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We consider the jump in resistance at the melting transition, which 
is experimentally observed to be constant, independent of magnetic 
field (vortex density). We present an explanation of this effect based on 
vortex cuttings, and universalities of the structure factor at the freezing 
transition (the Hansen-Verlet criterion). 

The subject of vortex dynamics in high Tc supercon- 
ductors is of topical interest [1,2]. In recent years, new 
aspects of the phase diagram of the vortex lattice have 
been elucidated through experiment. Perhaps one of 
the salient recent experimental findings is the first or- 
der melting transition of the vortex lattice, first ob- 
served in transport measurements [3] and later con- 
firmed in a number of equilibrium properties [4]. It is 
now well accepted that in clean BiSrCuO and in un- 
twined YBaCuO samples the melting transition of the 
vortex lattice for an applied magnetic field parallel to 
the c-axis is first order and that the superconducting 
coherence is simultaneously lost in all directions at the 
melting temperature. A striking regularity is observed 
in the transport experiments: for different values of 
the applied magnetic field, which is proportional to 
the areal density of vortices, the in-plane resistivity 
pt,h( T )  decreases with decreasing temperature until it 
jumps (essentially) discontinuously to zero at the melt- 
ing temperature TI, ,  with pu/,( T l l )  independent of field. 
Moreover, recent studies of the melting transition in 
YBaCuO show that the jump in the out-of-plane re- 
sistivity p c  is also field independent. 

The resistance due to vortex motion is given by 

p = ($)’;, 
with n the number of vortices per unit area and q the 
viscosity. If in the above equation one replaces the vis- 
cosity by its value due to the frictional force the elec- 
trons flowing through the normal core, one obtains 
a resistance that increases linearly with the magnetic 

field. Using general arguments from the theory of liq- 
uids at the freezing point, we will show below that, if 
the vortex cutting dominates the viscosity, the value of 
p at the melting transition is constant, independent of 
n.  This universality constitutes, we argue, an evidence 
of general universalities in the structure factor S ( q )  of 
the liquid phase at the melting point as first pointed 
out by Hansen and Verlet for normal liquids [5] .  

Verlet’s criterion for freezing is the counterpart of 
Lindeman’s criterion for melting. Verlet observed that 
the rescaled curves of S ( q )  are nearly identical for a 
variety of liquids that freeze to the same crystalline 
structure. The only scale is q,,,, the wave vector at the 
first peak in S(q),  with S(q,,,) = 2.85. 

While Lindeman’s criterion tells us a way of antic- 
ipating melting by looking at mean square displace- 
ments of the atoms in the solid phase [7], Verlet’s crite- 
rion provides a way of predicting freezing by looking 
at the structure factor in the liquid phase. Ramakr- 
ishnan and Yussouf [6] have offered a theoretical ex- 
planation of the criterion based on an ab-initio den- 
sity functional theory. While Lindeman’s criterion has 
been used and corroborated for the case of the solid- 
liquid transition of vortices [ I], Verlet’s criterion has 
not been widely addressed in this context. The den- 
sity functional theory applied to vortices has shown 
that at high fields, the correlations are effectively two 
dimensional and S(q,n,x) - 5 at freezing [8,19]. 

More recently Lowen et af. [9] made the empiri- 
cal observation of a dynamzcal criterion for freezing 
of colloidal liquids. For these systems the ratio of the 
long-time and short-time diffusion coefficients of the 
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colloidal particles DL/  DS has a universal value close 
to  0. I at the freezing temperature of a variety of sys- 
tems. It has been shown that, for the colloidal liquids, 
universalities in S ( q )  at freezing imply universalities 
in the long time diffusion constant [lo, 111. 

I n  the present paper, we will assume the validity of 
Verlet’s criterion for vortices. However, we wish to em- 
phasize that there are still important differences in the 
the diffusion coefficients of vortices and colloidal par- 
ticles which stem from the different topological prop- 
erties of these systems. Vortices are extended objects 
that can entangle. 

