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We introduce a family of lattices for which the Hubbard model and its natural extensions can be
quasiexactly solved, i.e., solved for the ground and low energy states. In particular, we show rigorously
that the ground state of the Hubbard model with off-site Coulomb repulsions on a decorated Kagomè
lattice is an ordered array of local currents. The low energy theory describing this chiral state is an
S � 1

2 XY model, where each spin degree of freedom represents the two possible chiralities of each local
current.
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FIG. 1 (color online). (a) 1D lattice made up of corner sharing
‘‘double-tetrahedra’’ aligned in a linear chain and the general
scheme for this family of 1D lattices. The squares are the
connectors (C) and the circles belong to the basis blocks (B).
filling � � �L, displays long ranged order (LRO) of a
hidden sort, and in fact maps onto a S � 1 XY model that

(b) A possible general scheme for 2D lattices and a particular
case of this family: the decorated Kagomè lattice.
Exactly solvable manybody problems have played an
important role in condensed matter physics. Several solv-
able models are known in one dimension. The list in two
and higher dimensions, while much smaller, is growing.
A particularly fruitful idea for constructing new solvable
models of interacting particles has emerged from the
work of Refs. [1,2]. This idea, building on several ex-
amples, has been formulated in terms of ‘‘superstable’’
ground states, where clusters of particles have local
ground states that survive, or extend easily on connecting
into a lattice. The Shastry-Sutherland S � 1=2 Heisen-
berg model system is a rich example since the lattice is a
natural one, theoretically in that there are no crossed
bonds, and practically in its realization in the compound
SrCu2�BO3�2 [3].

So far this idea has been applied predominantly to spin
systems. In this work we present what seems to be the first
application of this idea to fermionic systems. Our main
new result is a generalized Hubbard model in two dimen-
sions on a decorated Kagomè lattice. The model has
triangular units of circulating currents as superstable
objects that further interact to give interesting quantum
ordered states.We show rigorously that the ground state of
this model has long range order for certain fillings in two
dimensions. This state is an array of local currents with
two possible orientations that live on the up and down
triangles that comprise the Kagomè lattice. This internal
degree of freedom localized in each triangle can be
described as a two level system (S � 1=2 pseudospin)
which represents two possible directions of circulating
electronic current, or two chiralities. Similar solutions
are currently popular in connection with theories of high
Tc superconductivity [4,5] and heavy fermions [6]. A
hidden order parameter which breaks the time-reversal
symmetry has been proposed to exist underneath the
superconducting dome in the phase diagram of the cup-
rates and to characterize the mysterious phase observed in
URu2Si2 below 17 �K [7]. The model is solvable for any
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is known to have Onsager-Penrose LRO in two dimen-
sions rigorously [8].

An important consequence of this simple and rigorous
solution is the emergence of a new microscopic mecha-
nism for the generation of an ordered chiral state. The
geometrical frustration of the considered lattices together
with the on-site Coulomb repulsion generate a state with
nonzero local currents. The effective interaction between
these currents is provided by the intersite Coulomb re-
pulsion. In this way, the interplay between frustration and
strong correlations gives rise to new types of orderings.

The main idea described in this Letter can be applied to
the family of lattices represented in Fig. 1. This family is
a bipartite structure (B and C), with an arbitrary coordi-
nation number z [z � 2 in Fig. 1(a) and z � 3 in Fig. 1(b)].
The block B (similar in spirit to that in Ref. [9]) repre-
sents a cell that will be called basis and the the block C
represents the other nonequivalent cell which will be
called connector. The blocks C are fully connected with
its nearest-neighbor (nn) blocks B; i.e., each site in a
block C is connected to each of the sites in the nn block
B. The sites in a block B have the same internal coordi-
nation number zB, i.e., each site in B is connected to zB
sites in the same block. Notice that the blocks of each type
need not all be equivalent. Using the general structure
2003 The American Physical Society 116401-1
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indicated in Fig. 1, we can generate a family of lattices
for which the low energy spectra of well-known fermi-
onic models (such as the Hubbard, the t-J, or the interact-
ing spinless fermion Hamiltonian) can be exactly mapped
into simple spin models.

