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Antiferromagnetic sawtooth chain with spin-1
2 and spin-1 sites
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We study the low-energy properties of a sawtooth chain with spin-1’s at the bases of the triangles and spin-
1
2 ’s at the vertices of the triangles. The spins have Heisenberg antiferromagnetic interactions between nearest
neighbors, with a couplingJ2 between a spin-1 and a spin-1

2 , and a couplingJ151 between two spin-1’s.
Analysis of the exact diagonalization data for periodic chains containing up toN512 unit cells shows that the
ground state is a singlet for exchange couplings up to approximatelyJ253.8, whereas for largerJ2 the system
exhibits a ferrimagnetic ground state characterized by a net ferromagnetic moment per unit cell of 1/2. In the
region of small interactionsJ2, the mixed spin sawtooth chain maps on to an effective isotropic spin model
representing two weakly interacting and frustrated spin-1

2 Heisenberg chains composed of spin-1
2 sites at odd

and even vertices, respectively. Finally, we study the phenomenon of a macroscopic magnetization jump which
occurs if a magnetic field is applied with a value close to the saturation field forJ252.
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I. INTRODUCTION

There has been a great deal of interest in recent yea
one-dimensional quantum spin systems with frustration.1 The
most common examples of such systems are those in w
triangles of Heisenberg spins interact antiferromagnetic
with each other. Some of the systems which have been s
ied analytically or numerically so far are the sawtooth spin1

2

chain,2–4 a chain of spin-12 triangles,5 frustrated mixed spin
ferrimagnetic chains,6 and the spin-12 kagoméstrip.7,8 There
is also a recent study of a spin-1

2 -spin-1 system on a diamon
lattice which exhibits a number of phases as a function of
various couplings.9 Examples of quasi-one-dimensional fru
trated spin systems which have been studied experimen
include a sawtooth spin-1

2 system,3 a zigzag spin-12 chain,10

and a mixed spin-12 -spin-1-system.11

Classically, i.e., in the limit in which the magnitudes
the spinsSi→`, some of these frustrated systems have
enormous ground-state degeneracy arising from local r
tional degrees of freedom which cost no energy. Quan
mechanically, this degeneracy is often lifted due to tunnel
between different classical ground states. However,
might still expect a remnant of the classical degeneracy
the form of a large number of low-energy excitations in t
quantum system.

Recently, the ground state of the spin-1
2 sawtooth chain

has been numerically studied as a function of the ratioJ2 /J1,
whereJ1 is the coupling between pairs of spins at the ba
of the triangles, andJ2 is the coupling between a spin at th
base and a spin at the vertex of a triangle.4 The system was
found to be gapless forJ2 /J1.2.052 and forJ2 /J1,0.65.
The low-energy excitations have the same dispersion for
glets and triplets. ForJ2 /J151, the system has some spec
properties. The ground state of an open chain has an e
degeneracy which increases linearly with the number
triangles.2,3 This degeneracy arises from the existence of
calized spin-12 kinks which do not cost any energy regardle
of their position in the chain. There are also spin-1

2 antikinks
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which cost a finite energy. The lowest excitation in a cha
with periodic boundary conditions is given by a kink
antikink pair which has a dispersionless gap; the pair may
either a singlet or triplet.

As the couplings between the different spins are vari
one-dimensional spin systems may undergo phase transi
at zero temperature, such as from a gapless phase with l
range order to a gapped phase with short-range order.12 The
different phases can often be distinguished from each o
by looking at properties such as the magnetic susceptib
at low temperatures.

In this paper, we will carry out analytical and numeric
studies of a mixed spin Heisenberg antiferromagnet on
sawtooth lattice shown in Fig. 1. The arrows and anglesu)
shown in that figure refer to a canted state which will
discussed later. The sites at the vertices of the triangles h
spin S2, and they are labeled 1,2, . . . ,N. The sites at the
bases of the triangles have spinS1, and they are labeledN
11,N12, . . . ,2N. The number of triangles is thereforeN.
The Hamiltonian governing the system is

H5J1 (
i 5N11

2N

SW i•SW i 111J2(
i 51

N

SW i•~SW i 1N1SW i 1N11!, ~1!

FIG. 1. Picture of the first four triangles of a sawtooth cha
with N512 indicating the site labels for the spin-S2’s at the vertices
and the spin-S1’s at the bases of the triangles, and the couplingsJ1

andJ2. For the numerical studies, we takeS151 andS25
1
2 . The

arrows and angles (u) indicate a canted state in which all the spi
S2’s are aligned with each other.
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where the couplingsJ1 andJ2 are positive. It is convenien
to setJ151 and to consider the properties of the system a
function ofJ2. We will impose periodic boundary condition
at the ends of the chain, so that the momentum is a g
quantum number. We will set Planck’s constant\51, and
the nearest-neighbor lattice spacings equal to 1.

The plan of our paper is as follows. In Sec. II, we w
develop the spin-wave theory~SWT! for this system,13 tak-
ing the values of the spinS1 at the bases and the spinS2 at
the vertices of the triangles to be very large, andS1.S2. If
J2.2S1 /S2, we find that the system is a ferrimagnet, with
magnetization per unit cell ofS1-S2. If J2,2S1 /S2, we find
that there is an infinite number of classical ground states
mentioned above. For reasons explained below, we will c
sider the classical ground states which are coplanar; the n
ber of even this restricted set of states grows exponent
with N. We perform a linear SWT about these coplan
states, and find that the spin-wave zero point energy does
break the classical degeneracy. Further, one of the spin-w
modes turns out to have zero energy for all momenta.
will also see that SWT picks out two other values ofJ2 ~i.e.,
J251 and 2!, as being special.

In Sec. III, we use the Lanczos algorithm to perform
exact diagonalization~ED! of finite systems to study the low
energy excitations and two-spin correlations in the grou
state as a function ofJ2 for S151 andS251/2. We find that
the system is a ferrimagnet forJ2*3.8 with a magnetization
per unit cell of 1/2. We see that the transition to a colline
ferrimagnetic state takes place at a smaller value ofJ2 in the
quantum case than in the classical case where the trans
occurs atJ254. This effect has already been seen for oth
systems exhibiting transitions between collinear and non
linear states~see, for example, Ref. 6!, and it indicates a
favoring of the collinear state by quantum fluctuations. Th
seems to be a first-order transition atJ2.3.8 with the total
spin of the ground state changing rather abruptly at t
value. ForJ2&3.8, the ground state is a singlet. We find th
there are two other values,J2.1.9 and 1.1, where the natur
of the spin correlations changes significantly. Many of t
correlations become very small or change sign at those
points. The structure factor seems to indicate crossover
those points between ground states with different kinds
short-range correlations. In the region 1.1&J2&1.9, the
canted spin configuration in Fig. 1 is consistent with the E
data representing the short-range spin-spin correlati
whereas for largerJ2 up to the ferrimagnetic phase transitio
point, the commensurate spiral phase with a period of f
lattice spacings seems to be in accord to the ED data foN
512. It is clear, however, that the periodic boundary con
tions imposed on the chain prevent the appearance of
periodic structures with larger periods predicted by the c
sical analysis.

