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We compute concurrence and negativity as measures of two-spin entanglement generated by a
power-law quench (characterized by a rate τ−1 and an exponent α) which takes an anisotropic
XY chain in a transverse field through a quantum critical point (QCP). We show that only spins
separated by an even number of lattice spacings get entangled in such a process. Moreover, there
is a critical rate of quench, τ−1

c , above which no two-spin entanglement is generated; the entire
entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can
be tuned by changing the quench rate. We also show that for large τ , the concurrence (negativity)

scales as
p

α/τ (α/τ ), and we relate this scaling behavior to defect production by the quench
through a QCP.

PACS numbers: 03.67.Mn, 73.43.Nq, 64.60.Ht, 75.10.Jm

I. INTRODUCTION

The role of entanglement in the theory of quantum
phase transitions has been a subject of recent studies [1].
A number of such works have pointed out that entan-
glement can be used as a tool to characterize quantum
phase transitions for both clean and disordered systems
[2,3,4,5,6]. These works computed either single-site (or
single block) von Neumann entropies or two-spin entan-
glement measures such as concurrence [7] and negativ-
ity [8], and demonstrated that these measures or their
derivatives display a peak (discontinuous jump) either
near or at the second order (first order) quantum critical
point (QCP). They can therefore serve as tools for iden-
tifying quantum phase transitions in equilibrium quan-
tum critical systems. These studies provide a bridge
between quantum information theory and equilibrium
quantum critical phenomena which can be useful for sev-
eral aspects of quantum computations, cryptography and
teleportation [9]. However, in all of these studies, the
computed entanglement receives contribution from the
ground state of the systems alone; excited states are not
probed.

Recently, enormous progress has been made in un-
derstanding defect production due to non-equilibrium
dynamics of a system passing through a critical point
[10,11,12,13]. In particular, it was shown that for a
slow linear quench through a QCP, the defect density
n scales with the quench time τ with an universal expo-
nent: n ∼ τ−νd/(zν+1), where ν and z are the correla-
tion length and dynamical critical exponents associated
with the phase transition and d is the system dimension
[11,13]. Such results have been extended to cases where
the quench takes the system through a quantum critical
surface [14], along a gapless line or a multicritical point
[15], and for non-linear power-law quenches [16]. More
recently, the two-spin entanglement properties of a quan-
tum system during time evolution after a sudden quench

through a critical point have been studied [17]. However,
the nature of two-spin entanglement generation due to
a finite rate of quench through a quantum critical point
has not been investigated so far, although other kinds of
entanglement have been studied [18].

In this work, we compute concurrence and negativ-
ity as measures of two-spin entanglement generated by a
power-law quench, characterized by a rate τ and an expo-
nent α, which takes a spin-1/2 XY chain in a transverse
field through a QCP. Our central results are as follows.
First, we show that, in contrast to the studies of entangle-
ment in anisotropic XY chains so far [2], such a quench
generates entanglement only between spins separated by
an even number of lattice spacings (even neighbors); the
nearest neighbor sites are not entangled. Second, a crit-
ical quench rate τ−1

c is required to generate two-spin en-
tanglement (unlike other kinds of entanglement which do
not seem to require a critical quench rate [18]). For faster
quench rates (τ < τc), there is no entanglement between
any pair of sites, and the entire entanglement is multipar-
tite which is rather unusual. Third, by tuning the quench
rate, one can control the amount of entanglement, and
tune the ratio of entanglements between a spin and its
consecutive even neighbors to take values between zero
and 1. Finally, for large quench time τ and a given power
α, the concurrence (negativity) scales as

√

α/τ (α/τ);
this scaling is directly related to defect production by
the quench through the QCP. To the best of our knowl-
edge, the scaling behavior of the two-spin entanglement
generated by a slow quench through a QCP and its selec-
tive generation by tuning the quench rate have not been
reported so far. Hence our study constitutes a significant
extension of our current understanding of the nature of
entanglement in many-body systems. This study may be
relevant for the generation of entanglement as a resource
for many algorithms of quantum computations, cryptog-
raphy and teleportation [9].

The organization of the rest of this paper is as follows.
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In Sec. II, we compute concurrence and negativity as
measures of entanglement for the XY model. This is
followed by a discussion of our main results in Sec. III.
We end with some concluding remarks in Sec. IV.