For this family of lattices, we will consider an ex-
tended Hubbard model which includes Coulomb repul-
sions between different sites:

H � t
X

hr;r0i2B;�

�cyr�cr0� 
 cyr0�cr�� 
U
X
r

nr"nr#


 t0
X

hr2B;r02Ci;�

�cyr�cr0� 
 cyr0�cr�� 

X
r;r0;�

Vr;r0nrnr0 ;

(1)

where hr; r0i 2 B indicates that r and r0 are nearest-
neighbor sites which belong to the same block B, and hr 2
B; r0 2 Ci indicates that B and C are nearest-neighbor
blocks.We will consider that the repulsive interaction Vr;r0

is extended up to third nn sites (V1, V2, and V3).
In Figs. 1(a) and 1(b), we show two possible realiza-

tions of the lattice structure described above for one and
two dimensions (decorated Kagomè lattice), respectively.
The first one has been recently considered by Rojas et al.
to solve a Heisenberg model [10]. In these examples, each
block B is a triangle of three sites (circles in Fig. 1) and
the connectors C are single sites in between two triangles
(squares in Fig. 1). In the two dimensional case [Fig. 1(b)],
there are two different classes of blocks B. The different
terms of H acting on this lattice are also shown in
Fig. 1(a).

One dimensional lattice.—This lattice may be imag-
ined as being made up of corner sharing ‘‘double-
tetrahedra’’ aligned in a linear chain. The unit cell of
the one dimensional (1D) lattice contains four sites: one
block B or triangle and one connector [see Fig. 2(b)]. For
this reason, the noninteracting part of H, H0, gives rise to
Unit CellBlock B

Connector

Positive
Chirality

Negative
Chirality

a)

c)b)

FIG. 2 (color online). (a)Two possible chiral states that can
occur on each block B and the connection between the chiral
and the spin language. (b) The block B (circles) and the
connector (square) of the lattices shown in Fig. 1. (c) Unit
cell of the decorated Kagomè lattice shown in Fig. 1(b).
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four different bands. To analyze the structure of these
bands we will first consider the eigenstates of H0 acting
on an isolated block B. Since B is a triangle of three sites
connected by the hopping term t, the three quasiparticle
operators and eigenenergies of H0 restricted to B are

�y
�0 �

1���
3

p �cy1� 
 cy2� 
 cy3��; E0 � 2t;

�y
�
 �

1���
3

p �cy1� 
!cy2� 
!2cy3��; E
 � �t;

�y
�� �

1���
3

p �cy1� 
!2cy2� 
!cy3��; E� � �t;

(2)

where ! � ei�2�=3� and the numbers 1, 2, and 3 denote the
three different sites of the triangle. �y

�0 creates a local
state with zero current, while �y

�
 and �y
�� create local

states with positive and negative chiralities, respectively
[see Fig. 2(a)]. When the considered block B is reinserted
in the lattice, the effective hybridization between a given
�y

�� (� is the chiral index) orbital and its nearest-
neighbor connector is t0

P
3
j�1h0jcj;��

y
��j0i. Therefore,

�y
i�
 and �y

i�� are still quasiparticle operators of H0

because they do not hybridize with the connectors (the
index i denotes the position of the triangle or block B).
This means that H0 contains two flat bands with energies
E��k� � �t (the supra index denotes the chirality) for
which �y

i�
 and �y
i�� create the corresponding Wannier

orbitals. The other two bands are generated by the hy-
bridization between the orbitals created by �y

i�0 and the
connectors. Since the effective hopping between these two
orbitals is

���
3

p
t0, the corresponding dispersion relations

are the following: E0
1�k� � t�

������������������
t2 
 3t02

p
and E0

2�k� �
t


������������������
t2 
 3t02

p
.

If t > 0 and t � jt0j, the energy of the two degenerate
flat bands is much lower than the energy of both disper-
sive bands. Note that this election for the sign of the
hopping integral t is realistic if we consider that cyr�
and cr� are creation and anihilation operators for holes.
The solution that we describe below is then valid for
systems with low concentrations of holes (0 � � � 1

8 ).
In this situation, the lowest energy subspace of H�V3 � 0�
can be exactly solved for any concentration � � 1

8 . The
ground states of H�V3 � 0� for a fixed concentration � �
1
8 are

�y
i1�1�1

. . .�y
i�����

. . .�y
iN�N�N

j0i; (3)

where N is the number of particles, �� is the chirality
flavor of the particle �, and the block indices i� are all
different; i.e., there is no more than one quasiparticle per
block B. This condition implies that the concentration of
holes � cannot be larger than 1=8: � � 1