For J2&1, the correlations between the spin-1
2 sites show

an unusual pattern, namely, the spin-1
2 sites appear to decom

pose into two sublattices such that each sublattice has a
stantial antiferromagnetic coupling within itself~with a
strong frustration!, but the coupling between the two subla
tices is much weaker. We call this system the next-near
neighbor antiferromagnet~NNN-AFM!. In Sec. IV, we use a
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perturbative expansion inJ2 and an effective Hamiltonian
description to provide some understanding of why this h
pens. This seems to be a remarkable property of the s
1
2 -spin-1 sawtooth system.

In Sec. V, we will consider the particular case ofJ252
where we find that the system shows an interesting beha
if a magnetic field is applied with a strength which is close
the saturation valuehs , i.e., the value above which all th
spins are aligned with the field. We will show that forJ2
52, the system displays a macroscopic jump in the mag
tization as the magnetic field crosseshs . This phenomenon
is known to occur in some other strongly frustrated quant
spin systems.14–16

II. SPIN-WAVE ANALYSIS

To develop the SWT, we assume that the values of
spinS1 andS2 are much larger than 1. We will describe ho
to obtain the spin-wave dispersion up to orderSi . This is
called linear SWT because interactions between the s
waves do not appear at this order. Since some of the clas
ground states considered in this section have a coplanar
figuration of the spins, it is convenient to use a technique
deriving the spin-wave spectrum which can be applied
both collinear and coplanar configurations. For a copla
configuration, let us assume that the spins lie in thez-x
plane. Consider a particular spin of magnitudeS which
points at an anglef with respect to theẑ direction. Then we
can write the Holstein-Primakoff representation for that s
as

cosfSz1sinfSx5S2a†a,

2sinfSz1cosfSx1 iSy5A2S2a†aa,

2sinfSz1cosfSx2 iSy5a†A2S2a†a, ~2!

where@a,a†#51. We now introduce a coordinate and a m
mentum, q5(a1a†)/A2 and p5 i (a†2a)/A2, satisfying
@q,p#5 i . On expanding Eq.~2! up to quadratic order ina
anda†, we obtain

Sz5cosf@S1 1
2 2 1

2 ~p21q2!#2sinfASq,

Sx5sinf@S1 1
2 2 1

2 ~p21q2!#1cosfASq,

Sy5ASp. ~3!

We now consider a general Heisenberg Hamiltonian of
form

H5(
i j

Ji j SW i•SW j , ~4!

where we count each bond (i j ) only once, and the spin a
site i will be assumed to have a magnitudeSi . Consider a
classical configuration in which the spin at sitei lies in the
z-x plane at an anglef i with respect to theẑ axis. The
condition for this configuration to be a ground state clas
cally is that
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i j

Ji j SiSj cos~f i2f j ! ~5!

should be a minimum with respect to each of the anglesf i .
We must therefore have

(
j

Ji j SiSj sin~f i2f j !50 ~6!

for every value ofi. Using Eq.~3! and keeping terms up to
orderSi , we find that the spin-wave Hamiltonian is given b

Hsw5(
i j

Ji j F S SiSj1
Si

2
1

Sj

2 D cos~f i2f j !

2
1

2
cos~f i2f j !~Sj pi

21Sjqi
21Sipj

21Siqj
2!

1ASiSjcos~f i2f j !qiqj1ASiSj pipj G . ~7!

The factor ofSiSj1Si /21Sj /2 in this expression appears o
expanding a product such as (Si11/2)(Sj11/2) coming
from Eq. ~4! and dropping the term of order 1.

We can obtain the spin-wave spectrum from Eq.~7! as
follows. The unit cell of our system is a triangle containin
the two sites with spinsS1 andS2 which lie on its left edge.
Let us label the triangles byn, wheren51,2, . . . ,N, and let
a51,2 denote the spinsS1 and S2, respectively; thus each
site is labeled as (a,n). The mapping from the site label
a

a-

b
e

used in Fig. 1 to the site labels (a,n) being used here is a
follows: n→(2,n) if 1<n<N, and n→(1,n2N) if N11
<n<2N. We define the Fourier transforms

pa,k5
1

AN
(

n
pa,ne2 ikn,

qa,k5
1

AN
(

n
qa,ne2 ikn, ~8!

where2p,k<p. These operators satisfy the commutati
relation @qa,k ,pb,k8#5 idabdk,2k8 . Let us now assume tha
the cosines appearing in Eq.~7! take the following simple
forms: they are equal to cosa for every pair of neighboring
spin-S1 sites, and equal to cosb for every pair of neighbor-
ing spin-S1-spin-S2 sites.~We will see below that this may
happen even in situations where the anglesfa,n are them-
selves not the same in all the triangles!. Up to terms of order
Si , the Hamiltonian in Eq.~1! takes the form

H5E0,cl1(
ab

(
kW

@pa,2kMab,kpb,k1qa,2kNab,kqb,k#,

~9!

E0,cl5NF ~S1
21S1!cosa12J2S S1S21

S1

2
1

S2

2 D cosb G ,
whereE0,cl is the classical ground-state energy, and
Mab,k5S S1 cosk2S1 cosa2J2S2 cosb J2AS1S2~11e2 ik!/2

J2AS1S2~11eik!/2 2J2S1 cosb
D ,

Nab,k5S S1 cosacosk2S1 cosa2J2S2 cosb J2AS1S2 cosb~11e2 ik!/2

J2AS1S2 cosb~11eik!/2 2J2S1 cosb
D . ~10!
ven
be-

us

he

he
Note that the 232 matricesMk and Nk satisfy M 2k5Mk
T

andN2k5Nk
T . If we write pa,k andqa,k as the columnspk

and qk , respectively, then the classical Hamiltonian equ
tions of motion take the form

dqk

dt
52Mkpk and

dpk

dt
522Nkqk . ~11!

For each value ofk, the harmonic solutions of these equ
tions have two possible frequenciesvk given by the eigen-
value equation

det~4MkNk2vk
2I !50. ~12!

The quantum-mechanical energy levels are then given
(na,k11/2)va,k , wherena,k is the occupation number of th
mode labeled as (a,k), wherea can take two different val-
ues. Note that the frequenciesva,k are the same in all the
-

y

coplanar configurations. Hence the zero-point energy gi
by (1/2)(a,kva,k does not break the classical degeneracy
tween the different configurations.