II. MEASURES OF ENTANGLEMENT

We begin with the Hamiltonian of the spin-1/2
anisotropic XY spin chain given by

H =
J

4

∑

n

[(1 + γ)σx
nσx

n+1 + (1 − γ)σy
nσy

n+1 + hσz
n], (1)

where σa for a = x, y, z are the Pauli matrices, J(1 +
(−)γ)/2 are interaction strengths between x(y) com-
ponents of the nearest-neighbor spins (we set the lat-
tice spacing d = 1), h is the magnetic field in units
of J [we henceforth set ~ = J = 1, and measure
all energies (times) in units of J (~/J)], and γ is the
anisotropy parameter which varies between 0 (isotropic
XY chain) and 1 (Ising limit). The phase diagram of
the above model can easily be obtained by mapping the
spins to fermions via a Jordan-Wigner transformation:

σz
i = ni − 1/2, and ci(c

†
i ) =

∏i−1
j=−∞ σz

j (−1)iσ−
i (σ+

i )

[19,20]. The fermions can be shown to have an effec-
tive two-level Hamiltonian for each pair of momenta ±k

in terms of the states |0〉 and |k,−k〉 = c†kc†−k|0〉 given
by Hk = − [h + 2 cos k] (I + τz) − 2τyγ sin k [19,20],
where I, τz and τy denote identity and Pauli matrices in
the |0〉, |k,−k〉 space. The equilibrium phase diagram
for the model is well-known; for |h| > 1, there is a para-
magnetic phase with 〈σx

i 〉 = 0, while for |h| < 1, one
finds a ferromagnetic phase with 〈σx

i 〉 6= 0. At h = ±1,
there is a second order quantum phase transition with
z = ν = 1. At the transition at h = 1(−1), the fermionic
modes are gapless for k = 0(π). The quench dynamics
of the model, for a power-law time variation of the mag-
netic field h(t) = h|t/τ |αsgn(t), where sgn is the signum
function, has also been studied [16,20]. The quench starts
with all spins down at t → −∞ (i.e., the state |0〉 for all k)
and ends at t → ∞ with a state in which the probabilities
of |0〉 and |k,−k〉 are given by pk and 1−pk respectively.
Here pk is the defect formation probability and is given
by pk = exp(−πτeffγ2 sin2 k), where τeff = τ/α [16,20].

Armed with these results, we now compute the concur-
rence and negativity as measures of the two-spin entan-
glement of the spin chain generated by the quench. We
note at the outset that the ground states of the initial
and final Hamiltonians, at the beginning and end of such
a quench process, are paramagnetic and do not posses
any two-spin entanglement. Thus we expect that both
for very fast (τ → 0) and very slow (τ → ∞) quenches,
where the system retains information only about the ini-
tial and final ground states, the two-spin entanglement
will vanish. Hence any finite entanglement obtained af-
ter such a quench with a finite rate τ must be generated
by the non-adiabatic quench process and must therefore

have contributions from excited states of the system. To
compute the concurrence and negativity, we first note
that the two-spin density matrix of the spin chain for
any two sites i and j = i + n is given by [21]

ρn =







an
+ 0 0 bn

1

0 an
0 bn

2 0
0 bn∗

2 an
0 0

bn∗
1 0 0 an

−






, (2)

where the matrix elements an
±, an

0 and bn
1,2 can be ex-

pressed in terms of the two-spin correlation functions

an
± = 〈1

4
(1 ± σz

i )(1 ± σz
i+n)〉,

an
0 = 〈1

4
(1 ± σz

i )(1 ∓ σz
i+n)〉,

bn
1(2) = 〈σ−

i σ
−(+)
i+n 〉. (3)

The symmetry under σx
i → −σx

i , σy
i → −σy

n, σz
i → σz

i

ensures that all correlation functions such as 〈σ±
i σz

i+n〉
and hence the remaining matrix elements are zero. The
non-zero correlation functions for an arbitrary non-linear
quench can be computed by generalizing the method de-
veloped for a linear quench in Ref. [20]. We define

αn =

∫ π

0

dk

π
pk cos(nk), (4)

and note that since pk is invariant under k → π − k,
αn = 0 when n is odd. In terms of αn, the diagonal
correlation functions are given by

〈σz
i 〉 = 1 − 2α0,

〈σz
i σz

i+n〉 = 〈σz
i 〉2 − 4α2

n. (5)

Thus, for any two spins separated by odd number of lat-
tice spacings, 〈σz

i σz
i+n〉 = 〈σz

i 〉2 [20]. The off-diagonal

correlators 〈σa
i σb

i+n〉 (where a, b can take the values +,
−) can also be computed in terms of αn. We shall present
explicit expressions for these for n ≤ 6 and provide a
qualitative discussion for large n later. We find that
〈σ±

i σ±
i+n〉 = bn

1 = 0 for all n since these involve cor-
relations between two fermionic annihilation or creation
operators and hence vanish. Further, 〈σ±

i σ∓
i+n〉 = bn

2 = 0
for all odd n since these are odd under the transforma-
tion σx

n → (−1)nσx
n, σy

n → (−1)nσy
n, σz

n → σz
n which

changes Jx,y → −Jx,y and leaves pk invariant. For even
n ≤ 6, we find

〈σ+
i σ−

i+2〉 = α2〈σz
i 〉,

〈σ+
i σ−

i+4〉 = (α4〈σz
i 〉 − 2α2

2)〈σz
i σz

i+2〉,
〈σ+

i σ−
i+6〉 =

[

α6〈σz
i σz

i+2〉 + 4α2(α
2
2 + α2

4 − α4〈σz
i 〉)

