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ABSTRACT

An appropriate field configuration in non-polynomial closed string field theory

is shown to correspond to a general off-shell field configuration in low energy effec-

tive field theory. A set of string field theoretic symmetries that act on the fields

in low energy effective field theory as general coordinate transformation and anti-

symmetric tensor gauge transformation is identified. The analysis is carried out to

first order in the fields; thus the symmetry transformations in string field theory

reproduce the linear and the first non-linear terms in the gauge transformations in

the low energy effective field theory.
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1. INTRODUCTION

It is by now well established that the low energy effective field theory describing

any critical string theory contains gravity [1] [2]. The chain of results which lead

to this conclusion is the following. First of all, one finds that the spectrum of free

string theory contains a massless rank 2 symmetric tensor state; the physical states

being in one to one correspondence with the physical states associated with the

graviton field. Secondly, one finds that amplitudes involving this massless tensor

state satisfy the same set of Ward identities as the ones satisfied by scattering am-

plitudes involving external graviton states in a generally covariant theory. Finally,

the tree level amplitudes involving the massless tensor states agree, at low energies,

to the tree level amplitudes calculated from Einstein’s action.

More recently, a complete covariant field theory for closed bosonic strings has

been constructed [3] [4]. (See also ref.[5].) This field theory is characterized by

an infinite parameter gauge invariance [4] [6], and an infinite number of fields.

Quantization of this theory has been carried out in refs.[7 − 11] . One expects

that general coordinate transformation will emerge as a particular combination of

the gauge transformations in string theory, and the metric will be related to the

infinite component string field through a suitable functional relation. For previous

work on this subject see ref.[12](also see ref.[13] for a review of linearized gauge

invariance in string field theory).

In this paper we investigate this connection in detail. We show that at least

to first non-linear order, it is possible to identify string field configurations which

correspond to specific (off-shell) configuration of the fields that appear in the low

energy effective field theory, namely the metric, the dilaton and the antisymmetric

tensor gauge field. To this order we also identify specific symmetries of the string

field theory which can be identified as gauge transformations of the low energy

effective field theory. This contains general coordinate transformation and anti-

symmetric tensor gauge transformation. It turns out that the gauge symmetries

of the low energy effective field theory are obtained by a combination of gauge
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transformation in string field theory and a ‘trivial’ symmetry of the form:

δψr = Krs({ψ})
δS

δψs
(1.1)

where ψr are the string field components, Krs is an antisymmetric matrix valued

function of ψr, and S is the string field theory action.
⋆

The plan of the paper is as follows. In Sect. 2 we explain our general approach

to solve the problem of identifying the field configurations and gauge symmetries

in low energy effective field theory to those in string field theory. We allow for the

most general functional relation between string fields and the low energy fields,

and also between the gauge transformations in string field theory and those in low

energy effective field theory. We then derive constraints that must be satisfied in

order that the gauge transformations in the low energy effective field theory are

compatible with those in string field theory. In sect. 3 we show how a solution

to these constraint equations may be obtained at the lowest level, so that the

linearized gauge transformations involving the massless fields in the low energy

effective field theory agree with those in string field theory. In sect. 4 we analyze

the set of constraint equations derived in sect. 2 to the next order. We show

that a solution to these set of equations can be obtained provided a certain set of

consistency conditions are satisfied by the interaction vertices in string field theory.

Appendix A contains a verification of the fact that these consistency conditions are

indeed satisfied by the vertices of string field theory. This completes the proof that

to first non-linear order, suitable functional relations between the fields and gauge

transformation parameters appearing in string field theory and those appearing

in low energy effective field theory may be found so that gauge invariance in low

energy effective field theory can be derived as a consequence of the symmetries of

string field theory. We conclude in sect. 5 with some speculations and implications

of our result for the closure of the gauge algebra in string field theory.

⋆ This symmetry is called ‘trivial’ as it exists for all theories. However it is perhaps worth
emphasizing that this is a genuine symmetry of the action.
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2. GENERAL FORMALISM

Let H be the Hilbert space of the combined matter ghost conformal field theory

describing first quantized string theory, and {|Φ2,r〉} denote a basis of states in H
with ghost number 2 and annihilated by b−0 and L−

0 . (We shall work with the

convention c±0 = (c0± c̄0)/
√

2, b±0 = (b0± b̄0)/
√

2, and L±
0 = (L0± L̄0)/

√
2.) Then

the string field |Ψ〉 may be expanded as b−0 |Ψ〉 =
∑

r ψr|Φ2,r〉 and the string field

theory action is given by [3] [4] [14]