We can now obtain the spin-wave dispersion for vario
values ofJ2. For large values ofJ2, the classical ground
state is a collinear ferrimagnetic configuration in which t
S1 spins point in one direction, say, theẑ direction, and the
S2 spins point in the opposite direction; the total spin of t
ground state is therefore equal toN(S12S2). Hence the co-
sines in Eq.~10! are given by cosa51 and cosb521. The
spin wave dispersions are then given by

v6,k52Aak
22ck

262bk , ~13!

ak5
J2

2
~S11S2!2S1 sin2S k

2D ,
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J2

2
~S12S2!1S1 sin2S k

2D ,

ck5J2AS1S2cosS k

2D .

@We can show that the upper branchv1,k corresponds to
excitations with total spin one more than the ground-st
spin, while the lower branchv2,k corresponds to excitation
with total spin one less than the ground-state spin#. These
dispersions are shown in Fig. 2 forJ255, S151 and S2
50.5. At k50, we find thatv1,052J2(S12S2) and v2,0
50. At k5p, v1,p52J2S1 while v2,p52J2S224S1.
When the ratioJ2 decreases to the value 2S1 /S2, the lower
branchv2,k vanishes for all values ofk. This signals an
instability to some other state forJ2,2S1 /S2.

For later use, we note that up to orderSi , the ground-state
energy per unit cell in the ferrimagnetic phase is given b

E0

N
5E0,cl1

1

2E2p

p dk

2p
~v1,k1v2,k!

5S1
21S122J2S S1S21

S1

2
1

S2

2 D1E
0

p dk

2p
4Aak

22ck
2,

~14!

whereak andck are given in Eq.~13!.
For J2,2S1 /S2, the classical ground state is no longe

collinear state. To see this, note that the Hamiltonian in
~1! can be written, up to a constant, asH5(1/2)(nWW n

2 ,
where

WW n5J2SW 2,n1SW 1,n1SW 1,n11 . ~15!

Thus the classical ground state is one in which the vectorWW n
has the minimum possible magnitude in each trianglen. For
J2,2S1 /S2, we find that the lowest-energy state in ea
triangle is one in which the magnitude ofWW n is zero; this is

FIG. 2. Spin-wave dispersions in the ferrimagnetic phase
J255, S151, andS250.5.
e

.

given by a configuration in which the spin-S2 makes an angle
of p-u with both the spin-S1’s, while the angle between th
two spin-S1’s is 2u, where

u5cos21S J2S2

2S1
D . ~16!

Figure 1 shows a particularly simple example of such a c
figuration in which all the spin-S2’s are aligned with each
other; this is called the canted state. It is clear that there is
infinite number of such configurations even in a system w
a finite number of triangles. This is because, in a trian
labeled n, we can continuously rotate the spinsS2,n and
S1,n11 around the spinS1,n while maintaining the relative
angles at the values given above. In many systems with s
an enormous ground-state degeneracy, it is known that
zero-point energy in linear SWT breaks the degeneracy
tially by selecting only the coplanar ground states; this
called the order-from-disorder phenomenon.17 Let us there-
fore consider only coplanar configurations, in which all t
spins lie in thez-x plane. Even with this restriction, there a
about 2N different configurations, because in trianglen, there
are two possible directions of the spinsS2,n andS1,n11 for a
given direction of the spinS1,n .

Let us compute the spin-wave dispersion in a copla
configuration. The cosines in Eq.~10! are given by

cosa5cos~2u!5
J2

2S2
2

2S1
2

21,

cosb52cosu52
J2S2

2S1
. ~17!

We then find that detMk50 for all values ofk. Equation~12!
then implies that one of the frequencies, say,v2,k50 for all
k. We thus have a dispersionless zero mode. This mode a
due to the invariance of the classical ground-state ene
under certain kinds of continuous rotations in each trian
as mentioned above. In the problem of the Heisenberg a
ferromagnet on the kagome´ lattice, it is known that interac-
tions between spin waves, which appear when we go
higher orders in the 1/S expansion, remove the degeneracy
the zero-mode branch,18 and produce a low-lying spin wav
branch with an energy scale proportional toS2/3. We will
restrict ourselves to linear SWT here, and will not consid
such corrections to the zero-mode branch.

Sincev2,k50, the other frequency can be obtained fro
Eq. ~12! as

v1,k
2 54 tr~MkNk!

52J2
2S2

2~cosk2J2!~11cosk!14S1
2 sin2k1J2

4S2
2 .

~18!

This dispersion is shown in Fig. 3 forJ252, S151, and
S250.5. At k5p, we havev1,p5J2

2S2, while atk50, we
havev1,05J2S2u22J2u. We thus see that the gap vanish
at k50 if J252.

r
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Up to orderSi , the ground-state energy per unit cell in th
coplanar phase is given by

E0

N
52S1

22S12
J2

2

2
~S2

21S2!1E
0

p dk

2p
v1,k , ~19!

where v1,k is given in Eq. ~18!. One can check that th
expressions~14! and ~19! match atJ252S1 /S2.

Let us now comment on a special feature of the va
J252. Within the set of 2N classical coplanar ground state
the total spin of the system can have a wide range of va
depending on the exact configuration of the spins. We
see this by noting that the total spin can be written asSW tot

5(nVW n , where

VW n[SW 2,n1 1
2 ~SW 1,n1SW 1,n11!. ~20!

In any of the classical ground states forJ2,2S1 /S2, we find
that the magnitude of this vector is given byuVW nu5uS2
1S1 cosbu5(S2/2)u22J2u. Depending on how the vector
VW n in different triangles add up, the total spin of the syste
can therefore range from 0 to (NS2/2)u22J2u. However, if
J252, we see thatVW n is proportional toWW n in Eq. ~15!;
hence all the classical ground states have zero spin sinc
know that each of the vectorsWW n has zero magnitude. Quan
tum mechanically, we expect the exponentially large cla
cal degeneracy to be broken by tunneling; however
would still expect an unusually large number of low-ener
singlet excitations forJ252.

Another special value ofJ2 is given by J251. At this
point, the Hamiltonian of a single triangle is given by th
square of the total spinSW n5SW 2,n1SW 1,n1SW 1,n11. Thus the to-
tal spin of each triangle vanishes in any of the class
ground states.