]

×
[

〈σz
i 〉[〈σz

i σz
i+2〉 − 4(α2

2 + α2
4)] + 16α2

2α4

]

.

(6)

Using these correlation functions, we can find all the non-
zero matrix elements of ρn for n ≤ 6 and hence compute
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FIG. 1: (Color online) Plots of Cn as a function of τ for n = 2
(black solid line), n = 4 (red dashed line) and n = 6 (blue
dotted line) and for γ = α = 1. The inset shows analogous
plots for Nn.

the concurrence and negativity. The concurrence is given
by Cn = max{0,

√

λn
1 −

√

λn
2 −

√

λn
3 −

√

λn
4 }, where λn

i ’s
are the eigenvalues of ρn(σy⊗σyρn∗σy⊗σy) in decreasing
order [7]. The

√

λn
i are given by

√

an
+an

− (appearing
twice), and an

0 ±|bn
2 |. Thus the spin chain has a non-zero

concurrence if |bn
2 | >

√

an
+an

− given by

Cn = max
{

0, 2(|bn
2 | −

√

an
+an

−)
}

(7)

To compute the negativity Nn, we need to take a partial
transpose of ρn with respect to the labels corresponding
to the site j = i + n in Eq. (2) [8]. This interchanges
bn
1 ⇆ bn

2 ; the eigenvalues of the resultant matrix ρ̄n are

given by λ̃n
0 = an

0 (appearing twice), and λ̃n
± = (1/2)[an

++

an
−±

√

(an
+ − an

−)2 + 4|bn
2 |2] of which only λ̃n

− can become

negative. This happens when |bn
2 | >

√

an
+an

− and yields

Nn = max
{

0, |λ̃n
−|

}

. (8)

In the next section, we shall discuss the implications of
these measures of entanglement in the context of XY
model in a transverse field.

III. RESULTS

Eqs. (7) and (8) are the central results of this work
which lead to several conclusions about the two-spin en-
tanglement generated due to the quench for XY model
in a transverse field. First, for odd n, 〈σz

i σz
j 〉 = 〈σz

i 〉2 and

〈σ+
i σ−

j 〉 = 0. Thus all eigenvalues of ρn(σy ⊗ σyρn∗σy ⊗
σy) are equal to α0(1 − α0) leading to Cn = 0. All the
eigenvalues of ρ̄ are also positive; hence Nn = 0. Thus
the quench generates entanglement only between the even

FIG. 2: Variation of the position, τ 2

m, of the maxima of N 2

as a function of α. The inset shows the values of the maxima,
N 2

m, as a function of α.

neighbor sites. Second, for large τeff and n ≪ √
τeff ,

αn scales similarly to the defect density: αn ∼
√

α/τ .

Using this, we find from Eqs. (5-6) that bn
2 ∼

√

α/τ

and an
+an

− ∼ α/τ which leads to Cn ∼
√

α/τ and
Nn ∼ α/τ . Thus, for slow quenches, Cn (Nn) scales with
the same (twice the) universal exponent as the defect
density [11,13,16]. This result relates two-spin entangle-
ment generation for slow quenches to defect production
by such a process. Third, both the concurrence and the
negativity become non-zero for a finite critical quench

rate (τn
c )−1 (which is the solution of |bn

2 |2 = an
+an

−)
above which there is no entanglement between a site and
its nth neighbor. Solving this equation numerically, we
find γ2τn

c = 1.96, 13.6 and33.8, for n = 2, 4 and6 when
α = 1. We shall shortly see that for τ ≤ τ2

c , the entan-
glement is entirely multipartite.

