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Abstract

We have revisited the still unresolved puzzle of the dispersion of the Raman

disordered-induced D band as a function of laser excitation photon energy EL

in graphite-like materials. We propose that the D-mode is a combination of

an optic phonon at the K-point in the Brillioun zone and an acoustic phonon

whose momentum is determined uniquely by the double resonance condition.

The fit of the experimental data with the double-resonance model yields the

reduced effective mass of 0.025me for the electron-hole pairs corresponding to

the A2 transition, in agreement with other experiments. The model can also

explain the difference between ωS and ωAS for D and D⋆ modes, and predicts

its dependence on the Raman excitation frequency.

PACS numbers: 63.20.Dj, 63.50.+x, 78.30.Ly

I. INTRODUCTION

Carbon based materials, ranging from highly oriented pyrolitic graphite, diamond like

carbon films, fullerenes and carbon nanotubes have been the subjects of extensive studies

over the past two decades because of their numerous technological applications. Raman

spectroscopy is a powerful non-destructive probe for characterising different forms of carbon
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materials-diamond, crystalline graphite, glassy carbon, hydrogenated amorphous carbon,

fullerenes and nanotubes. Raman spectra of these materials gives considerable information

on the nature of chemical bonding (sp2 vis-a-vis sp3) and relative abundance of sp2 and sp3

bonds, residual stresses, crystallite size and dopants. There is a long-standing puzzle in the

Raman spectra of graphitic materials. Single crystals of pristine graphite (D4

6h space group

symmetry) has two in-plane Raman active Eg modes: one at 42 cm−1 and the other at ∼

1582 cm−1 (G-band)1. In presence of disorder, an additional Raman band (called D-band)

is observed at ∼ 1350 cm−1 for a laser excitation energy of 2.41 eV (wavelength 514.5 nm),

irrespective of the kind of carbon material1–4.

The important features of the Raman spectra associated with the disorder-induced D-

band are as follows: (i) The EL-dependence of the D-band frequency is essentially inde-

pendent of the type of carbon involved. It occurs in all sp2- hybridized disordered carbon

materials, powdered and randomly oriented crystalline graphite, glassy carbon, boron-doped

highly ordered pyrolytic graphite, carbon black, multicomponent carbon films, hydrogenated

amorphous carbon and more recently, in carbon nanotubes3. (ii) The frequency of the D-

band shifts upward with increasing excitation laser energy5 EL : ωD = 1279 cm−1 for EL =

1.17 eV and ωD ∼ 1410 cm−1 for EL = 3.54 eV (≃ 40 cm−1/eV). Fig.1 shows the data from

various measurements made on various kinds of disordered carbon2,4 and carbon nanotubes3.

(iii) The frequency of the associated second order (D⋆) band (∼ 2700 cm−1 for EL=2.41 eV)

also shifts up with increasing EL. The dispersion dωD⋆/dEL is almost twice that of dωD/dEL.

(iv) The EL-dependant second order D⋆ band is observed in Raman spectra of single crystal

graphite even though the first order disorder induced D-mode is absent5. (v) The D-band

intensity decreases as EL increases from 1.16 eV to 4 eV. In contrast, the intensity of the

G-band is maximum at EL ∼5 eV6. The D band is not observed with excitation energies

EL > 4.2 eV as shown in Fig.2 which displays Raman spectra of graphite powder (with a

small amount of sodium sulphate for internal intensity calibration) using EL = 2.54 eV and

4.82 eV. The lines marked by asteriks are from internal vibrational modes of sulphate ions.

The intensities have been normalised with respect to the sulphate mode at 980 cm−1. The
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data in the inset taken from Wang et al.2 show the intensity ratio of D band with respect to

that of G band for 1.16 < EL < 4 eV. The decrease of this intensity ratio as EL increases has

been seen by others as well4. In other words, the resonance excitation profile of the D-band

will show a maximum at EL less than 1.16 eV, which is very different from the G-band

behaviour. These experimental observations are crucial to arrive at the correct explanation

for the origin of the D-band. (vi) The peak positions of the D and D⋆ bands observed in

Stokes (ωs) and anti-Stokes are not the same7: ∆ωS = ωAS − ωS =7 cm−1 for the D-mode

and ωAS −ωS =28 cm−1 for the D⋆ mode when EL =2.41 eV. In order to make sure that this

anomalous difference between Stokes and anti-Stokes peak positions of the D and D⋆ bands

is genuine, it was seen in the same experiment that ∆ω ∼ 0 for the G-band, as is usually

expected.