8 . Notice that the
index � can denote any direction in the SU�2� space
generated by the linear combinations of the two possible
chiralities 
 and �. The on-site and the nearest-neighbor
116401-2
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Coulomb repulsions, U and V1, prevent the double occu-
pancy on each triangle. In other words, the mean value of
the U and the V1 terms is zero for the wave functions (3).
In addition, the mean value of the V2 term is also zero
because the connectors are empty. It is clear then that the
wave functions (3) are the ground states of H if V3 � 0
since they minimize the mean value of each term in
H�V3 � 0� when the concentration � is fixed. In general
there are three different sources for the massive degener-
acy of the ground state: the spin orientation, the chiral
orientation and the choice of the triangles which are
occupied (charge degrees of freedom) if � < 1

8 .
It is clear that the local chirality and spin on each

triangle are conserved quantities when the Hamiltonian
H�V3 � 0� is restricted to the subspace generated by the
states (3). This conservation is related to an SU�2� �
SU�2� local gauge symmetry which is dynamically gen-
erated at low energies. In addition, the local charge con-
servation on each triangle is associated to a local U�1�
invariance. Therefore, the total gauge symmetry group at
low energies is U�1� � SU�2� � SU�2�. This emerging
symmetry is a consequence of the particular geometry
of the considered lattices and allows us to get the exact
ground states for � � 1

8 .
In particular, for � � 1

8 , there is one � quasiparticle
per block and the remaining degeneracy only comes from
the two possible chiralities and spin orientations. The
chiral degeneracy is removed when the intersite
Coulomb repulsion, V3, is included.

To analyze the effect of V3, we will replace the chiral
index � by a pseudospin flavor  using the following
convention [11] [see Fig. 2(a)]:

 xi �
1

2

X
�

��y
i�
�i�� 
�y

i���i�
�;

 yi �
i
2

X
�

��y
i���i�
 ��y

i�
�i���;

 zi �
1

2

X
�

��y
i�
�i�
 ��y

i���i���:

(4)

Since there is one quasiparticle per block B, the pseudo-
spin has two possible flavors; i.e., � is an S � 1=2 pseu-
dospin variable. Notice that the connectors do not have
any role in this low energy subspace, and the blocks B
(triangles) can be replaced by effective sites containing
one quasiparticle with a spin and a chiral (pseudospin)
degree of freedom. When V3 is included to first order
(V3 � U; jtj), the chiral degeneracy is removed because
the intersite Coulomb repulsion induces an xy like inter-
action between the pseudospin variables. The effective
model Hamiltonian is

H1D
eff � J

X
i

�
 xi 

x
i
1 
  yi 

y
i
1 


1

2

�
; (5)

where J � 2
3V3, and V3 is the Coulomb repulsion to third
116401-3
nearest neighbors. Therefore, the intersite Coulomb repul-
sion V3 provides a microscopic mechanism for chiral
ordering. The one dimensional XY model (5) can be
exactly solved and the ground state has critical magnetic
correlations for the x and y spin components [12].

From the symmetry point of view, V3 removes
the chiral SU�2� local gauge symmetry of H�V3 � 0�
restricted to the lowest energy subspace and leaves a
global U�1� chiral symmetry generated by the total
 z �

P
i 

z
i .

If V1 � t; U, the exact solution of the low energy
spectrum of H�V3 � 0� can be extended to the region � �
1
4 . For 1

8 < � � 1
4 , there are some triangles which are

doubly occupied in a chiral singlet (spin triplet) state:
�y

i�
�
y
i��j0i. When V3 is included to first order, the

effective Hamiltonian for the region 1
8 <� � 1

4 turns to
be an XY model in a depleted lattice where the vacancies
correspond to the triangles which are double occupied.

Two dimensional lattice.—The two dimensional (2D)
structure shown in Fig. 1(b) is a decorated Kagomè lat-
tice. The unit cell contains nine sites [see Fig. 2(c)]: two
blocks B, and three connectors C. This means that H0

gives rise to nine different bands. As in the previous case,
the local chiral states created by �y

i�
 and �y
i�� are

quasiparticle operators of H0 because they do not hybrid-
ize with the connectors. Since each unit cell contains two
B blocks, there are four flat bands with energy E�

1;2�k� �
�t. Two of these bands have positive (negative) chirality
and �y

i�
 (�y
i��) creates the corresponding Wannier

states. The other five bands are generated by the hybrid-
ization between the Wannier states created by �y

i�0 and
the connectors. Within the other five bands, there is one
which is also flat at zero energy and the dispersion rela-
tions of other four bands are given by the expression: t�����������������������������������������������������������������������������������������
t2 
 3t02�3�

�������������������������������������������������������
3
 %�k� 
 2 cos�kx � ky�

q
�

r
with %�k� �

2�coskx 
 cosky�. If t > 0 and t � jt0j, the energy of the
four degenerate flat bands is again much lower than the
energy of the other bands. In this situation, the lowest
energy subspace of H�V3 � 0� can be exactly solved for
any concentration � � 1

9 . The ground states of H�V3 � 0�
for a given density � � 1

9 again are those expressed in
Eq. (3). For this case, the block indices i� denote the
triangles in the 2D lattice and again they are all different.
In particular, for � � 1

9 , there is one � quasiparticle per
block and the remaining degeneracy comes from the two
possible chiralities and spin orientations. The chiral de-
generacy is removed when the intersite Coulomb repul-
sion, V3, is included. We use again the relations given by
Eqs. (4) to describe the chiral degree of freedom with a
pseudospin variable. In this case, to derive the effective
model it is convenient to make the transformation  zj !
� zj,  



j !  �j , and  �j !  
j , in one of the two sublatti-

ces of the hexagonal lattice of blocks B. After doing this
transformation, the effective model is again an S � 1=2
XY Hamiltonian on a hexagonal lattice:
116401-3
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H2D
eff � J

X
hi;ji

�
 xi 

x
j 
  yi 

y
j 


1

2

�
; (6)

where J � 4
9V3 and hi; ji indicates that i and j are nn

triangles. In other words, the Coulomb repulsion V3 in-
duces an effective interaction between the local currents
which leads to an ordered state. In the ordered state the
currents are pointing in any direction contained in the xy
plane (the order parameter in the pseudospin notation is
the transverse staggered magnetization).

In the same way as for the 1D case, this solution can be
extended to the region � � 2

9 if V1 � t; U and the effec-
tive model for 1

9 � � � 2
9 is again an XY Hamiltonian on a

depleted lattice.
We can induce from the previous examples which is the

guiding principle that provides exact solutions for the low
energy spectrum of H and encompasses a novel ordering.
The geometrical frustration of our family of lattices gives
rise to a competition between two oposite tendencies:
(i) Charge localization on each block B induced by a
positive nearest-neighbor hopping t that stablizes a local
orbital [see Eq. (2)] which is not hybridized with any
other site on the lattice, and (ii) Charge delocalization
favored by the next nearest-neighbor hopping t0. Since in
general t � jt0j, the first tendency wins and a new sym-
metry emerges in the low energy spectrum of H: the local
U�1� gauge symmetry associated twith the conservation
of the charge on each block B. The Coulomb interactions
U and V1 prevent the double occupancy of each block B.
Therefore, there is also a spin 1=2 localized on each block
B that enlarges the local gauge symmetry to U�1� �
SU�2�. In addition, we can imagine different structures
for the block B that impose a net chirality for the lowest
energy orbital of the block and a consequent degeneracy.
For instance, if B is a ring with an odd number of sites
(in our previous examples this number is three) and t
is positive, there are two lowest energy orbitals with
opposite chiralities [13]. This chiral internal degree of
freedom increases the local gauge symmetry to U�1� �
SU�2� � SU�2�.

The inclusion of the intersite Coulomb interaction V3

removes the chiral SU�2� local gauge symmetry by the
generation of an effective xy interaction between the
chiral degrees of freedom. The remaining symmetry is
the global U�1� group of rotations along the z axis in the
pseudspin space. In dimension larger than 1, the xy
interaction induces an ordered chiral state in which the
global U�1� symmetry is spontaneously broken. Al-
though in this Letter we considered only one and two
116401-4
dimesional lattices for pedagogical reasons, the applica-
tion of the same principle to three dimensional lattices is
straightforward.

At this point, it is important to remark that the U�1�
group generated by  z �

P
i 

z
i is not a symmetry of H. It

is only a symmetry when H is restricted to the low energy
subspace described above. In this sense, the global U�1�
symmetry emerges at low energies and it is spontaneusly
broken at an even lower energy scale Tc.

In summary, we have presented a new family of solv-
able Hubbard type models on specific lattices. The par-
ticular connectivity of these lattices is the key to generate
gauge and global transformations which are symmetries
for the restricted action of the Hamiltonian on an invari-
ant subspace. If the invariant subspace corresponds to the
low energy spectrum of the model, we can say that these
symmetries emerge at low energies. In other words, the
exact low energy theory has more symmetries than the
original model. Using this important property we have
demonstrated that the ground state of a Hubbard model on
a decorated Kagomè lattice contains local currents which
exhibit xy-like long range ordering.
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