̄k = 	2 sin k

2
�	�1 + 4q2 sin2 k

2
� + 12q4 sin2 k

2
��

+ O�q6� ,

�̄k
T = 	2 sin k

2
�	�1 + 4q2 sin2 k

2
�cos�k� + q4 sin2 k

2
�

��6 − 5 cos�k� + 14 cos�2k� − 3 cos�3k��� + O�q6� ,

dk�� = 2q�cos�� − cos�k − �� + 2q2 sin�k�sin�k − 2�

+
8

3
q3�cos3�� − cos3�k − �� + q4 sin�2k�

�sin�2�k − 2�� + O�q5� . �19�

Here we made use of the expansion of 1 /sn2 in example 57,
page 535 of Ref. 9 to rewrite Eq. �18�. Note that the differ-
ence between the first two lines appears at O�q4� and is am-
plified for large k.

In Fig. 2 we plot the displacements at different sites, ob-
tained from Eq. �10�, for a ring of length N=100 at two
different values of the parameter m with the lowest two k
values, see Eq. �8�. Notice the asymmetric shape of the dis-
placements and their relatively broad structure.

To further visualize the periodic solution, we first note
that Eq. �10� is closely related to the singly periodic Jacobi
zeta function Z�u�=Z�u+2K� via the relation d

ddk��
= K

� �Z� K
� �−k��−Z� K

���. The Jacobi zeta function has a for-
mal Fourier series expansion, as well as one in terms of tanh.
These are

Z�u� =
�

2K

�4��u

2K
�

�4�u

2K
� , �20�

=
2�

K
�
n=1

�
qn

�1 − q2n�
sin

�nu

K
, valid for Im�u� � K�;

�21�

=−
�

2KK�
u +

�

2K�
�

�=−�

�

tanh� �

2K�
�u − 2K��� , �22�

where the first �second� series expansion is particularly use-
ful in the limit m→0 �m→1�.23 The solution of the Toda
lattice on a ring, i.e., the “cnoidal wave,” corresponds to

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

m=.9999

m=.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

k

Ω
�k
�

FIG. 1. �Color online� The main figure shows the dispersion
relations at m=0.9999, which is strongly anharmonic. The inset is
for m=0.7, which is only moderately anharmonic. The upper curve
in both cases is the true spectrum, �̄k, from Eq. �16� and the lower
one is �̄k

T from Eq. �18�. Except for m very close to unity, the two
spectra are very close.

m=0.9999
0 50 100

�0.15

0.

0.15

n

u n

m=0.7

0 50 100

�0.015

0.

0.015

n

u n

FIG. 2. �Color online� The displacements at a fixed time for
different sites obtained from Eq. �10�. The data is for m=0.9999,
which is strongly anharmonic, and m=0.7 where the anharmonicity
is weaker. Here b=1 and the ring is of length N=100. In each case,
results are shown for the two smallest values of k, see Eq. �8�.
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dk�� =
K

�
�



−k

d�ZK

�
��

=− 4�
n=1

�
1

n

qn

1 − q2nsin n −
k

2
�sin n

k

2

=
K

4�K�
�2 − k�k + �

�=−�

�

log� cosh
K

2K�
� − k − 2���

cosh
K

2K�
� − 2��� � .

�23�

The last line follows from using the Poisson summation for-
mula to rewrite the second line.23

Let us comment on the limit when the elliptic parameter
m tends to 0, where the second line in Eq. �23� is useful. It is
easily seen that we obtain the harmonic excitations in this
limit. Using the standard expansion of the various objects in
m, the displacement is given by uj =

m
8b �cos� j�−cos� j −k��,

and the prefactor of m makes these small amplitude oscilla-
tions. The spectrum is also that of the harmonic limit, since
Eq. �16� becomes �̄k=2�sin k

2 � and the phase factor in Eq. �7�
is given by  j =k�j−ckt� with velocity ck=
ab /M =c0, as
expected from Eq. �4�.

In the other extreme limit of the elliptic parameter, m
→1, the elliptic functions degenerate into hyperbolic func-
tions and the cnoidal wave is regarded as a train of solitons
so that the periodicity of the displacements around the ring is
unimportant. This is illustrated in Fig. 3, where we plot, for a
typical case, the displacements uj, their nearest-neighbor dif-
ferences uj −uj+1, and the exponential of the latter, i.e.,
exp�uj −uj+1�.

Let us now extract a single isolated soliton from the so-
lution. We start with Eq. �D1� for the exponential of the
displacement difference in terms of sn2 and using dn2�u�
=1−m sn2�u�, Eq. �22� and the relation d

duZ�u�=dn2�u�
−E /K, we find a useful and formally exact series
representation1,2,15

ebuj−buj+1 = A + �̄k
2 K

2K�
�2

�
�=−�

�

sech2 a
K

�
� j�t� − 2��� ,

�24�

where a= �

2K�
and

A =  �̄kK

�
�2� cn2 kK

�
�

sn2 kK

�
� +

E − a

K � .

The periodicity in the phase angle →+2�� is manifest in
this way of writing the displacement difference.