We now plot Cn and Nn as a function of τ for n =
2, 4, 6 in Fig. 1 for γ = α = 1. From Fig. 1, we find
that Cn and Nn becomes non-zero between τ = τn

c and
∞. Further, the ratios C4/C2 or N 4/N 2 can be selectively

tuned between zero and 1 by tuning τ . The maximum val-
ues of both Cn and Nn decrease rapidly with n. For large
n ≫ √

τ , using the properties of Toeplitz determinants
used to compute the spin-correlators in these systems, it
can be shown that 〈σ+

i σ−
i+n〉 ∼ exp(−n/

√
τ ) [20]. Thus

we expect the entanglement to vanish exponentially for
n ≫ √

τ . In Fig. 2, we plot the positions τ2
m and the mag-

nitudes N 2
m of the peaks in N 2 as a function of α. We

find that τ2
m varies linearly with α while N 2

m are indepen-
dent of α. This behavior can be understood by noting
that Cn and Nn depend on α through τeff . The peak
of Cn (Nn) occurs when dCn/dτ = α−1dCn/dτeff = 0
(dNn/dτ = α−1dNn/dτeff = 0). Thus the position of
the maxima, which is a solution to this equation, is given
by τn

m eff = α/τn
m and hence varies linearly with α. The
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FIG. 3: (Color online) Plot of scaled negativity N 2(t)τ as a
function of t/

√
τ for α = γ = 1 and several τ = 14, 16, 18, 20,

showing the time evolution of entanglement generated by the
quench which started at ti = −250.

maximum value of the entanglement Cn
m (Nn

m) is a func-
tion of τn

m eff alone; it does not change with α.
Next, we study the time evolution of entanglement by

computing Nn at different times t during the quench for
α = γ = 1 and n = 2. The plots of the scaled negativity
N 2(t)τ as a function of the scaled time t/

√
τ is shown in

Fig. 3 for several τ . From this plot, we find that for large
enough τ , the generation of the entanglement starts when
the system is near the QCP and reaches an asymptotic
value N 2 as the quench takes the system away from the
quantum critical point. The collapse of all the asymp-
totic values of the negativity to the same curve for all τ
clearly confirms the scaling behavior of the entanglement
discussed earlier. Similar characteristics hold for N 4,6.

We now discuss the nature of the entanglement gen-
erated by the quench. We note that the single-site den-
sity matrix of the spin chain is ρi = (I + σz〈σz

i 〉)/2.
Using Eq. (3), we find that the single-site concurrence

C(1) =
√

4detρi = 2
√

α0(1 − α0) [22] is finite for all τ ex-

cept τ = 0,∞ for which α0 = 1, 0. Since C(1) is a measure
of the entanglement of spin i with all the other spins in
the chain, we conclude that the entanglement generated
when τ ≤ τ2

c is entirely multipartite. The multipartite
part of the entanglement for any τ can be quantified as
[22]

M = (C(1))2 −
∑

n≥2

(Cn)2. (9)

A plot of M as a function of τ is shown in Fig. 4, where
we have summed Cn for n ≤ 6. We find that M decreases
rather slowly; hence a determination of the fate of M for
large τ appears to be a rather difficult task. We note
that for large τ , (C(1))2 → 0 as 1/

√
τ , while (Cn)2 → 0

as 1/τ for τ ≫ n2. Hence M may either go to 0 as

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

M( )

FIG. 4: Plot of M as a function of τ showing the evolution
of the multipartite part of the entanglement with the quench
time.

a power of τ as τ → ∞, or may vanish at some large
τ beyond which all the entanglement becomes bipartite.
Differentiating between these two possibilities is left as a
subject of future study.

An experimental verification of our theory would in-
volve measuring the two-spin correlation functions of
an anisotropic XY chain after performing a quench.
There are several compounds such as K3Fe(CN)6 (J ≃
−0.23K), (NH4)2MnF5 (J ≃ −12K), and RbFeCl3 · 2H20
(J ≃ −35K) where the Ising limits of these chains are
realized [23]. Similar experiments, involving measure-
ment of two-spin correlation functions in equilibrium us-
ing neutron scattering, have recently been carried out for
square-lattice antiferromagnets, where short-range en-
tanglement between spins has been demonstrated [24].

IV. CONCLUSIONS

To conclude, we have shown that a controlled amount
of entanglement can be generated in an anisotropic XY
spin chain by performing a power-law quench; such a pro-
cess generates two-spin entanglement only between sites
which are even neighbors. The generated entanglement
is entirely multipartite when the quench is faster than
a critical rate; such states which have only multipartite
entanglement are quite uncommon. The entanglement
between even neighbors shows a scaling behavior for slow
quenches, similar to the scaling of defects. We note here
that a similar calculation can be performed for the two-
dimensional Kitaev model [25] since the exact two-spin
correlations functions of the model during a quench pro-
cess with an arbitrary rate τ have been computed in Ref.
[14]. Such a calculation shows that the Kitaev model has
zero bipartite entanglement (Cn = Nn = 0 for all n) for
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all quench times τ , and the entire entanglement is always
multipartite. This leaves us with the question of the re-
lation between bipartite entanglement generated during
a quench and the integrability and number of conserved
quantities of the underlying system; this would be an

interesting subject for future studies.
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