Finally, we can use this formalism to obtain the spin-wa
dispersion close to the fully aligned ferromagnetic st
which is the ground state when a sufficiently strong magn
field is applied; this will be useful for the discussion in Se
V. Let us consider a Hamiltonian which is the sum of the o
given in Eq.~1! and a magnetic field term given by

FIG. 3. Nonvanishing spin-wave dispersion in the singlet ph
for J252, S151, andS250.5.
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Hmag52h(
i 51

2N

Si ,z , ~21!

where we have assumed the same value of the gyromag
ratio g for spinsS1 andS2, and we have absorbedg in the
definition of the magnetic fieldh. If h is large enough, the
ground state is one in which the anglef in Eq. ~2! is equal to
zero for all the spins. Following the procedure describ
above, we see that the matricesMab,k andNab,k are equal to
each other and are given by

Mab,k5Nab,k

5S S1 cosk2S12J2S21h/2 J2AS1S2~11e2 ik!/2

J2AS1S2~11eik!/2 2J2S11h/2
D .

~22!

We then find that the spin-wave dispersions are given by

v6,k5h2J2~S11S2!22S1sk

6AJ2
2~S11S2!214J2S1~S22S12J2S2!sk14S1

2sk
2,

sk5sin2S k

2D . ~23!

III. NUMERICAL RESULTS

We have used the Lanczos algorithm to study the grou
state properties of the sawtooth chain withS151 and S2
51/2 for even values ofN from 4 to 12 with periodic bound-
ary conditions. To reduce the sizes of the Hilbert spaces,
work in subspaces with a given value of the total compon
of the spinSz and the momentum, since these operators co
mute with the Hamiltonian. IfSz50, we reduce the Hilbert
space further by working in subspaces in which the s
parity Ps is equal to61; under the transformationPs , the
values ofSz at all the sites are flipped fromSiz→2Siz . (Ps
transforms the operatorsSiz→2Siz andSix→2Six , leaving
Siy invariant. It therefore corresponds to a rotation byp

about theŷ axis!. One can show that the eigenvalue ofPs is
related to the total spinS of the state by

Ps5~21!N(S11S2)2S. ~24!

Figure 4 shows the total ground-state energy as a func
of J2 for N58. The solid line shows the numerical dat
while the dashed line shows the spin-wave results obtai
from Eq.~19! for J2<4, and from Eq.~14! for J2>4. We do
not present the data forN512 since the latter are almos
indistinguishable from those presented in Fig. 4. In the ins
the solid lines show piecewise linear fits to the numeri
data to the left and right ofJ253.8, while the dotted lines
show the continuations of the same two straight lines to
right and left of J253.8, respectively. This shows a sma
discontinuity in the slope atJ2.3.8; we find that
(1/N)dE0 /dJ2 is equal to21.25 and21.45 to the left and

e
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FIG. 4. Total ground-state energy as a function ofJ2. The solid line shows the numerical data from exact diagonalization for a chain
eight triangles, while the dashed line shows the spin wave results. In the inset, the solid lines show piecewise linear fits to the nume
to the left and right ofJ253.8, while the dotted lines show the continuations of the same two straight lines to the right and leftJ2

53.8, respectively. This shows a small discontinuity in the slope atJ2.3.8.
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right, respectively, ofJ253.8. These numbers agree with th
nearest neighbor spin-1

2 -spin-1 correlations discussed in E
~25! and Fig. 7 below.

For bothN58 andN512, we find that the total spin o
the ground state changes abruptly atJ2.3.8. ForJ2*3.8,
the ground state spin has the ferrimagnetic value ofN(S1
2S2)5N/2. For J2&3.8, the ground state is a singlet. Th
number 3.8 compares reasonably with the SWT value
2S1 /S254, considering that SWT is only expected to
f

accurate for large values ofS1 andS2. The total spin of the
first excited state, however, shows a more complicated
havior asJ2 is varied; this is plotted in Fig. 5 forN58. For
J2*3.9, the first excited state has a spin of 3 as expec
from the spin-wave calculations. ForJ2&2.9, the first ex-
cited state is a singlet. For 2.9&J2&3.9, the spin of the first
excited state fluctuates considerably. The fluctuations n
J2.3.9 may be due to the finite size of the system, and t
may disappear in the thermodynamic limit.
FIG. 5. Total spin of the first excited state as a function ofJ2 for a chain with eight triangles.



FIG. 6. Energy gaps between the ground state and the first excited state~lower curve! and the first nonsinglet state~upper curve! as a
function ofJ2 for a chain with 8 triangles. The ground state is a singlet for the range ofJ2 shown in the figure. ForJ2,2.9, the first excited
state is a singlet, while forJ2.2.9, the first excited state is the same as the first nonsinglet state.
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For J2<3.8 and N58, the energy gaps between th
ground state and the first excited state~whose spin is shown
in Fig. 5! and the first nonsinglet state are plotted as fu
tions of J2 in Fig. 6; the two gaps are shown by stars a
circles, respectively. From Fig. 5, we see that the first exc
state is a singlet forJ2,2.9 and is nonsinglet forJ2.2.9
~except for a few values ofJ2 close to 3.9). Hence, the firs
excited state is the same as the first nonsinglet state foJ2

.2.9 as shown in Fig. 6. Although the gap to the first exci
state fluctuates, we see that it is particularly small nearJ2

51 and 2. These small gaps may represent either le
crossings of the ground state~as discussed below! or genuine
low-lying singlet excitations; it is difficult to distinguish be
tween these two possibilities without going to much larg
system sizes. We note that low-lying singlet excitations
known to occur in the spin-1

2 Heisenberg antiferromagnet o
a kagome´ lattice which is a well-known example of a highl
frustrated system.19 For 0.5&J2&2.5, we see that the gap t
the first excited state~which is a singlet! is typically much
smaller than the gap to the first nonsinglet state. In fact,
find that in this range ofJ2, there are several singlet excita
tions which lie below the first nonsinglet excitation. For i
stance, forN512, we find four and eight singlet excitation
lying below the first nonsinglet excitation atJ251 and 2,
respectively.

For N512, the ground state has the following properti
For J2&3.85, the ground state is a singlet, and the pa
symmetry in the subspace withSz50 is given by Ps51.
However, the momentumk of the ground state repeated
changes between 0 andp. This is shown in Table I. We
observe that there are several crossings, particularly neaJ2
51.1 and 1.9. Repeated level crossings such as this
-
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finite-sized system are often a sign of a spiral phase in
thermodynamic limit;20 we will discuss this possibility in
more detail below.