Let us focus on m→1 so that we may set K�→� /2 and
a→1. With  j�t�=kj−c0�̄kt, we observe that the separation
�j between peaks of the exponential of displacement differ-
ence Eq. �24�, is 2� /k. We shall see in Eq. �32� below that
the width of these peaks is given by �−1 where

� =
1

�
kK �25�

and so the requirement that the separation between the peaks
is much greater their separation is

K 
 1, or equivalently 1 − m 	 1. �26�

It is clearly necessary that the width of the peak is at least
several lattice spacings and so we also need the condition
��1. Combining with Eqs. �25� and �26� the condition for
the oscillations to be described by well separated solitons is

k � K−1 	 1, �27�

which, as shown in Eq. �26�, implies that m is very close to
1, i.e., the system is in the extreme anharmonic limit.

In the proximity of a peak, we drop the sum over �, set
A→1,24 and write

eb�uj−uj+1� = 1 + �̄k
2K

�
�2

sech2�K

�
��kj − c0�̄kt�� . �28�

From Eq. �16�, �1�k /2� determines the dispersion, and in the
expression �A5�, the first few terms in an expansion for posi-
tive k read as

�̄k =
2K�

K
e−k2K/K��sinh

kK

2K�
− e−2��K/K��sinh

3kK

2K�
� . �29�

As m→1, K is large and K�→� /2, and in the regime kK
�1 which is well satisfied here, see Eq. �27�, we may further
approximate this by writing

�̄k =
�

K
sinh kK

�
� . �30�

The same answer is also found from Toda’s relation Eq. �18�,
since k is small enough in this regime that the distinction
between the two dispersions is negligible. In terms of the
parameter � defined in Eq. �25� above and calling the soliton
velocity

uj � uj�1

1 50 100
�0.15
�0.10
�0.05

0.00
0.05
0.10
0.15

j

u
j

m=0.9999

1 50 100
�0.01

0.04

j

ex
p�

u
j�

u
j�

1�
�

1

FIG. 3. �Color online� The isolation of a soliton from the cnoidal
wave is illustrated here. We plot various objects for m=0.9999, b
=1, and a ring length N=100 with k=4� /N. In the left panel we
display the cnoidal wave displacements uj and the difference be-
tween successive displacements uj −uj+1. In the right panel, we dis-
play the exponential of the displacement difference. The latter
shows two Toda solitons, with a clear separation �N /2 and a width
that is several lattice constants but much less than the separation.
Note that while the displacements appear delocalized and wavelike,
the solitons are quite localized and hence particlelike.
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c� = c0
sinh �

�
, �31�

where c0=
ab
M , we find

eb�uj−uj+1� − 1 =
sinh2 �

cosh2���j − c�t��
. �32�

Equation �32� is the profile of the famous Toda soliton, two
of which are seen in the right panel of Fig. 3. We see that the
soliton parameter � controls the amplitude of the solitons
�through the prefactor in the amplitudes sinh2����, the veloc-
ity c� and also the length scale of spatial variation 1

� . Since
sinh �

� �1, the velocity of the soliton c� in Eq. �31� is always
greater than the sound velocity c0.

For completeness we note the displacement for an isolated
soliton, by using the same limits as above in Eqs. �26� and
�27�. The displacement uj and its time derivative can be writ-
ten from Eq. �23�, where we retain only �=0 �since K
1�
and write

uj �
1

b
log� cosh ��j − 1 − ckt�

cosh ��j − ckt�
� , �33�

u̇j �
c0 sinh �

b
�tanh ��j − ckt� − tanh ��j − 1 − ckt�� .

�34�

It is now straightforward to see that the equation of motion
Eq. �6� is satisfied by the single soliton solution given in Eqs.
�32�–�34�. Toda notes that if we ignore the periodic boundary
conditions, and imagine Eqs. �32�–�34� to be extended for all
−�� j��, then integrating Eq. �33� gives u�−u−�= 2�

b , so
there is a net compression near the soliton. Hence the soliton
can be regarded as a local compression propagating with
speed c� given by Eq. �31�.

The momentum Mu̇j vanishes at j→ ��, as does the po-
tential energy term Eq. �32�. Therefore the energy of a soli-
ton, obtained by ignoring periodic boundary conditions and
opening the ring into an infinite chain, is finite. Substituting
for u̇j and the displacement difference from Eqs. �33� and
�34� into the Hamiltonian Eq. �1�, and with pj =Mu̇j, we ob-
tain this energy to be �Soliton= 2a

b �sinh � cosh �−��.
With the Fourier expansion in Eq. �23� one can give an

alternate derivation of the dispersion relation of the Toda
lattice with periodic boundary conditions in Eq. �16�. This is
done in Appendix C.

III. ENERGY OF CNOIDAL WAVES

We next turn calculate the total energy of the Toda ring
with a cnoidal wave. As a prelude, let us recapitulate the
results of the trivial harmonic lattice with the Hamiltonian in
Eq. �3� truncated at the quadratic level. If we assume a pho-
non displacement un=u0 sin�kn−�kt�, then �k=
 �

M �2 sin k
2 �.