It is surprising that even after twenty years of experimental observation1, the origin

and dispersion of the D-band is still not quantitatively understood. Tuinstra and Koenig1

attributed the D-mode to the A1g type mode of a finite graphite crystallite with symmetry

lower than D6h of graphite, which corresponds to a longitudinal acoustic mode for the

infinite lattice. Nemanich and Solin8 and Lespande et al.9 have invoked the breakdown of

wave-vector selection rules due to disorder or finite size of crystals and correlated the D-band

features with the density of states of graphite. These models, however, cannot explain the

strong dispersive nature of the D-mode as a function of EL. The observation of second-order

D⋆ band for single crystal graphite which shows no disorder-induced D mode also rules out

the explanation of the dispersion to crystallite size selective resonance Raman scattering

process which occurs in polyacetylene. The recent studies10,4 explained the dispersion of the

D-mode following Boronov et al.11 who attributed the dispersion of the D-band in terms of

the coupling between electrons and phonons with the same wave-vector near the K-point of

the Brillouin zone. This model has a serious drawback that it does not justify the reasons

for the coupling and cannot address the resonance of the D-mode at EL < 1eV , as well as

the difference in ωAS and ωS for the D and D⋆ modes.

Almost three years back6, we have proposed disorder-induced double resonance near a
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gap of ∼ 1 eV in the graphite band structure to result in the dependence of the phonon

wavevector q and hence the phonon frequency ω on the energy of the exciting laser energy.

Very recently, Thomsen and Reich13 (TR) have wrongly questioned the existence of such a

gap of ∼ 1 eV in the electronic structure of graphite. They have also used double resonance

using the electronic linear bands at K-point in the Brillouin zone. The serious difficulty

with their calculations is that the calculated intensities of the D-mode for different incoming

photon energies do not decrease as EL increases. On the contrary, the calculated intensity

for EL = 4 eV is higher than for EL = 2 eV (see Fig.3 of Thomsen and Reich13). This is

completely opposite to the experiments as shown in Fig. 2. There is another difficulty we

have with the TR’s calculation. As given by their Eq. (4), the magnitude of q increases with

EL. For optic branch along ΓK direction, the phonon frequency ω is a decreasing function

of q and hence ω should decrease with increasing EL which is contrary to the experiments.

In this paper, we present a model based on double resonance which can address all the

novel features associated with the D mode. Keeping in mind that the acoustic phonon

branches are strongly coupled to the high-frequency optic branches at the K-point in

graphite12, we propose that the D-mode is a combination of an optic phonon at the K-point

in the Brillouin zone and an acoustic phonon whose momentum is determined uniquely by

”double resonance” condition14. In usual second order scattering, if the optic phonon is

described by a wave-vector ~q1 and the acoustic phonon by a wave-vector ~q2, conservation of

quasi-momentum requires ~q1 + ~q2 = 0, where ~q1 and ~q2 can span the entire Brillouin zone.

Since D-mode is disorder-induced, we suggest that ~q1 is fixed at the K-point of the Brillouin

zone (maximum in the density of phonon states9) and the magnitude of ~q2 is determined

by the double resonance condition14. The quasi-momentum conservation is achieved by

disorder-scattering. In a double resonance process, real (not virtual) transition takes place

between two electronic states with emission of a phonon. Since the electronic states have

dispersion, phonons of appropriate wavevectors are needed to keep the electronic transition

real. Double resonance have been seen for optic phonon overtones in GaAs15, 2Γ12 optic

phonons16 in Cu2O and for two acoustic phonons in Ge17.
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II. MODEL

Following Martin and Falicov14, we will discuss the two-phonon Raman scattering arising

from an iterated one-phonon scattering in second order14. Near resonance condition, the

incident photon is absorbed to create an electron-hole pair, with electron occupying the real

conduction band states and hole in the real valence state. Assuming parabolic dependence

of the electron-hole pairs in directions perpendicular to KH, the wave-vector of the electron

or hole ~k created by a photon of energy EL can be written as EL = ∆ + h̄2k2

2µ
where µ is the

reduced mass
(

1

µ
= 1

m⋆
e

+ 1

m⋆

h

)

, m⋆
e and m⋆

h are the electron and hole effective masses and ∆

is the band gap at K-point in the Brillioun zone. We will now address the nature of critical

point involved in the resonance Raman scattering of D-band.