Next, we examine the two-spin correlations^SW i•SW j& in the
ground state. These are of three types: spin-1

2 -spin-1, spin-1-
spin-1, and spin-12 -spin-12 . These are shown in Figs. 7–9 fo
N512. We have only shown six correlations in each ca
All the other correlations are related to these by translat
and reflection symmetries. The behaviors of all the corre
tions show large changes near three particular values ofJ2,
namely, 1.1, 1.9, and 3.8. For instance, many of the corr
tions approach zero or change sign near these three val

It is particularly instructive to look at the nearest-neighb
spin-12 - spin-1 correlation, i.e.,̂SW 1•SW 14& in Fig. 7. By the
Feynman-Hellmann theorem, this is related to the deriva
with respect toJ2 of the ground-state energy per triangle,

1

N

dE0

dJ2
52^SW 1•SW 14&, ~25!

TABLE I. Ground-state momentum for various values ofJ2, for
a chain with 12 triangles.

Range ofJ2 Ground-state momentum

0,J2,0.95 p
0.95,J2,1.05 0
1.05,J2,1.26 p
1.26,J2,1.78 0
1.78,J2,1.82 p
1.82,J2,1.99 0
1.99,J2,3.75 p
3.75,J2,3.85 0
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where we have used the fact that all the nearest-neigh
spin-12 -spin-1 correlations are equal. We can see from Fig
that the derivative~25! shows a jump atJ2.3.8, which in-
dicates a first-order transition; we know that the ground-s
spin changes abruptly at that point fromN/2 to 0 without
going through any of the intermediate values. The jump
the values of̂ SW 1•SW 14& at J2.3.8 is consistent with the jump
in the slope of the ground state energy in Fig. 4 as discus
above. At J2.1.25 and 1.75, Eq.~25! seems to show a
change of slope but no jump. This could indicate eithe
second-order transition or a crossover at those points;
difficult to distinguish between these two possibilities sinc
change of slope can also arise due to finite-size effects.

For small values ofJ2, we observe that the spin-1
spin-1 correlations in Fig. 8 decay rapidly with th
separationn between the two sites, and they also oscilla
as (21)n. This is expected for smallJ2 because the spin-1
chain is only weakly coupled to the spin-1/2’s; a pu
spin-1 antiferromagnetic chain exhibits a Haldane g
and a finite correlation length of about six lattic
spacings.21,22 The weak coupling also explains why th
spin-12 -spin-1 correlations in Fig. 7 are small. However, t
spin-12 -spin-12 correlations in Fig. 9 show an unexpecte
behavior for smallJ2. We find that the spin-1/2’s on eve
and odd sites appear to decouple into two separate ch
with the correlation being very small between spi
belonging to different chains; within each chain, the corre
tions have an antiferromagnetic character. In other wo

^SW 2,i•SW 2,j& is small if i -j is odd, and it oscillates a
(21)( i 2 j )/2 if i -j is even. We call this the NNN-AFM. In the
following section, we will provide some understanding
this behavior.

To understand better the nature of the changes in
ground state, we looked at the structure factors for the s
1-spin-1 and spin-12 -spin-12 correlations. These are respe
tively defined as

S11~q!5
1

N (
i 51

N

^SW N11•SW N1 i&cos~qri !,

S22~q!5
4

N (
i 51

N

^SW 1•SW i&cos~qri !, ~26!

FIG. 7. The spin-12 -spin-1 correlations as functions ofJ2 for a
chain with 12 triangles.
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where we define

r i5 i 21 for 1< i<
N

2
,

5N112 i for
N

2
11< i<N, ~27!

to account for the periodic boundary conditions, andq takes
the values 2pn/N, wheren50,1, . . . ,N21. We have in-
cluded the factors of 1/Si

2 ~equal to 1 and 4 for spin-1 an
spin-1/2, respectively! on the right-hand sides of Eq.~26! to
make it easier to compare the magnitudes ofS11(q) and
S22(q).

In Fig. 10, we show the values ofq where the two struc-
ture factors are maximum (qmax) as a function ofJ2 for N
512. For 0,J2&1, qmax5p/2 for spin-12 andp for spin-1.
The NNN-AFM behavior of the spin-1

2 ’s discussed in the
following section will explain whyqmax5p/2 for spin-12 for
small values ofJ2. For 1.25&J2&1.75, qmax50 for spin-12
andp for spin-1; this suggests that the ground state is i
canted state with a period of two unit cells as shown in F
1. For 1.9&J2&3.8, qmax5p/2 for both spin-12 and spin-1;
this suggests a spiral phase with a period of four unit ce
Finally, for J2*3.8, qmax is equal to 0 for both spin-1

2 and
spin-1; this is expected in the ferrimagnetic state.

It is possible that the period two and period four sta
which are suggested by the structure factor forN512 ~the

FIG. 8. The spin-1-spin-1 correlations as functions ofJ2 for a
chain with 12 triangles.

FIG. 9. The spin-1/2-spin-1/2 correlations as functions ofJ2 for
a chain with 12 triangles.
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periodic boundary conditions only allow some limited pe
odicities for small systems! will turn into states with longer
periods~which change more smoothly withJ2) if we go to
larger system sizes. The repeated level crossings betwek
50 andp shown in Table I also support this scenario.20

Figure 11 shows the values ofSii (qmax) as a function of
J2. Once again, we see large fluctuations nearJ251.1, 1.9,
and 3.8. The structure factors are relatively large for b
large ~ferrimagnetic! and small values ofJ2, and is smaller
for intermediate values ofJ2.

Finally, we examined the possibility of dimerizatio
namely, whether the ground state spontaneously breaks
invariance of the Hamiltonian under translation by one u
cell. The unit cell of our system has half-odd-integer sp
and such systems are quite susceptible to dimerization in
dimension. A simple way to study this question is to see
the difference between the spin-1

2 -spin-12 correlations be-
tween site 1 and its neighbors at sites 2 andN, i.e., d

5^SW 1•SW 2&2^SW 1•SW N&, is not equal to zero. The problem
that the energy eigenstates we have found are also ei
states of momentum and are therefore translation invari
hence the dimerization order parameterd will vanish in such
states. A finite system cannot spontaneously break a sym
try such as translation invariance. However, if dimerizat
does occur, we expect that the ground state~called u1&) will
be almost degenerate with an excited state~calledu2&);23 we

FIG. 10. Values ofq where the structure factorsS11(q) and
S22(q) are maximum as functions ofJ2 for a chain with 12 tri-
angles.