In the entangled phase diffusion implies cutting of 
vortex lines, an effect which is not present in suspended 
particles. For clean systems we show that vortex cut- 
ting, together with Verlet’s criterion, implies a univer- 
sality in  the jump of both and pr .  We illustrate 
this by solving a simple model for vortex cutting, and 
show that the resistivity at the melting temperature is 
given by the normal resistivity and the structure factor 
only, and thus the observed universality in the resis- 
tivity jump implies the validity of Verlet’s criterion. 

If a current is applied, different vortices experience 
different net forces depending on their total length 
and on their orientation (in the entangled phase some 
spontaneously generated vortices percolate in direc- 
tions perpendicular to the applied field). This implies 
velocity gradients, and a limiting center of mass veloc- 
ity that depends on the vortex-vortex interactions even 
in the ubsence ofpinning impurities. This distinguishes 
the entangled vortex phase from a colloidal suspen- 
sion, for which the limiting velocity in the absence of 
hydrodynamic interactions is given by the bare viscos- 
ity and is independent of the particle-particle interac- 
tions. Therefore, for a colloidal system in an infinite 
container the self difussion coefficient goes to zero at 
the freezing transition but the flow resistance is inde- 
pendent of interactions and is the same above and be- 
low the transition since the solid moves as a whole. One 
could overcome this by introducing a non-extensive 
pinning surface that is enough to pin the solid but does 
not affect the viscosity of the liquid. 

We will first analyze the out of plane resistivity pc. 
The mechanisms of dissipation when the current is 
parallel to the applied field originate in the entangle- 
ment of the field-induced vortices and the thermally 
generated vortex loops [14]. In this entangled phase, 
the structure of vortex lines percolates through the 
sample in the direction perpendicular to the external 
field [15]. The result is a “phantom mesh” of vor- 
tex lines that threads the sample in all directions and 
where each vortex diffuses by cutting the others. The 
topology of the phantom mesh allows different seg- 

ments of the field-induced vortices to diffuse indepen- 
dently. This implies that the vortex motion is uncorre- 
lated in the c-direction, as observed in the pseudo DC 
transformer experiments [ I  61. 

When a current flows along the c-axis, only those 
lines oriented in the direction perpendicular to the c- 
axis will contribute to the bulk resistivity. The resistiv- 
ity can be written as 

DP 2 

P c =  (9) n P G ’  

with np the density of percolating vortex lines, and 
Dp their diffusion coefficient. In the computation of 
Dp one needs to include the cutting of the percolating 
vortex lines with the field-induced vortices. 

We stress that the viscosity in the present case can 
be obtained from the self-diffusion coefficient of the 
“horizontal” vortices, because, after acted upon by a 
force, they will move with respect to the field induced 
vortices. In other words, what we are really computing 
is the renormalized viscosity. 

We compute the diffusion by considering the ran- 
dom walk of the center of mass of a vortex line. We 
introduce a discretization of the random walk, with 
step length 8, and we call T,  the time elapsed at the 
i-th step. Neglecting vortex cutting all time steps are 
equal, with T, = TO, and the bare diffusion coefficient 
is given by = t 2 / ~ 0 .  This bare diffusion constant 
is related to the Bardeen-Stephen [12,13] viscosity co- 
efficient t$ = ks T / D t  ) . The superscript “c” refers to 
the viscosity corresponding to the motion in the direc- 
tion perpendicular to the c-axis. Written in terms of 
the normal state resistance p t ~  in the c-direction we 
have r$) = ( h / e ) 2 ( ~ / 2 ) / [ p c N c ~ ] ,  with & an effective 
core radius for an horizontal vortex which will be of 
the order of magnitude of the distance between layers. 

Assume now that there is a fraction PI, of steps, at 
which vortex cutting takes place, with a characteristic 
step time T ~ ;  the diffusion coefficient is then 

(3) 

The cutting frequency is 

1 1  - = - e - U x / k ~ T  
T x  To 

(4) 

with Ux an effective barrier for cutting [17]. I n  the 
above equation we have assumed thermal activation 
for the vortex crossings. The Boltzman factor gives the 
relative probability of finding a vortex in a crossing 
configuration. 