The cycle average of the total kinetic energy and potential
energy at wave vector k are easily found to be

KE = PE = Nu0
2� sin2 k

2
,

� �
KE

un
2 =

1

2
NM�k

2 =
1

2
Nab	2 sin

k

2
	2

. �35�

We next calculate the kinetic energy of the Toda ring us-
ing the cnoidal wave solution Eq. �23� as a Fourier series.
Let us start with the kinetic energy expression

KE =
M

2 �
j

�u̇j�2 =
M�k

2

2b2 �
j

�dk�� j�t���2,

KE = 4Na

b
�̄k

2��
n=1

�
q2n

�1 − q2n�2sin2 n
k

2
. �36�

Here we used Eq. �7� and the last line is obtained by taking
the time average over a cycle with the displacement from the
series in Eq. �23�.

The potential energy of the Toda ring, averaged over a
cycle, is calculated in Appendix D, where we show that

PE = N
a

b
� �̄k

�̄k
T�2

− 1� . �37�

We expand Eq. �37�, as in Eq. �19� in terms of the nome “q”
to lowest order and find

PE = N
a

b
�16q2 sin4 k

2
��1 + 6q2� + O�q6�� . �38�

We now compute the ratio of kinetic to potential energies,
and express it as a series in the nome

KE

PE
= 1 + 4q2 sin2 k

2
� + O�q4� , �39�

which is unity for small anharmonicity, as expected, and in-
creases above unity for greater anharmonicity.

In fact, we shall mainly compute the Fourier series for the
mean-square displacement

uj =
1

b
dk� j�t�� ,

uj
2 =

8

b2 �
n=1

�
1

n2

q2n

�1 − q2n�2sin2 n
k

2
=

2

b2�
0

kK/2�

dyy� kK

2�
− y� ,

�40�

where ��u�=�0
2K dv

2KZ�v�Z�u+v�.25 Combining Eqs. �36� and
�40�, we find the total energy to mean-square amplitude ratio

� �
KE

uj
2 =

1

2
�NM�̄k

2�
�
n=1

�
q2n

�1 − q2n�2sin2 n
k

2

�
n=1

�
1

n2

q2n

�1 − q2n�2sin2 n
k

2

�41�

with Eq. �16� defining the spectrum �̄k.
We can express the average kinetic energy in a more com-

pact form using the expression in Eq. �11� for the displace-
ments. Let us write
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KE = −
M

2 �
j

üjuj =
Na

2b

�k

2�
�

0

2�/�k

�dt�dk� − k� − dk���e�dk�−k�−dk���

=
Na

2b
�k�

0

2K du

2K
dn2u −

E

K
�log�1 + �kdn2u −

E

K
�� ,

�42�

where we have set �k= �̄k
2 K2

�2 and used Eq. �D1�. This expres-
sion is particularly useful if we want long wavelength results
since we can expand in �k and find the exact elliptic param-
eter �i.e., m� dependent coefficients. The leading term for
long wavelengths �up to and including O�k4�� is

KE =
Na

2b
�k

2��
0

K du

K
dn4u −

E2

K2� + O�k4�

=
Na

2b
�k

2�2

3
�2 − m�

E

K
−

1

3
�1 − m� − E

K
�2� + O�k4� ,

��
Na

2b
�k

2�m2

8
−

m4

1024
� �m → 0�

Na

2b
�k

2� 4

3 log 16
1−m

� �m → 1� .� �43�

We can also extract the long wavelength behavior of Eq. �40�
using26 as

uj
2 =

2

b2k2�
n=1

�
q2n

�1 − q2n�2 + O�k4�

=
2

b2k2� 1

24
+

1

6
�2 − m�

K2

�2 +
EK

2�2�
��

2

b2k2� m2

256
� + O�k4� �m → 0�

2

b2k2� �log�1 − m��2

24�2 � �m → 1� .� �44�

We finally put together the results for the kinetic energy and
the mean-square amplitude to form the ratio

� =
1

2
N�ab�k2�1 +

3

256
�m2 + m3� + O�m4��, �m → 0� ,

�45a�

� = N�ab�k2 log�16�3

2�2 log
1

1 − m
, �m → 1� . �45b�

We see that the small m limit of Eq. �45a� gives the long-
wavelength limit of the harmonic lattice result given in Eq.
�35�. In the opposite, strongly anharmonic, limit the kinetic
energy grows logarithmically as m→1.

IV. CONSERVED CURRENTS OF THE TODA RING

We summarize in this section the construction of the con-
servation laws of the Toda lattice, and write out explicitly the

first few conservation laws. For brevity we set m=a=b=1.
The work of Henon6 and Flaschka7 gives us a construction of

the conservation laws starting with the Lax equation L̇
= �L ,A�, where L and A are N�N matrices with entries

Ln,m = �n,mpn + �n,m,

�n,m = i��m,n+1e−1/2�um−un� − �m,n−1e−1/2�un−um�� ,

An,m = − i/2��m,n+1e−1/2�um−un� + �m,n−1e−1/2�un−um�� �46�

so that the Lax equation leads to the original equation of
motion, Eq. �2�. Further, we can construct N-independent
conservation laws by taking the trace of the first N powers of
the Lax matrix. With the definition

Jn =
1

n!
Tr Ln; 1 � n � N �47�

it has been shown that these are in mutual involution,1,6,7 i.e.,
their Poisson brackets are all zero, �Jn ,Jm�=0, and thus they
form a complete set of independent conservation laws. We
list the first few conservation laws

J1 = ptotal, �48a�

J2 = H + const., �48b�

J3 =
1

6�
n

pn
3 +

1

2�
n

pn�e�un−un+1� + e�un−1−un�� , �48c�

J4 =
1

24�
n

pn
4 +

1

6�
n

pn
2�e�un−un+1� + e�un−1−un��

+
1

6�
n

pn+1pne�un−un+1� +
1

6�
n

e�un−un+2� +
1

12�
n

e2�un−un+1�.