FIG. 11. The structure factorsS11(qmax) andS22(qmax) as func-
tions of J2 for a chain with 12 triangles.
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can think of these two states as arising from tunneling
tween the two dimerized states which would be eigensta
of the Hamiltonian for the infinite system. Although th
statesu1& and u2& would be eigenstates of momentum a
therefore translation invariant, the linear combinationsu2
1&5(u1&1u2&)/A2 and u22&5(u1&2u2&)/A2 would not
be translation invariant, and may therefore exhibit differe
values of the parameterd. We are motivated here by th
Majumdar-Ghosh model; this is a Heisenberg antiferrom
netic spin-12 chain in which the next-nearest-neighbor co
pling has half the value of the nearest-neighbor coupling24

This model is known to have two degenerate ground sta
given by the direct products

uC1&5 )
n odd

ucn,n11& and uC2&5 )
n even

ucn,n11&,

~28!

where ucn,n11&[(u↑n↓n11&2u↓n↑n11&)/A2. We observe
that uC1& anduC2& show dimerization~namely, the param-
eter d takes the values63/4), but are not invariant unde
translation by one site. On the other hand, the linear com
nations uC1&5uC1&1uC2& and uC2&5uC1&2uC2& do
not show dimerization, but are translation invariant.

Returning to our system, we see from Fig. 6 that t
ground state is almost degenerate with the first excited s
~and both are singlets! at two values ofJ2, namely, 1 and 2.
We therefore examine the two correlations mentioned ab
in the four statesu1&, u2&, u21&, and u22& at those two
values ofJ2. The results are shown in Table II. We see th
the statesu21& andu22& do show an asymmetry in the tw
nearest-neighbor correlations, and the values of the corr
tions are exchanged between the two states. However,
numerical values of all the correlations are quite small,
there is no clear evidence for dimerization.

IV. NEXT-NEAREST-NEIGHBOR ANTIFERROMAGNET
NEAR J2Ä0

In this section, we will study the system for small valu
of J2 using perturbation theory and the idea of an effect
Hamiltonian. A more detailed discussion of the ideas in t
section is given in Ref. 25. We write the Hamiltonian in E

TABLE II. The correlations of a spin-1
2 with its two neighboring

spin-12 ’s in the ground state (u1&), first excited state (u2&), and the
two linear combinations (u21& and u22&) at J25 1 and 2, forN
58.

J2 State ^SW 1•SW 2& ^SW 1•SW 8&

1 u1& 20.00562 20.00561
1 u2& 20.07239 20.07240
1 u21& 20.15152 0.07350
1 u22& 0.07351 20.15151
2 u1& 0.04198 0.04195
2 u2& 0.06867 0.06871
2 u21& 0.09063 0.02004
2 u22& 0.02002 0.09062
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with
~1! as the sumH5H01V, where

H05 (
i 5N11

2N

SW i•SW i 11 ,

V5J2(
i 51

N

SW i•~SW i 1N1SW i 1N11!. ~29!

For J250, we have an antiferromagnetic spin-1 chain with
coupling equal to 1, andN decoupled spin-12 ’s. Every state of
the system will have a degeneracy of 2N due to the decou-
pled spin-12 ’s. It is known that the ground state of a spin
chain is a singlet with an energyE0

1521.401 48N, and it is
separated by a gap ofDE150.410 50 from the first excited
state which is a triplet.22

Let us denote the eigenstates ofH0 for the spin-1 chain by
uc i

1& with energyEi
1 , wherei 50 denotes the ground stat

The states of the spin-1
2 sites will be denoted byuc j

1/2&. The
eigenstates of the full HamiltonianH can therefore be written
as linear combinations of the form

uca&5(
i , j

ca,i , j uc i
1& ^ uc j

1/2&, ~30!

where theca,i , j are appropriate coefficients.
We will now expand up to second order in the perturb

tion V to find an effective HamiltonianHe f f which acts
within the subspace of the 2N ground states which are dege
erate forJ250. The HamiltonianHe f f will only act on the
spin-12 ’s. To first order inV, we haveH1,e f f5^c0

1uVuc0
1&.

SinceV involves both spin-12 and spin-1 operators, and th
expectation value inH1,e f f is being taken in a spin-1 state
H1,e f f will only involve spin-12 operators as desired. Now, th
expectation value inH1,e f f is equal to zero, becauseV is
linear in the spin-1 operators~which are not rotationally in-
variant!, while uc0

1& is a singlet and is therefore rotational
invariant.

We therefore have to go to second order inV. We then
have

H2,e f f5(
iÞ0

^c0
1uVuc i

1&^c i
1uVuc0

1&

E0
12Ei

1
, ~31!

Clearly, this will be an operator which is of degree 2 or le
in the spin-12 operators. Since the stateuc0

1&, the sum over
states( iÞ0uc i

1&^c i
1u/(E0

12Ei
1) andV are all invariant under

rotations and translations,H2,e f f must have the same invar
ances. The only operators which are of degree 2 or les
spin-12 ’s and are rotationally invariant are a constant a
products of the formSW i•SW j . Using translation invariance, w
see thatH2,e f f must take the form

H2,e f f5Na1NJ2
2b1J2

2(
i

~c1SW i•SW i 111c2SW i•SW i 12

1c3SW i•SW i 131••• ! ~32!

wherea,b,c1 ,c2 , . . . are numbers which are independent
J2, and appropriate periodic boundary conditions are
-

s

in
d

f
s-

sumed in the summations overi. For a periodic system with
N spin-12 ’s, the subscripti of ci goes from 1 toN/2 ~sinceN
is even!, so a total of 21N/2 numbers have to determined
These numbers will depend on the system size; howe
since the ground state of a spin-1 chain has a finite corr
tion length, we would expect these numbers to conve
quickly to some values asN becomes large.~We will assume
that J2 is small enough so that terms of orderJ2

3 and higher
can be neglected in comparison with the terms of orderJ2

2

which we are interested in!.
A direct computation of the constantsa,b,ci in Eq. ~32!

using the expression in Eq.~31! is difficult because we
would need to accurately determine all the energy levels
eigenstates of a spin-1 chain as well as all the matrix e
ments appearing in that expression. We therefore assum
form in Eq. ~32! ~which we have so far found purely o
grounds of symmetry!, and numerically determine the con
stants as follows. To determine the first numbera in Eq. ~32!,
we setJ250 and numerically find the ground-state ener
which is equal toNa. Next, we turn on theJ2 couplings on
the bonds connecting only two of the spin-1

2 ’s, say at sites 1
andn11, to the spin-1’s. In other words, we set four of th
spin-12 -spin-1 couplings equal toJ2, and keep all the othe
spin-12 -spin-1 couplings equal to zero; let us call this tru
cated perturbationV11Vn11 ~thus,V5( iVi). We ignore the
N22 spin-12 ’s which are not coupled to the spin-1’s. Th
energy levels of the system consisting of the spin-1 chain
two spin-12 ’s will have four low-lying states which would be
degenerate with an energy ofNa if all the J2’s had been set
equal to zero. These four states are described by an effe
Hamiltonian involving the two spin-1

2 ’s of the form

Hi j ,e f f5Na1J2
2~2b1cnSW 1•SW n11!. ~33!