S(Ψ) =
1

2
〈Ψ|QBb

−
0 |Ψ〉 +

∞
∑

N=3

gN−2

N !
{ΨN} ≡

∞
∑

N=2

1

N
Ã

(N)
r1...rN

ψr1
. . . ψrN

, (2.1)

where QB is the BRST charge of the first quantized string theory, and { } has

been defined in refs.[4][14]. Throughout this paper we shall use the convention of

ref.[14]. The coefficients Ã(N) are symmetric in all the indices and are given by,

Ã
(2)
r1r2

= −〈Φ2,r1
|c−0 QB |Φ2,r2

〉,

Ã
(N)
r1···rN

=
gN−2

(N − 1)!
{(c−0 Φ2,r1

) · · · (c−0 Φ2,rN
)}, N ≥ 3.

(2.2)

Let |Φ1,α〉 denote a basis of states in H of ghost number 1 and annihilated by b−0

and L−
0 . Then the gauge transformation parameter |Λ〉 in string field theory may

be expanded as b−0 |Λ〉 =
∑

α λα|Φ1,α〉, and the gauge transformation in string field

theory takes the form:

δ(b−0 |Ψ〉) = QBb
−
0 |Λ〉 +

∞
∑

N=3

gN−2

(N − 2)!
[ΨN−2Λ] (2.3)

with [ ] as defined in refs.[4][14]. Let us introduce a basis of bra states 〈Φc
3,r| of

ghost number 3, annihilated by b−0 and L−
0 , and satisfying,

〈Φc
3,r|c−0 |Φ2,s〉 = δrs (2.4)

so that {〈Φc
3,r|} form a basis conjugate to {|Φ2,s〉}. We can now write eq. (2.3) in
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terms of the component fields as follows:

δψs =

∞
∑

N=2

A
(N)
sαr1...rN−2

λαψr1
. . . ψrN−2

, (2.5)

where,

A
(2)
sα = 〈Φc

3,s|c−0 QB|Φ1,α〉,

A
(N)
sαr1···rN−2

=
gN−2

(N − 2)!
〈Φc

3,s|c−0 [(c−0 Φ1,α)(c−0 Φ2,r1
) · · · (c−0 Φ2,rN−2

)]〉

= − gN−2

(N − 2)!
{(c−0 Φc

3,s)(c
−
0 Φ1,α)(c−0 Φ2,r1

) · · · (c−0 Φ2,rN−2
)}, N ≥ 3.

(2.6)

Note that A
(N)
sαr1···rN−2

is symmetric in the indices r1, r2, · · · , rN−2.

Closed bosonic string theory at low energies is described by the effective field

theory involving the graviton, the dilaton, and the antisymmetric tensor gauge

fields. Let {φi} denote the set of all the dynamical degrees of freedom of the low

energy effective field theory, where the index i stands for the field index, as well as

space-time coordinates (or, equivalently, momenta if we are working with Fourier

transforms of the fields). Also, let {ηκ} denote the set of gauge transformation

parameters of the low energy effective field theory, where the index κ again in-

cludes coordinate (momentum) index. The set {ηκ} contains general coordinate

transformation and antisymmetric tensor gauge transformation. Let the general

form of the gauge transformation in the low energy effective field theory be:

δφi =

∞
∑

N=2

B
(N)
ij1...jN−2κ

ηκφj1 . . . φjN−2
(2.7)

The coefficients B(N) are all known from the low energy effective field theory. We

now ask the following question: Can this low energy effective field theory be ob-

tained (after some possible field redefinition) by integrating out the massive modes

of the string field theory? If so, then any off shell configuration described by some
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arbitrary choice of the variables φi should correspond to some configuration of

the string fields ψr. (This configuration certainly involves massive modes of the

string. However the values they take are specified by their equations of motion.)

We should also note that the configuration may not be unique — a given off shell

configuration of the low energy effective field theory may correspond to more than

one string field configurations which are related to each other by some gauge sym-

metry associated with higher level states (or by gauge symmetries at the massless

level that have no counterpart in the effective field theory). Let us call ψr(φi) to

be one of the string field configurations that correspond to a given configuration

of the low energy fields φi, and allow for the most general form of this function:

ψr(φi) =
∞

∑

N=0

1

(N + 1)
C

(N)
ri1...iN+1

φi1 . . . φiN+1
(2.8)

The gauge transformation (2.7) of φi induces a transformation on ψr. The first

few terms take the form:

δψr(φi) =C
(0)
ri B

(2)
iκ ηκ + C

(0)
ri B

(3)
ijκφjηκ + C

(1)
rijφiB

(2)
jκ ηκ + O(φ2) (2.9)