�48d�

We make extensive use of these conservation laws in later
sections.

V. PERSISTENCE OF ENERGY CURRENT AND ITS
RELATIONSHIP TO CONSERVED CURRENTS

In this section we study the decay and persistence of the
energy current in the Toda lattice with periodic boundary
conditions. The energy current is obtained from the energy-

density conservation law Ḣ�x , t�+�xJE�x , t�=0, with a suit-
able discretization of the spatial derivative. To obtain the
energy current, we write H=� jpj

2 / �2M�+ 1
2�i,jVi,j, where

Vi,j =V�ui−uj�= a
be−b�ui−uj���i,j� and ��i , j�= �j− i��1,�i−j�. The

constant and linear term in Eq. �1� can be omitted safely
since they do not change the current. Thus the force on atom
i due to atom j is

Fi,j = − �ui
Vi,j = a��i, j�e−b�ui−uj���i,j�.

We note the symmetry Vi,j =Vj,i and Fi,j =−Fj,i. Thus we
write H=�iHi with Hi= pi

2 / �2M�+ 1
2� jVij, and therefore de-
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noting vi= pi /M, the rate of change in local energy is given
by

Ḣi = viṗi −
1

2�
j

Fi,j�vi − v j� =
1

2�
j

Fi,j�vi + v j�

=
1

2
Fi,i+1�vi + vi+1� − Fi−1,i�vi + vi−1�=− JE�i + 1� + JE�i� .

�49�

Therefore we may write alternate expressions for the energy
current that are equivalent

JE =
1

2�
i

Fi−1,i�vi + vi−1�, or JE =
1

2�
i

vi�Fi−1,i + Fi,i+1�

�50�

with Fi−1,i=−ae−b�ui−ui−1�. We use the second form of the cur-
rent above, and will set M =a=b=1 in Hamiltonian �1� in the
sequel.

We compute the correlation function

CJE
�t� = �JE�t�JE�0�� , �51�

where the average is taken in the canonical ensemble. This
function does not decay to zero at long times but rather
reaches a finite value. This is the phenomenon of temporal
persistence and is related to the integrability of the underly-
ing model. The implication of this nonvanishing of C�t
→�� is that the Fourier transform of C�t�, namely the Kubo
thermal conductivity, contains a Dirac delta function at zero
frequency ����. Thus the thermal conductivity has a Drude
term in common with many other integrable models studied
in recent years.

Inspired by Mazur,27 we assume that the time integrated
energy current can be written as a linear combination of all
the conserved quantities of the model In

lim
t→�

1

t
�

0

t

JE�t��dt� = �
n

anIn �52�

for fixed coefficients an. Both sides of this equation depend
on the initial state of the system. Again following Mazur, we
argue that it holds, with the same an, for almost all initial
states on a constant energy surface. Here we will test Eq.
�52� for different initial states from a canonical distribution.
The set of constants of motion In are not spelled out in detail
in earlier work, although one expects that these are functions
of the independent currents Jn in Eq. �47�.

Using Eq. �52�, and a few chosen conserved currents, one
can obtain a lower bound to the persistent part of the current-
current correlations.27 The nice thing about this result is that
even a single nontrivial conserved current could help estab-
lish the existence of the temporal persistence.28 While in
most applications of this idea, one has to be content with the
result as a bound, one would also like to test the idea of
completeness, i.e., to see if the bound is saturated in a case
where one has a full knowledge of the conservation laws. A
natural expectation is that if all the conserved currents that
go into this expansion are known, then we should be able to
get the exact value of the persistent part of the correlations.

This is the operator analog of expanding vectors in a com-
plete basis. Mazur gives the example of the XY model of
magnetism in one dimension,29 where all the higher conser-
vation laws are known in the quantum theory, since the prob-
lem is reducible to free fermions. In that case, he points out
that exact persistent part of correlations can be obtained from
a knowledge of these conservation laws. Initially, we will
test the hypothesis that the set of conservation laws coincides
with the constants of motion found in Eq. �47�, i.e., we begin
by assuming that In=Jn. Later, we will discover that one
needs to expand the set In to include further terms, such as
bilinears in the Jn.

We begin by determining the an in terms of thermally
averaged correlation functions. Multiplying Eq. �52� �with
In→Jn� by one of the conserved currents Jm and averaging
over initial states with a Boltzmann distribution gives

�JEJm� = �
n

an�JnJm� , �53�

where we used the fact that �JE�t�Jm� is independent of t. The
an are therefore given by

an = �
l

�C−1�nl�JEJl� , �54�

where C is the matrix of correlations of the conserved cur-
rents

Cnl = �JnJl� . �55�

Squaring Eq. �52�, and using Eqs. �53� and �54�, gives

lim
t→�

CJE
�t� � lim

t→�
�JE�t0�JE�t0 + t��

= lim
t→�

�1

t
�

0

t

JE�t��dt��2

= �
n,m,l,k

�C−1�nl�JEJl��C−1�mk�JEJk�Cmn

= �
k,l

�JEJl��C−1�lk�JEJk� , �56�

where we used �nCmnCnl
−1=�ml to obtain the last line. Noting

that JE is odd under time reversal, only the odd conserved
currents, n=1,3 ,5 , . . . ,N−1, in Eq. �48� contribute.