We recall that the D-mode intensity increases as EL is decreased from 4.2 eV upto 1.16

eV, suggesting that the D-band excitation profile has a maximum below 1.2 eV. We suggest

that the appropriate band gap associated with the resonance of the D-mode is at ∼ 0.8 eV

where a maximum is seen in the optical reflectivity measurements on graphite18,19. This

gap is associated with the energy difference between E1 and E3 bands at the K point of

the Brillouin zone as shown in the band structure of graphite (Fig.3a) taken from Ref.[19-

21]. The wavevector is in the basal plane. The bands shown here are the 4-π bands in

three-dimensional graphite. Recall that a single sheet of graphite has 2-π bands with linear

dispersion and Fermi level passes through the point of interaction (K-point) as depicted in

Fig.3b. Band structure calculations treating the interlayer coupling as a small perturbation

find a small gap at K point in the Brillouin zone. The optical transition between E1 and E3 is

termed as A2 transition. Within the Slonczewski-Weiss-McClure band model20 the energies

of these optical transitions are mainly determined by the overlap interaction parameter γ1 ∼

0.4 eV for nearest-neighbour atoms on successive layers21 and energy of A2 transition is ∼

2γ1. Thomsen and Reich13 have therefore, wrongly questioned the existence of a gap ∼ 0.8

eV in the 3D band structure of graphite as suggested Sood et al.6

The mechanism we suggest is that the electron in the conduction band (or the hole

5



in the valence band) is scattered by an optic phonon, changing the electron state from k

to k′. Another accoustic phonon scatters this electron at k′ to k′′, followed by an impurity

(disorder) scattering from k′′ to k′′′ and the electron-hole recombine to produce the scattered

photon with a frequency shift given by ω = ωop + ωac. As mentioned before, we proposed

that the optic phonon involved correspond to the maximum in the density of phonon states

at the K-point in the Brillouin zone (shown by a solid dot in the phonon dispersion of

graphite in Fig.3) and the wavevector q of the acoustic phonon is so chosen to satisfy the

double resonance condition. This Raman process involving disorder mediated two-phonon

scattering is fifth order in perturbation theory and will have four energy denominators as

explicitly written by Kauschke et al.22, out of which two energy denominators will be the

same. The resultant expression for the Raman matrix element is to be integrated over k,

k′, k′′ and k′′′. The Raman intensity will be maximum when all the three denominators

resonate simultaneously. It can be shown14–17 that the magnitude of q satisfy the condition

for Stokes Raman scattering, for ∆ + h̄ωop < EL < ∆ + h̄ωop + h̄ωac,

qs =

(√
2µ

h̄

)

[

(EL − ∆)
1

2 + (EL − ∆ − h̄ωop)
1

2

]

(1)

For EL > ∆ + h̄ωop + h̄ωac, another resonance becomes possible for

qs =

(√
2µ

h̄

)

[

(EL − ∆ − h̄ωop)
1

2 + (EL − ∆ − h̄ωop − h̄ωac(q))
1

2

]

(2)

For a given EL, the two-phonon Raman peak position for Stokes scattering will be given by

ωs = ωop(K) + ωac(qs) (3)

with qs given by Eq. (1) or (2). For ∆ ∼ 0.8 eV and EL > 1.16 eV, Eq.(2) is the appropriate

relation to be used. In graphite, there is a peak in density of states around 1230 cm−1

corresponding to the optic phonon frequency at the K point in the Brillioun zone12. We

therefore, take ωop(K) to be 1230 cm−1.