The question we are interested in can be formulated as follows. Can we identify

a gauge transformation parameter b−0 |Λ(η, φ)〉 =
∑

α λα(η, φ)|Φ1,α〉 in string field

theory such that the transformation (2.9) may be regarded as a gauge transforma-

tion of the string field with this parameter? If the answer is in the affirmative, then

we could say that we have been able to identify the off-shell gauge transformations

of low energy effective field theory to specific gauge transformations in string field

theory. Again, we shall allow for the most general dependence of λα on φi and

ηκ (keeping terms linear in ηκ only, since we are considering infinitesimal gauge

transformation):

λα(η, φ) =
∞

∑

N=0

D
(N)
ακi1...iN

ηκφi1 . . . φiN (2.10)
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Using eqs.(2.5), (2.10) and (2.8) we get,

δψr =A
(2)
rαD

(0)
ακηκ + A

(2)
rαD

(1)
ακiφiηκ + A

(3)
rαsD

(0)
ακC

(0)
si φiηκ + O(φ2) (2.11)

Comparing eqs.(2.9) and (2.11) we get,

C
(0)
ri B

(2)
iκ =A

(2)
rαD

(0)
ακ

C
(0)
ri B

(3)
ijκ + C

(1)
rjiB

(2)
iκ =A

(2)
rαD

(1)
ακj + A

(3)
rαsD

(0)
ακC

(0)
sj

· · ·

· · ·

(2.12)

Thus the question is, can we find appropriate C(N)’s andD(N)’s such that the set of

equations (2.12) are satisfied? As we shall see, these equations cannot be satisfied

beyond lowest order, implying that off-shell general coordinate and antisymmetric

tensor gauge transformations cannot be identified to pure gauge transformations

in string field theory. Note, however, that besides gauge invariance, the string field

theory action is also trivially invariant under the transformation:

δextraψr = Krs({ψt})
δS

δψs
(2.13)

for any Krs which is antisymmetric in r and s. We shall show that a combination

of gauge transformation in string field theory given in eq.(2.5) and the transfor-

mation given in eq.(2.13) can indeed be used to generate general coordinate and

antisymmetric tensor gauge transformations in the low energy effective field theory,

at least to first order in ψr. For this we allow for the most general choice of Krs

as a function of φi and ηκ (keeping terms linear in ηκ only):

Krs =
∞

∑

N=1

K
(N)
rsκi1...iN−1

ηκφi1 . . . φiN−1
(2.14)

Using eqs.(2.13), (2.14), (2.1) and (2.8) we get:

δextraψr = K
(1)
rsκÃ

(2)
st C

(0)
ti φiηκ + O(φ2) (2.15)
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Using eqs.(2.11) and (2.15) we get the net transformation of ψr as,

δtotψr =A
(2)
rαD

(0)
ακηκ + (A

(2)
rαD

(1)
ακi + A

(3)
rαsD

(0)
ακC

(0)
si +K

(1)
rsκÃ

(2)
st C

(0)
ti )φiηκ + O(φ2)

(2.16)

Comparing eqs.(2.9) and (2.16) we get,

C
(0)
ri B

(2)
iκ =A

(2)
rαD

(0)
ακ

C
(0)
ri B

(3)
ijκ + C

(1)
rjiB

(2)
iκ =A

(2)
rαD

(1)
ακj + A

(3)
rαsD

(0)
ακC

(0)
sj +K

(1)
rsκÃ

(2)
st C

(0)
tj

· · ·

· · ·

(2.17)

Thus we now need to show that one can find appropriate C(N)’s, D(N)’s and K(N)’s

so as to satisfy eq.(2.17). We shall show in the next two sections that this can be

done at least for the first and second equations in eqs.(2.17).

3. LINEARIZED OFF-SHELL GAUGE TRANSFORMATIONS

In this section we shall obtain solution to the first of eqs.(2.17), thereby re-

producing linearized general coordinate invariance and antisymmetric tensor gauge

invariance from string field theory. Although such analysis has been carried out in

the past (see, for example ref.[13]), we shall repeat the analysis here for the sake of

completeness, and also to set up the notations that we shall be using in the next

section.