We have investigated the validity of Eq. �56� numerically
for sizes N=4, 6, and 8. All the numerical results in this
paper are for parameter values M =a=b=1 in the Toda
Hamiltonian, Eq. �1�. We prepare a large number �several
thousand� of initial states appropriate to a temperature T
�which we take to be T=0.5� using standard Monte Carlo
methods.30 Starting from each of these states we perform
molecular dynamics using a fourth-order symplectic
algorithm,31 which combines high accuracy with long-term
stability. We use a time step �t equal to 0.05.

Our results are presented in Figs. 4–6 for sizes N=4, 6,
and 8, respectively. The solid line is the data for CJE

�t� and
the �blue� dotted line is the RHS of Eq. �56� including all the
�odd� currents. While the long time limit of CJE

�t� is close to
the RHS of Eq. �56� there is a clear discrepancy.
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The discrepancy is removed if we note that the Lax cur-
rents Jn in Eq. �48� are not the only conserved currents but,
in addition, products of these currents are conserved. This
corresponds to enlarging the set of currents In in Eq. �52� to
include bilinears JnJl.

Thus the leading correction to Eq. �56� will involve prod-
ucts of two currents Jnl�JnJl, where one of the indices must
be odd and the other even for Jnl to be odd under time re-
versal. Hence the total number of conserved “currents” to be
included in the sums in Eq. �56� is N /2 �the odd Jn� plus
�N /2�2 the quadratic combinations with odd symmetry. Our
results including the quadratic combinations of currents are
shown by the �green� dashed line in Figs. 4–6. The agree-
ment is now excellent. We thus see that the set of currents
that are involved in the expansion must include not just the
Lax currents but also products of these. We see that for the
purpose of expanding an operator as in Eq. �52�, the currents
Jn are not a linear basis but rather JE seems to be algebra-
ically dependent on the Jn. Within the numerical scheme it is
hard to determine if we have really saturated the persistent
part by including just first and second powers of the Lax
currents, but the remainder, if any, must be very small in-
deed.

We also test Eq. �52� for the case of N=4 by performing
a least-squares fit to minimize

�JE
2 ��� lim

t→�

1

Nt
�
m=1

Nt

JE�tm� − �
n

anJn�2� �57�

with respect to the an, where tm=m�t, and Nt= t /�t is the
number of discrete times in the simulation. Including just the
N /2 odd currents we find �JE

2 =0.016886, which is not ex-
tremely small and represents the difference between the dot-
ted �blue� line and the long-time limit of the data in Figs.
4–6. However, including �N /2�2 quadratic combinations of
currents that project on to the energy current we get a much
lower value, �JE

2 =0.000220, as expected from the good
agreement between the dashed �green� line and the long-time
limit of the data in Figs. 4–6. As a consistency check, we
compare in Table I the fit coefficients obtained by minimiz-
ing Eq. �57� with those from Eq. �54� which used equal time
Monte Carlo results. The agreement is good.

Mazur clarifies that the above expansion Eq. �52� should
be valid for almost all initial conditions on the surface of
constant energy. Here we have seen that, in addition, the
expansion works to high numerical accuracy in the more
general case of a canonical distribution.

VI. PERTURBED TODA RING AND DECAY RATES OF
PERSISTENT CURRENTS

We have also studied numerically the decay of persistent
currents when a small perturbation away from integrability is
added to the Toda Hamiltonian. The technique is the same as
that described above in Sec. V.

We consider two different perturbations

FIG. 4. �Color online� The correlation function of the energy
current, defined in Eq. �51�, as a function of time for N=4 particles.
The �blue� short-dashed line is the RHS of Eq. �56� including all the
�odd� Lax currents. There is a significant discrepancy with the long-
time limit of CJE

�t�. The �green� long-dashed line is the RHS of Eq.
�56� including, in addition, all �odd� pairs of Lax currents. The
agreement with the long-time limit of CJE

�t� is now excellent.

FIG. 5. �Color online� The same as Fig. 4 but for N=6.

TABLE I. A comparison, for N=4, between the coefficients an in the expansion of the energy current in
terms of the conserved currents, see Eq. �52�. The “time-series” results were obtained by minimizing �JE

2 in
Eq. �57�. The “Monte Carlo” results were obtained from Eq. �54�.

a1 a3 a12 a14 a32 a34

Time series 0.4965 −0.9626 0.1262 −0.0591 0.0015 0.0178

Monte Carlo 0.4628 −0.9412 0.1358 −0.0681 −0.0042 0.0227
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�H = �
w

3 �
n=1

N

�un − un+1�3

v
4�

n=1

N

�un − un+1�4.� �58�

The temperature is taken to be T=1, the time step to be �t
=0.02, and the lattice has N=64 particles with periodic
boundary conditions. We have verified that reducing �t or
increasing N did not make a significant difference to the
results.