Regarding acoustic phonon, it has been seen that the acoustic phonon branch corre-

sponding to the branch marked T in the phonon dispersion relation of graphite shown in
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Fig.4, is strongly coupled to the optical phonon12. We take ωac(q) = vTAq where vTA is the

transverse accoustic phonon velocity (= 1.23×104 m/s). Since ωac ≪ ωop, one can simplify

Eq.(2) and write

ωac(qs) = qsvTA = 2vTA

(√
2µ

h̄

)

(EL − ∆ − h̄ωop)
1

2 (4)

The solid line in Fig.1 is a fit to Eq.(3) and (4), with ∆ and µ as adjustable parameters

and ωop = 1230 cm−1. The values obtained are ∆ = 0.85 ± 0.05 eV and µ = 0.025 me.

Taking the electron and hole effective mass to be same, m⋆
e = 0.05me, which is in excellent

agreement with the values obtained from other experimental measurements like cyclotron

resonance23. We also tried to fit the data in Fig.1 using Eq.(4), with ωop also as an adjustable

parameter along with ∆ and µ. In this case also the fit is very good with parameters, ωop =

1211 cm−1, ∆ = 0.75 eV and µ = 0.026me. The values of the parameters in both cases being

in resonable agreement with those obtained from other experiments gives us confidence in

the double resonance model to understand the origin of D-band.

Recent Raman measurements on ion-implanted highly oriented pyrolytic graphite by Tan

et al.7 show that the peak positions in the Stokes and anti-Stokes spectra for the D band

are different, with ωAS > ωS. In our model, using the disorder-induced double resonance,

wavevector of the phonon in anti-Stokes Raman scattering for the D mode will be given by,

qAS =

(√
2µ

h̄

)

[

(EL − ∆ + h̄ωop)
1

2 + (EL − ∆ + h̄ωop + h̄ωac(q))
1

2

]

(5)

in place of Eq.(2). Therefore

∆D = ωAS − ωS = 2vTA

√

2µ

h̄2
{(EL − ∆ + ωop)

1

2 − (EL − ∆ − ωop)
1

2} (6)

For the D⋆ mode, two optic phonons and two acoustic phonons will be involved. This

process will not require disorder-induced scattering to conserve momentum. In this case

∆D⋆ ∼ 2∆D. Putting in the values for ∆ = 0.85 eV and µ = 0.025me as obtained from

fit of Fig.1, ωAS − ωS for D mode = 13 cm−1 (EL = 2.41 eV) while the difference observed

experimentally7 is ∼ 7 cm−1. In the case of D⋆ mode we find the difference to be 26 cm−1
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which is very close to the experimentally observed value of 25 cm−1 of Tan et al.7. Recent

Stokes and anti-Stokes measurements by Zhang et al.24 on carbon nanotubes also shows a

difference in the peak position of the D band in Stokes and anti-Stokes spectra and this

difference is excitation laser energy dependent, very similar to the predictions of our model.

In conclusion, we have addressed the long standing problem of the dispersion of the

Raman D band as a function of laser excitation energy using a simple model based on disorder

induced two phonon scattering and the double-resonance. The fit of the experimental data

in this model yields the reduced effective mass of the electron-hole pair associated with the π

bands at the K-point. This is in reasonable agreement with the values obtained from other

experimental probes. As a corollary, this model can also explain the difference recently

observed in the peak positions of the D and D⋆ bands in Stokes and anti-Stokes spectra.
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FIGURES

FIG. 1. D-mode frequency dependence on excitation energy for different forms of car-

bon-disordered carbon2 (filled squares) , glassy carbon4 (filled triangles) and carbon nanotubes3

(open circles).

FIG. 2. Raman spectra of graphite at EL = 4.82 and 2.54 eV. The inset shows the intensity

ratio of D-band to that of G-band as a function of EL as reported by Wang et al.2. The peaks

marked by asteriks are the internal vibrational modes of sulphate ion for use as internal intensity

calibrant.

FIG. 3. (a) Schematic band structure of graphite showing the four π bands at the K-point of

the Brillouin zone. The wavevector k is perpendicular to the c-axis. (b) Schematic of the single

graphene sheet at the K-point. Dashed lines denote the Fermi energy.

FIG. 4. Phonon dispersion curves in graphite calculated along certain high symmetry axes as

given by Mathew et al.10.
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