At the linearized level the metric Gµν , the antisymmetric tensor field Bµν and

the dilaton D appearing in the low energy effective field theory transform as,

δGµν =∂µǫν + ∂νǫµ

δBµν =∂µξν − ∂νξµ

δD =0

(3.1)

where ǫµ is the parameter labelling infinitesimal general coordinate transformation

and ξµ is the parameter labelling infinitesimal antisymmetric tensor gauge trans-

formation. On the other hand, if we take a gauge transformation parameter in
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string field theory

b−0 |Λ〉 =

∫

dDk[iǫ̃µ(k)(c1α
µ
−1− c̄1ᾱ

µ
−1)+ iξ̃µ(k)(c1α

µ
−1 + c̄1ᾱ

µ
−1)+

√
2ξ̃c+0 ]|k〉 (3.2)

and define the string field components at the massless level as,
⋆

b−0 |Ψ〉 =

∫

dDk[
1

2
h̃µν(k)c1c̄1(α

µ
−1ᾱ

ν
−1 + ᾱµ

−1α
ν
−1) + i

√
2P̃µ(k)c+0 (c1α

µ
−1 − c̄1ᾱ

µ
−1)

− F̃ (k)(c1c−1 − c̄1c̄−1) +
1

2
b̃µν(k)c1c̄1(α

µ
−1ᾱ

ν
−1 − ᾱµ

−1α
ν
−1)

+ i
√

2S̃µ(k)c+0 (c1α
µ
−1 + c̄1ᾱ

µ
−1) − Ẽ(k)(c1c−1 + c̄1c̄−1)] |k〉

(3.3)

then the linearized gauge transformation δ(b−0 |Ψ〉) = QBb
−
0 |Λ〉 takes the form:

δh̃µν = − i(ǫ̃µkν + kµǫ̃ν), δP̃µ =
k2

2
ǫ̃µ, δF̃ = ikµǫ̃µ

δb̃µν =i(kµξ̃ν − kν ξ̃µ), δS̃µ =
k2

2
ξ̃µ + ikµξ̃, δẼ(k) = iξ̃µk

µ − 2ξ̃

(3.4)

Here αµ
n denote the modes of the world-sheet scalar fields Xµ. Let us define,

hµν =h̃µν

Pµ =P̃µ − i

2
kν h̃µν − i

2
kµF̃

F =F̃ +
1

2
hµ

µ

bµν =b̃µν

Sµ =S̃µ − i

2
kν b̃µν +

i

2
kµẼ

E =Ẽ

(3.5)

for the fields; and similarly for the gauge parameters

ǫ̂µ = − ǫ̃µ

ξ̂µ =ξ̃µ

ξ̂ = − i

2
ξ̃µk

µ + ξ̃

(3.6)

⋆ At the linearized level we would expect an off-shell configuration in low energy effective
field theory to correspond to a string field configuration in which only the massless modes
are excited, but beyond the linearized order all the modes will be present.
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Transformation laws of various fields now take the form:

δhµν =i(ǫ̂µkν + ǫ̂νkµ)

δPµ =0, δF = 0

δbµν =i(kµξ̂ν − kν ξ̂µ)

δSµ =0, δE = −2ξ̂

(3.7)

Comparing with eq.(3.1) we see that at this level we can make the identification:

Gµν(x) =ηµν −
√

2g

∫

dDkhµν(k)eik.x

Bµν(x) = −
√

2g

∫

dDkbµν(k)eik.x

D(x) = −
√

2g

∫

dDkF (k)eik.x

(3.8)

and,

ǫµ(x) = −
√

2g

∫

dDkǫ̂µ(k)eik.x

ξµ(x) = −
√

2g

∫

dDkξ̂µ(k)eik.x

(3.9)

The proportionality factor of −
√

2g was worked out in ref.[15]. (See also ref.[4].)

Note that there are three extra set of fields: Pµ, Sµ and E, and one extra

gauge transformation parameter ξ̂. Eq.(3.7) shows that E corresponds to a pure

gauge deformation generated by the parameter ξ̂, hence we can set E to be 0 by

adjusting ξ̂. This also removes the spurious gauge degrees of freedom associated

with the parameter ξ̂. The fields Pµ and Sµ, on the other hand, can be identified

as auxiliary fields, as can be easily seen from the linearized equations of motion

QBb
−
0 |Ψ〉 = 0. The equations involving the fields Pµ and Sµ take the form:

Pµ = 0, Sµ = 0 (3.10)

Since these equations are purely algebraic, we can set these fields to 0 to this order

by using their equations of motion. The remaining degrees of freedom are then in
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one to one correspondence with the physical degrees of freedom of the low energy

effective field theory, and the remaining gauge transformation reproduces exactly

the linearized (but off-shell) gauge transformation of the low energy effective field

theory.