We compute the normalized correlation function of the
conserved current J3, see Eq. �48c�, defined by

C3�t� =
�J3�t0�J3�t0 + t��

��J3�2�
. �59�

In the absence of any perturbation which breaks integra-
bility, w or v in Eq. �58�, C3�t� is equal to unity. It is also
equal to unity at t=0 for any Hamiltonian. Figure 7 shows
data for C3�t� for the cubic perturbation in Eq. �58�, for sev-
eral values of the strength of the perturbation w. As expected
the J3 correlation function decays to zero on a time scale
which decreases with increasing w.

We assume that the data fits the scaling form

C3�t� = C̃3�tw� , �60�

where  is a crossover exponent indicating that w is a “rel-
evant” perturbation for the integrable model. Figure 8 shows
scaled data for the cubic perturbation in Eq. �58� assuming
=1.9 which gives the best data collapse for the largest
sizes.

However, as shown in Fig. 9 it is also possible that the
data for even larger sizes will collapse for =2. The result
=2 �in a quantum version� follows from Fermi’s golden
rule. It is commonly encountered in quantum integrable
systems,28 where the current decays due to the addition of a
term V in the Hamiltonian that destroy integrability. The
Fermi golden rule states that the decay rate of a state i is
given, to lowest order, by

1

�
=

2�

�
�

j

��i�V�j��2��� j − �i� . �61�

This may be interpreted as the decay rate of a current or a
quasiparticle that is infinitely long lived in the integrable
case. Hence we expect that an integrable current analogous
to Jn, and its correlations would decay in this fashion,
whereby we expect =2.

FIG. 6. �Color online� The same as Fig. 4 but for N=8.

FIG. 7. �Color online� The normalized correlation function, de-
fined in Eq. �59�, for the current J3, for several values of the cubic
perturbation w in Eq. �58� added to the integrable Toda Hamil-
tonian. The size is N=64. Including the perturbation, the system is
no longer integrable, so the correlation function tends to zero on a
time scale which diverges as w→0.

FIG. 8. �Color online� A scaling plot, according to Eq. �60�, of
the data in Fig. 7, with crossover exponent =1.9 which gives the
best data collapse for small w.
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We note that the data in Fig. 9 only collapses for very
small values of w and very large times, indicating that “cor-
rections to scaling” are large.

We have also studied the effect of the quartic perturbation
in Eq. �58� and show the unscaled data in Fig. 10. We expect
the same crossover exponent  for the quartic perturbation as
for the cubic perturbation and indeed the data is consistent
with the asymptotic exponent being =2 as shown in Fig.
11.

VII. CONCLUSIONS

In this paper we have shown that the result of Toda for the
frequency of the cnoidal waves of the Toda lattice is only
correct for weak anharmonicity or long wavelength. We give
a general expression for the frequency, as well as results for
the average kinetic energy and mean square displacement in
the Toda ring. The distinction between the dispersion relation
of Toda, Eq. �B7�, and the one found here, Eq. �16�, is im-
portant only in the limit of large wave vectors and high
anharmonicity–in all other cases it is negligible.

In addition, we have discussed the conserved currents of
the Toda model in some detail. In particular, we showed
numerically that the persistent part of general currents can be
expressed in terms of the conserved currents according to Eq.
�52�, provided one includes not only the Lax currents but
also quadratic combinations of the Lax currents �which are,
of course, also conserved�. Finally, we have studied the de-
cay of the conserved currents when a perturbation is added to
the model which destroys integrability. The time scale for
decay is governed by a crossover exponent . Our numerical
data is consistent with the value =2, which can also be
obtained by Fermi golden rule-type arguments.
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APPENDIX A: ELLIPTIC THETA FUNCTIONS AND
INTEGRALS

The most convenient version of these functions is given in
Whittaker and Watson, Chapter XXI �Ref. 9� and Abramow-

FIG. 9. �Color online� Same as Fig. 8 but for =2, which is the
expected result as discussed in the text. It is plausible that this value
of  will give good data collapse in the scaling limit w→0, t→�.
This asymptotic regime is reached only for very small values of w
�and correspondingly very long times� indicating that corrections to
scaling are large.

FIG. 10. �Color online� The same as Fig. 7 but for the quartic
perturbation v in Eq. �58�.

FIG. 11. �Color online� A scaling plot with =2, as in Fig. 9,
but for the quartic perturbation v in Eq. �58�.
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itz and Stegun.32 We note here the definitions of the required
theta functions and their Fourier series

q = e−�K�/K,

�4�z� = 1 + 2�
n=1

�

�− 1�nqn2
cos�2nz� ,

K � K�m� = �
0

�/2

dx
1


1 − m sin2 x
,

�1�z� = 2�
n=0

�

�− 1�nq�n + 1/2�2
sin�2n + 1�z,

K� = K�1 − m� ,

�2�z� = 2�
n=0

�

q�n + 1/2�2
cos�2n + 1�z , �A1�

E = �
0

�/2

dx
1 − m sin2 x,

�3�z� = 1 + 2�
n=1

�

qn2
cos�2nz� . �A2�

We note that for small anharmonicity, all the elliptic func-
tions can be expanded equivalently in terms of the parameter
m or the nome q. These expansions are related since we may
expand

q =
1

16
m +

1

32
m2 +

21

1024
m3 +

31

2048
m4 + O�m5� . �A3�

We note that as m→1, K�m�� log� 4

1−m

�, and E�m�� �
2 . Fur-

ther, as m→1, the theta functions are more easily calculated
by using the Jacobi transformation9 �p 475�, where we dis-
play the parameter m