The important point is that the constantsb and cn in this
expression have the same values as in Eq.~32! where all the
J2 couplings are turned on. The reason for this can be tra
back to the expression in Eq.~31! which can be used for
either the full perturbationV or the truncated perturbatio
V11Vn11. A comparison between the two second-order e
pressions shows that the constantb arises from the produc
of a spin-12 operator at site 1 with itself when we take th
product of the two matrix elements in Eq.~31!; that is why it
appears with a factor ofN in Eq. ~32! and a factor of 2 in Eq.
~33!. On the other hand, the constantcn comes from a prod-
uct of a spin-12 operator at site 1 with a spin-1

2 operator at
siten11, and it comes with the same factor in Eqs.~32! and
~33!.

We can numerically determine the constantsb and cn
from the energies of the four low-lying states of the spin
chain plus two spin-12 ’s; three of these states will form
triplet with the same energy and one will form a singlet,
that there will be only two equations in two unknowns. W
can then repeat the procedure and determine all the cons
ci by successively coupling various pairs of spin-1

2 ’s to the
spin-1 chain; in each case, we only have to look at the f
low-lying energy levels to findb and ci . ~The values ofb
that we get in the different cases should of course agree
each other!. This procedure will work provided thatJ2 is
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small enough that the four-low lying energy levels lie f
below the gapDE1 of the pure spin-1 chain, and the terms
third and higher orders are much smaller than those of
ond order. On the other hand, if we chooseJ2 to be too
small, the energy splittings ofJ2

2 are very small, and the
determination of the constantsb andci will suffer from large
numerical uncertainties. For our calculations withN58, we
found that takingJ250.1 gives reasonably accurate and se
consistent results. We found the following values of the
numbers:

a521.417 12, b520.126 65,

c150.0183, c250.1291,

c3520.0108, c450.0942. ~34!

We see that the value ofa found for N58 agrees quite wel
with the thermodynamic value (N→`) of 21.401 48 quoted
earlier.22

Looking at the values ofci in Eq. ~34!, we observe the
curious pattern thatc2 is the largest number, followed byc4;
the numbersc1 andc3 are much smaller in comparison. Thu
the spin-12 ’s governed by the effective Hamiltonian in Eq
~32! seem to break up into two chains, one consisting of
odd numbered sites, and the other with the even numb
sites. Each of the chains has a nearest-neighbor couplin
c2J2

2 which is antiferromagnetic; we therefore call this t
NNN-AFM. This explains the numerical result that the stru
ture factor of the spin-12 ’s is peaked atq5p/2 and that the
next-nearest-neighbor correlation is the largest in magnit
~and has a negative sign! for small J2.

Note, however, that the next-nearest-neighbor couplin
each chain~proportional toc4 which is about 0.73 timesc2)
is also antiferromagnetic and is not much smaller than
nearest-neighbor coupling, so each of the spin-1

2 chains is
strongly frustrated. For such a strong frustration, it is kno
that a spin-12 chain is disordered with a small correlatio
length of about two lattice spacings~this implies a correla-
tion length of about four lattice spacings in the sawtoo
system!, and is also strongly dimerized.26 The small correla-
tion length is supported by the correlation data forN512
andJ250.1; we find that the ratio of spin-1

2 -spin-12 correla-
tions ^SW 1•SW 5&/^SW 1•SW 3&.20.411, while the ratio of spin-1
spin-1 correlationŝ SW 13•SW 15&/^SW 13•SW 14&.20.552. Thus the
spin-12 correlations~within each chain! decay faster with in-
creasing distance than the spin-1 correlations~which have a
correlation length of six lattice spacings!.

To examine the possibility of dimerization, we use
method similar to the one used at the end of Sec. III to lo
for dimerization atJ251 and 2. However, the present case
different for the following reasons. First, we are now cons
ering a NNN-AFM, so we have to check if the spin-1

2 -spin-12
correlations between a site and its next-nearest-neighbor
equal. Secondly, we have to simultaneously look for dim
ization in the two spin-12 chains which are almost decouple
from each other. If there is dimerization, we expect four lo
lying states which are almost degenerate with each other.
N58, these four states will exhibit dimerization in the fo
c-
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quantities^SW 1•SW 3&, ^SW 1•SW 7&, ^SW 2•SW 4&, and^SW 2•SW 8&. For J2
50.1, we find that there is a nondegenerate ground stateu1&,
and two degenerate excited states (u2& and u3&) which are
separated from the ground state by a small gap of 0.000 6
~The next excited state,u4&, is separated from the groun
state by a gap of 0.001 277; for simplicity, we will not in
clude this state in the following computations!. The states
u1&, u2&, and u3& are all translation invariant, and therefo
cannot show dimerization. We therefore consider the f
linear combinations,u26&5(u1&6u2&)/A2 andu36&5(u1&
6u3&)/A2 which are not translation invariant. We then com
pute the four correlations mentioned above in all the se
states; the results are shown in Table III. We observe a s
stantial amount of dimerization in the statesu26& and
u36&. If we define the dimerization in the two chains to be26

d15^SW 1•SW 3&2^SW 1•SW 7&,

d25^SW 2•SW 4&2^SW 2•SW 8&, ~35!

we see that the dimerizations in statesu26& and u36& are
both equal to about60.6085. Further, the correlations i
these four states show all the four possible patterns of dim
ization which can occur for two chains.

The occurrence of a NNN-AFM with strong frustratio
for small values ofJ2 is one of the interesting features of th
spin-12 -spin-1 sawtooth chain. Although the spin-1 chain
gapped and therefore plays no direct role at energy sc
much smaller thanJ151, it perturbatively induces an un
usual kind of interaction between the spin-1

2 ’s which leads to
a nontrivial behavior for that subsystem.

V. MACROSCOPIC MAGNETIZATION JUMP AT J2Ä2

In this section, we will discuss the phenomenon of a m
roscopic magnetization jump which occurs in the sawto
chain for arbitrary values ofS1 andS2 if J252. In general,
this phenomenon can occur in highly frustrated quantum
tiferromagnets in which one of the spin wave modes~above
the fully polarized ferromagnetic state! is completely disper-
sionless. When a uniform magnetic field is applied to t
system, the magnetization can show a macroscopic jum
the saturation fieldhs ~defined as the minimum field fo

TABLE III. The correlations of the spin-1
2 ’s at sites 1 and 2 with

their two next-nearest-neighboring spin-1
2 ’s in the ground state

(u1&), first excited states (u2& and u3&), and the four linear combi-
nations (u26& and u36&) at J250.1, for N58.