If kBT < U,, and assuming that n,. is of the order of 
the density of field-induced vortices n, the resistivity 
is given by 



where a0 = is the mean distance between field 
induced vortices along the c-direction and 5: = r ~ p ' ' ~  
is the mean distance between percdlating vortices in 
the direction perpendicular to the field. In what fol- 
lows, we argue that Verlet's criterion implies that pc 
is universal (in a weak sense) at the melting tempera- 
ture. The argument is two-fold: i - The universality 
of the structure factor S(q)  indicates that the scaled 
correlation lengths are independent of density at TI, ,  
and therefore the factor ( a ~ / & ) ~  is density indepen- 
dent at freezing. ii - The exponential factor in equa- 
tion (5) represents an effective probability of cutting 
which will be also universal at melting due to Ver- 
let's criterion. (See the solution of the simplified one- 
dimensional model below.) 

We conclude that the out-of-plane resistivity pc is 
independent of the vortex density at the melting tem- 
perature TI , .  This weak universality is a consequence 
of Verlet's criterion. 

The arguments presented above are valid for good 
quality single crystals for which vortex pinning is 
weak. Evidence from both experiments and numer- 
ical simulations have shown that intrinsic disorder 
destroys the first order transition. For example, upon 
irradiation, the magnitude of the jump decreases. 
In the cleanest YBCO samples, the jump in pLlh is 
about a fifth of the normal resistivity at the critical 
temperature. A smaller jump in the resistivity at the 
melting transition is an indication of disorder. In our 
formulation, a large disorder can be incorporated in a 
modified particle-particle correlation function which 
will retain its universal properties as long as the tran- 
sition remains first order. Consequently, to the extent 
that Verlet's criterion remains valid, the universality 
in  the resistivity jump is preserved. 

Now let us turn to a simplified one-dimensional 
model of interacting diffusing particles. The purpose 
of this discussion is to justify using a probability of 
cutting which is universal at melting. We consider the 
following Fokker-Planck equation, describing diffus- 
ing interacting particles 

x P ( { X I } ,  t ) ,  ( 6 )  

with fi = -6,,0 [ f +  Cy='=, V ' b ,  - XO)] + ( 1  - 
6,,o) V ' ( x ,  - SO). V being an interaction potential be- 
tween particle zero and the rest of the N particles. 
Note that there is no interaction between particle i 

land particle j for i f 0 f j .  Also, the diffusion con- 
stant is DO for particle 0, and D, << Do for i t 0. 
We added a drag force f acting on particle zero, and 
computed the resulting mean drift velocity of particle 
zero ( v )  by solving the Focker-Planck equation im- 
posing periodic boundary conditions [ 181 on a length 
L. The result is ( v )  = f / u ,  with 

1 1  L 
r7 ~0 I: dxe- I,"=, V ( w - l , ) / k f i T  
_ -  - -  

(7) 

with qo = l c~T/Do Note that, since particle zero dif- 
fuses faster than the other particles, we take the con- 
figuration of the rest of the particles as described by 
the equilibrium distribution in the absence of the force 
f .  Also, if the potential is monotonically decreasing 
with distance with V ( 0 )  >> ksT and the range of the 
interaction is much smaller than the inter-particle sep- 
aration, 

L 
I: dxe+ x ~ l  ~ ( x - l , ) / k f i ~ '  

L 

0 

with h the range of the interaction. We can now iden- 
tify the integral in equation (7) which involves the neg- 
ative exponential as a partition function Z, and defin- 
ing Px = [exp-V(O)/lcBT]/Z, we obtain 

(9) 

In this simplified model Px represent the proba- 
bility of finding particle zero on top of particle i. 
This probability can be extracted from the dimen- 
sionless pair correlation function g ( r )  or its Fourier 
transform S ( q ) :  Px = Id(q/q, l , )[S(q/q, , , )  - 11. This 
results from the fact that in this simplified model 
g ( r )  = [exp-V(r)/kBT]/A, with A a normalization 
constant. The jump in the in-plane resistivity is also 
independent of the external field. 