�n�z�m� = cn
K

K�
e−�z2�K/�K����ni

K

K�
z�m� �A4�

with c1=−i and the remaining cj =1. For computing the soli-
ton spectrum, we will need the expression for n=1

�1�z�m� = 2
K

K�
e−�z2�K/�K����

n=0

�

�− 1�ne−��K/K���n + 1/2�2

�sinh�2n + 1�
K

K�
z . �A5�

APPENDIX B: TODA’S CNOIDAL WAVE FREQUENCY
CALCULATION, DUALITY, AND BOUNDARY

CONDITIONS

Consider N atoms in one dimension, with displacements
u1 ,u2 , . . . ,uN, which we call the bulk displacements. Addi-

tionally, there are two “boundary” atoms, atom 0 to the left
of atom 1, and atom N+1 to the right of atom N. Here we do
not assume periodic boundary conditions but instead con-
sider two different types of boundary conditions: �1�
“clamped” boundary conditions for which u0=uN+1=0 �2�
and “open” boundary conditions for which, it turns out, we
will need u0=u1 and uN+1=uN. We will actually focus on
“mixed” boundary conditions, i.e., free at one end and
clamped at the other.

The interaction between two atoms is represented by a
nearest-neighbor term V�uj −uj−1� with a suitable function V,
the exponential interaction as in Eq. �1�, or a harmonic term
for comparison. The Lagrangian is

L =
1

2M
�
j=1

N

u̇j
2 − �

j=Jl

Jr

V�uj − uj−1� , �B1�

where Jl=1 �2� for clamped �open� boundary conditions at
the left and Jr=N+1 �N� for a clamped �open� boundary
conditions at the right. Even for open boundary conditions,
the boundary sites do not have any kinetic energy since they
are “fictitious,” i.e., are simply there to impose the necessary
boundary conditions.

We introduce the particle separations rj =uj −uj−1 as new
generalized coordinates, these and their canonically conju-
gate momenta sj found below, are the “dual variables” of
Toda. It follows that the inverse relations are uj =�l=1

j rl. The
kinetic energy is expressible in terms of the time derivatives,
ṙ j. The canonically conjugate “momenta” to the rj are sj

= �H
�ṙ j

=M�l=j
N u̇l, whereby, for 1� j�N−1, we get Mu̇j =sj

−sj+1, and ṡN=Mu̇N. Thus we obtain the Hamiltonian in
terms of the dual variables as

H =
1

2M
�
j=1

N−1

�sj − sj+1�2 +
1

2M
sN

2 + �
j=Jl

Jr

V�rj� . �B2�

Hamilton’s equations of motion are therefore now

ṙ j =
1

M
�2sj − sj−1 − sj+1�, ṡ j = −

�V�rj�
�rj

for 2 � j � N − 1. �B3�

The case of a clamped right boundary is complicated to deal
with so we will always choose it to be open. We therefore
have JR=N, and the kinetic energy term of the Nth atom is
written as 1

2M �sN−sN+1�2 with sN+1=0 as the boundary con-
dition at all times, so that the equation Eq. �B3� is extended
to j=N.

On the left side boundary, the clamped case with Jl=1 can
be dealt with easily by extending Eq. �B3� to j=1 by intro-
ducing an s0 and requiring that s0=s1 so Eq. �B3� has the
same form for j=1 as for j�1. The open case on the left
boundary has a missing V�r1� in the potential energy so that
r1 is a cyclic coordinate �so r̈1=0� and we must require s1
=constant.

For the case of the harmonic chain, these boundary con-
ditions are easily imposed on the solution e�i�kt cos�krj +��
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and one reproduces the various integer and half integer quan-
tization of the wave vector k. We note that the solutions are
not traveling waves but rather products of functions of space
and time since in all cases here we must set the boundary
variables to be time-independent constants.

For the Toda lattice, we choose V�rj�= a
b �e−brj −1+brj� so

that the equations of motion Eq. �B3� are written for the
typical case of left-clamped and right-open boundaries

s̈ j

a + sj
=

b

M
�sj−1 + sj+1 − 2sj�, 1 � sj � N,

and s0 = s1, sN+1 = 0. �B4�

The remarkable insight of Toda in solving this equation, was
apparently inspired by seeing an addition identity of the Ja-
cobean zeta function Z�u� that we met earlier in Eq. �20�.
The salient features of this function are as follows: periodic-
ity Z�u+2K�=Z�u�, parity Z�−u�=−Z�u�, and hence nodes at
Z�0�=0=Z�K�. The relevant identity is19

Z�u + v� + Z�u − v� − 2Z�u� =
Z��u�

Z��u� +
E

K
− 1 +

1

sn2�v�

.