State ^SW 1•SW 3& ^SW 1•SW 7& ^SW 2•SW 4& ^SW 2•SW 8&

u1& 20.497 65 20.497 65 20.497 65 20.497 65
u2& 20.246 30 20.246 29 20.246 30 20.246 31
u3& 20.246 39 20.246 38 20.246 25 20.246 24
u21& 20.067 74 20.676 20 20.676 20 20.067 75
u22& 20.676 21 20.067 74 20.067 75 20.676 21
u31& 20.067 81 20.676 22 20.067 65 20.676 24
u32& 20.676 23 20.067 81 20.676 25 20.067 65
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which all the spins are aligned in the ground state!.14–16 By
macroscopic we mean that the magnetization per unit
jumps by a finite amountDm at h5hs . This occurs if~i!
there is a special kind of ferromagnetic one-magnon eig
state of the Hamiltonian which is spatially localized~a few
lattice spacings!, ~ii ! this eigenstate has the lowest ener
amongst all the one-magnon eigenstates,~iii ! the energy of
this one-magnon state is negative with respect to the f
aligned state ifh,hs , and ~iv! there are no multimagnon
bound states with energy lower than the sum of the in
vidual one-magnon states. If all these conditions are sa
fied, then for a certain range of values of the magnetic fi
below hs , the lowest energy state is one in which there i
macroscopic number of these magnons localized in disj
regions of the lattice. Eventually, as the fieldh is increased,
the energy of these magnons will cross zero ath5hs and
then turn positive; forh.hs , therefore, the lowest energ
state will be the one in which all the spins are aligned w
the field. Hence there will be a macroscopic magnetizat
jump aths .

For the sawtooth chain with spinsS1 andS2, we consider
a Hamiltonian which is the sum of the ones given in Eqs.~1!
and ~21!. The spin wave dispersion in this case is given
Eq. ~23!. For J252, we see that the one-magnon sta
~above the fully aligned state! have two branches with th
dispersionsv25h24(S11S2) ~which is independent of the
momentum and is equal to the energy of the localized o
magnon state ucn& discussed below!, and v15h
24S1 sin2(k/2) which is greater thanv2 for all values ofk.
On the other hand, the special one-magnon state~above the
fully aligned state! is a superposition of three states:u2,n
21& in which the spin-S2 in triangle n21 hasSz5S221
~and all the other spins have the maximum possible value
Sz), u1,n& in which the spin-S1 in triangle n has Sz5S1
21, and u2,n& in which the spin-S2 in triangle n has Sz
5S221. The particular superposition of these three sta
which is an eigenstate of the total Hamiltonian is given b

ucn&5u2,n21&1u2,n&22AS2

S1
u1,n&. ~36!

The energy of this state with respect to the fully aligned st
is given byE5h24(S11S2). The total spin of this state is
N(S11S2)21, since it has totalSz5N(S11S2)21 and is
annihilated by totalS1 . We thus see that the special on
magnon state has the lowest energy amongst all the
magnon eigenstates.

We thus see that the stateucn& meets the conditions~i!
and~ii ! given above, and its energy is lower than that of t
fully aligned state ifh,hs , where

hs54~S11S2!. ~37!

We therefore identifyhs as the saturation field, and we e
pect a macroscopic jump in the magnetization whenh
crosseshs The magnitude of the magnetization jump can
found as follows. Since each of the special one-mag
states involves three sites, at mostN/2 such states can exis
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in disconnected regions of a chain withN triangles. The low-
est energy of a state withn magnons will be less than th
energy of the fully aligned state by an amount equal ton@h
24(S11S2)# as long asn<N/2. Once the number of mag
nons exceedsN/2, some of them will be close enough t
interact~repulsively! with each other, and we no longer ex
pect the energy to vary linearly with the number of magno
Hence, when the magnetic field is lowered slightly belo
hs , we expect the magnetization to abruptly drop from t
maximum possible value ofMmax5N(S11S2) to Mmax
2N/2. The magnetization jump is therefore given byDM
5N/2. The ratioDM /Mmax51/2(S11S2) goes to zero in
the classical limitS1 ,S2→`. The magnetization jump is
therefore a true quantum effect as emphasized in Ref. 1

For general values ofS1 andS2, we have not analytically
checked condition~iv! that there are no multimagnon boun
states with energy lower than the sum of one-magnon bo
states. However, this is numerically found to be true in ma
models due to the absence of attractive interactions betw
the magnons.14–16This is also found to be true in our syste
with S151 andS251/2, as the data given below shows.

For N512, we numerically find that in the absence of
magnetic field, the lowest energyE0 in subspaces with dif-
ferent values of the totalSz is given by,E0(Sz518)536,
E0(Sz517)530, E0(Sz516)524, . . . , E0(Sz512)50,
and E0(Sz511)525.167 392. Thus, when the magnet
field strength is lowered just belowhs56, the magnetization
jumps abruptly from 18 to 12 in accordance with the arg
ments given above. We would like to note here that since
one-magnon state in Eq.~36! is strongly localized, the phe
nomenon of macroscopic magnetization jump~in particular,
the value ofhs) is free of finite-size effects.

VI. DISCUSSION

We have studied the ground-state and low-energy pro
ties of a spin-12 -spin-1 sawtooth chain using SWT and exa
diagonalization of finite systems. Linear SWT shows th
there are two phases, the ground state being ferrimagnet
one phase and a singlet in the other phase, separated b
value ofJ254. In addition,J252 is special because all th
classically degenerate states have total spin equal to ze
that point, andJ151 is special because the total spin in ea
triangle is zero in all the classical ground states.

Numerically, we have studied the model for only thr
values ofN, namely, 4, 8, and 12, for the following reason
The next-nearest-neighbor antiferromagnetic behavior
cussed in Sec. IV implies that the spin-1

2 subsystem would be
frustrated by the periodic boundary conditions for odd valu
of N/2; hence, numerical results for small values ofN such
as 6 and 10 would not provide an accurate guide to the p
erties of the model in the thermodynamic limit. Hence, w
have restricted ourselves to even values ofN/2. The next
possible value ofN516 is beyond our existing computa
tional resources.

Our numerical studies indicate that there are four disti
regions. ForJ2*3.8, the ground state is ferrimagnetic, whi
for J2&3.8, it is a singlet. The structure factors suggest t
the ground state is in a short ranged spiral state with a pe
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of four unit cells for 1.9&J2&3.8, and in a short range
canted state with a period of two unit cells for 1.1&J2
&3.8. NearJ251 and 2, the gap between the ground st
and the first excited state is particularly small, and there
repeated level crossings, possibly indicating crossovers
tween ground states with different kinds of short-range c
relations. Numerical calculations on larger system si
would be very useful for a complete understanding of
nature of the ground state for 1&J2&3.8. Finally, the spin-
1
2 ’s form an interesting system called a NNN-AFM forJ2
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