The resistivity Pub can be written as 

with n = B / &  the density of field induced vortices 
along the direction of the applied field B, D is the cor- 
responding diffusion coefficient. The diffusion coeffi- 
cient D can be calculated following the out-of-plane 
case, with an analogous results. The diffusion con- 
stant, or more precisely, the viscosity, is reduced by a 
factor proportional to n due to vortex cutting, cancel- 
ing the prefactor of n in the above equation. 



For the vortex case the quantity nh defined in merical discrepancy, the fact that the crossing energy 
the above one-dimensional calculation is identified is independent of field at the melting temperature con- 
with nE2, 5 being the core radius. Finally, if in our stitutes, in our view, an additional element supporting 
equation for the resistivity Puh = ( & / c ) 2 n / q  = the applicability of Verlet’s criterion in the vortex state. 
( + o / c ) ~ P ,  / ( r f “ z 2 )  we replace the expression for the Our theory assumes a continuum approximation for 
Bardeen-Stephen viscosity, vFh’ = (F1/e)~(rr/2)/(p~~~5~4he vortex degrees of freedom, and will be valid as long 
with p l , / ] ~  the normal state resistivity , we obtain for 
the resistivity jump at TI ,  

where P x [ S ( q / q I r r ) ]  means that Px is a functional of 
S(q /q , , , )  and is universal at melting. This equation is 
analogous to equation ( 5 )  and constitutes the main 
result of this work. 

The calculation of the probability Px of finding vor- 
tices in the cutting configuration requires the knowl- 
edge of the of the exact correlation functions g ( r ) .  An 
estimate can be extracted from the calculations of the 
“cage” model described in Ref. [I  1. Within that simple 
an entanglement length 1, is defined as the distance 
along the field required for a vortex to diffuse a dis- 
tance of the order of the vortex-vortex separation ao: 
1: - g ~ # ~ o / ( k g T B ) ,  with g the tilt energy, and ui - 
& / B .  From the above discussion, we estimate 

On the other hand, within the cage model, a melt- 
ing temperature can be extracted by applying Lin- 
demann’s criteron on the solid phase [l]: ksT,, = 

c t E o ( m l / m , ) ” 2 ( ~ o / B ) ’ / 2 ,  with mL and m, being 
respectively the in-plane effective mass and the out- 
of-plane effective mass, and €0 = (m, /ml)g a cou- 
pling constant giving the interaction energy per unit 
length for the vortex lines. Also, CL is the Lindemann 
constant, which for vortices is of order 0.1-0.2 [2]. 
Collecting this with equation (12) we obtain 

pX - c ~ ( m , / m , ) ‘ ’ 2 .  (13) 

If we assume that the anisotropy on the effective 
mass is the same as that of the normal resistivities, 
we obtain a p ( T , , , ) / p ~  - lop2 for YBaCuO and 
A p ( T , , , ) l p ~  - for BISCO, which should be 
compared with the jumps observed in experiments of 
0.1 [3] and 1 OT4 [2 1 J respectively. 

An alternative estimate of the relative jump at melt- 
ing can be can be computed from the expression Px = 
exp -Ux /kBT,,,, and using results from experimental 
fits [22] and numerical simulations [23] that indicate 
Ux - kgT,;,, .  For the observed A p ( T , , ) l p ~  = 0.1 we 
obtain Ux = 2.3k~T,,,, whereas the numerical simula- 
tions give U ,  = 7.5k~T,,,. Even though there is a nu- 

as 1, is larger than the interplane separation s. When 
1, becomes of the order of s one attains the so called 
decoupled or “superentangled” regime, in which our 
approximations are no longer valid. Therefore, we ex- 
pect deviations from the universal jump in the resis- 
tance for magnetic fields larger than Bx2 = g+o/skBT. 

An experimental proof of the universalities in S(q) 
could be obtained from neutron scattering experi- 
ments [20] performed at the melting temperature, or 
probably by decorating a sample rapidly quenched 
from the melting point. 

In summary, we have presented an explanation for 
the universal jump in the resistivity at the melting 
transition of vortices in high temperature supercon- 
ductors. The theory is based on universalities at the 
melting transition as reflected in the structure factor, 
together with vortex cutting dominating the viscosity 
of vortices. 
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