�B5�

Comparing Eq. �B4� and �B5�, one sees that these are very
similar, provided we make the hypothesis that Eq. (B4)
should collapse to an ordinary differential-difference equa-
tion. Thus we are obliged to combine the space and time
dependence into a single variable  j =kj−�t+�, and this
helps in solving the Eq. �B4� for the bulk. We thus can only
solve for traveling waves. However, it makes it impossible to
satisfy the boundary conditions, since the latter involve time
independent vanishing of certain constants. With Toda, we
will ignore the boundary terms and write down the solution
for sj that is implied by Eq. �B5�. With a scale factor 

K we
relate u and  as u= 

�K so that increasing u by its natural
periodicity 2K winds the phase by 2�. Then we see that d

dt
=− K

��
d

du , and j→ j+1 increases u→u+ kK
� whence v= kK

� .
The mapping is complete with a scale factor relating sj to
Z�u� and determining � as a function of k gives the two Toda
solutions

sj�t� = �
M

b
K�k

T

�
�Z�K

�
�kj � �k

Tt + ��� , �B6�

�k
T =
ab

M

�

K

1


E

K
− 1 +

1

sn2 kK

�
�

. �B7�

Using Mu̇j =sj −sj+1 and the expression Eq. �20�, and inte-
grating once we find the displacement in terms of the theta
functions

uj =
1

b
log

�4�1

2
�kj � �k

Tt + ���
�4�1

2
�k�j + 1� � �k

Tt + ��� �B8�

in agreement with our Eq. �10�.
In Sec. II C we showed that the same functional form as

Eq. �B8� describes oscillatory solutions with periodic bound-
ary conditions but with a different expression for the fre-
quency, Eq. �16�, in place of Eq. �B6�. This situation requires
a few clarifying remarks.

�a� Equation �B6� is in a traveling wave form, and since
we cannot superpose two non linear waves, e.g., with the two
signs of the time dependence, this prevents us from satisfy-
ing the various boundary conditions �clamped and open� dis-
cussed above. Thus the Toda dispersion relation is not the
solution of the problem he starts with.

�b� The spectra in Eqs. �16� and �18� are very close for
small wave vectors, or for small values of the parameter “m,”
i.e., for weak anharmonicity. Figure 1 illustrates the two dis-
persions.

�c� A reader might wonder if Eqs. �B7� and �16� are not
actually identical, with the help of some obscure identity,
e.g., in Ref. 9. However, this cannot be the case for two
reasons. One is mathematical. While the expression in Eq.
�B6� is doubly periodic in the complex k plane, the expres-
sion in Eq. �16� is not—the � functions have periodicity fac-
tors attached for translations along the imaginary axis. The
other reason is physical. If the two expressions were some-
how identical, the potential energy average Eq. �D3� would
be identically zero for the periodic system, which is impos-
sible since V�x��0 with the equality only at x=0.

�d� Toda is correct to take the functional form in Eq. �B6�
seriously. However for periodic boundary conditions, the
correct frequency of the cnoidal wave is not the one in To-
da’s works,1 but rather Eq. �16�, which appears here for the
first time, to the best of our knowledge. Toda’s solution is
only correct in the limit of weak anharmonicity or long
wavelength.

APPENDIX C: ALTERNATE DERIVATION OF THE
SOLUTION WITH PERIODIC BOUNDARY CONDITIONS

In this appendix we give an alternative derivation of the
dispersion relation of the Toda ring in Eq. �16� by substitut-
ing the Fourier series in the second line of Eq. �23� into Eq.
�9�. Taking the second derivative of this with respect to  we
obtain

LHS Eq.�9� = 4�̄k
2�

n=1

�

n
qn

1 − q2nsin n −
k

2
�sin n

k

2
.

�C1�
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To obtain the expansion of the RHS of Eq. �9� we start with
Eq. �23� and use the Fourier expansion of sn2 due to Jacobi33

�again�

sn22K

�
x� =

1

m
�1 −

E

K
� −

2�2

mK2 �
n=1

�

n
qn

1 − q2ncos 2nx .

�C2�

Thus we find

RHS Eq.�9� =
4�2


mK2

�1
2 k

2
�

�4
2�0� �

n=1

�

n
qn

1 − q2n

�sin n −
k

2
�sin n

k

2
. �C3�

The series in Eqs. �C1� and �C3� are seen to be identical with
the choice of the dispersion in Eq. �16�.

APPENDIX D: POTENTIAL ENERGY OF THE TODA
RING

Let us rewrite the potential energy term Eq. �11� with 
representing any one phase factor

ebun−bun+1 = edk��−dk�+k� =
1

�4
2�0���4

2 k

2
� − �1

2 k

2
��1

2

2
�

�4
2

2
�� ,

=
1


m

�1
2 k

2
�

�4
2�0� � 1

sn2 kK

�
� − m sn2K

�
�� ,

=�̄k
2K2

�2� 1

sn2 kK

�
� − m sn2K

�
�� . �D1�

We used the dispersion relation for the ring, Eqs. �16� to
proceed in this equation.

We now recall =�kt and average this expression over a
single cycle in time, �i.e., �0

Tk
¯

dt
Tk

, where Tk= 2�
�k

�, or u= K
�,

with 0�u�2K. We ignore the site index, since each atom
has the same average value. We use

1

2K
�

0

2K

du sn2�u� =
1

m
E

K
− 1�

so that the time average of this term can be written using the
expression Eq. �B7� as

edk��−dk�+k� =  �̄k

�̄k
T�2

�D2�

and thus the potential energy average over a cycle is

PE = N
a

b
� �̄k

�̄k
T�2

− 1� . �D3�
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