Using eqs.(3.2), (3.3), (3.5) and (3.6) we get,

b−0 |Λ〉 = i

∫

dDk
[

− ǫ̂µ(k)(c1α
µ
−1 − c̄1ᾱ

µ
−1) + ξ̂µ(k)(c1α

µ
−1 + c̄1ᾱ

µ
−1 +

1√
2
kµc+0 )

]

|k〉

(3.11)

b−0 |Ψ〉 =

∫

dDk
[

hµν(k)c1c̄1α
µ
−1ᾱ

ν
−1

+
√

2(−1

2
kνhνµ(k) +

1

4
kµh

ν
ν(k) − 1

2
kµF (k))c+0 (c1α

µ
−1 − c̄1ᾱ

µ
−1)

− (F (k) − 1

2
hµ

µ(k))(c1c−1 − c̄1c̄−1) + bµν(k)c1c̄1α
µ
−1ᾱ

ν
−1

− 1√
2
kνbµν(k)c+0 (c1α

µ
−1 + c̄1ᾱ

µ
−1)

]

|k〉 (3.12)

where we have set Pµ and Sµ to 0 by their equations of motion, and E to zero

by using the gauge invariance generated by ξ̂(k). Using eqs.(3.8) and (3.9) we see

that hµν(k), bµν(k) and F (k) may be identified to the dynamical variables φi that

appear in the low energy effective action, whereas the parameters ǫ̂µ(k) and ξ̂µ(k)

may be identified to the gauge transformation parameters ηκ that appear in the

low energy effective action. Comparing with eqs.(2.8) and (2.10) of sect. 2 we see

that eqs.(3.11) and (3.12) give the expressions for |Λ(η, φ)〉 and |Ψ(φ)〉 to order φ0

and φ respectively such that the gauge transformations in string field theory match

those in the low energy effective field theory. In other words, it gives expressions

for C
(0)
ri and D

(0)
ακ satisfying the first of eqs.(2.17):

C
(0)
ri B

(2)
iκ = A

(2)
rαD

(0)
ακ (3.13)

Substituting eq.(3.12) into the expression (2.1) for the string field theory action we
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get, to quadratic order:

S ∝
∫

dDk
[

hµν(−k)(k
2

2
hµν(k) − kµk

σhνσ(k) +
1

2
kµkνh

σ
σ(k) − kµkνF (k))

− 2
(

F (−k) − 1

2
hµ

µ(−k)
)(

k2F (k) − 1

2
(k2ηρσ − kρkσ)hρσ(k)

)

+ bµν(−k)(1
2
k2bµν(k) − kνk

ρbµρ(k))
]

(3.14)

which agrees with the low energy effective action.

Finally, note that the identification of the low energy fields from their gauge

transformation laws can be made only up to field redefinitions which do not change

the gauge transformation laws of various fields. At the linearized level such field

redefinitions will take the form hµν → hµν + ∆hµν , F → F + ∆F and bµν →
bµν + ∆bµν where ∆hµν , ∆F and ∆bµν are gauge invariant linear functions of

hµν , bµν , F and kµ. In addition, if we want to express the action in a form such

that the quadratic terms in the action contain only two derivatives [16], then one

should be careful while adding momentum dependent terms in ∆hµν , ∆bµν and

∆F . In the present situation this leaves us with a field redefinition of the form

hµν → hµν + aFηµν where a is an arbitrary constant. In the context of low

energy effective field theory this corresponds to a field redefinition of the form

Gµν → f(D)Gµν where f(D) is an arbitrary function of D.

4. FIRST ORDER NON-LINEAR TERMS

IN THE GAUGE TRANSFORMATION

In this section we shall show that the second of eq.(2.17),

C
(0)
ri B

(3)
ijκ + C

(1)
rjiB

(2)
iκ = A

(2)
rαD

(1)
ακj + A

(3)
rαsD

(0)
ακC

(0)
sj +K

(1)
rsκÃ

(2)
st C

(0)
tj (4.1)

can be satisfied by appropriately choosing C
(1)
rji , D

(1)
ακj and K

(1)
rsκ.
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In analyzing these equations we shall first try to look for possible obstructions

to solving these equations. Such obstructions are caused by equations which follow

from eq.(4.1) and are completely independent of C
(1)
rji , D

(1)
ακj and K

(1)
rsκ. These would

then correspond to equations involving known constants and would have to be

satisfied identically. For this, let us choose a complete set of gauge transformations

{η(ρ)
κ } and a complete set of field configurations {φ(m)

i } in the low energy effective

field theory, and rewrite eq.(4.1) as:

C
(0)
ri B

(3)
ijκφ

(m)
j η

(ρ)
κ + C

(1)
rjiB

(2)
iκ φ

(m)
j η

(ρ)
κ =A

(2)
rαD

(1)
ακjφ

(m)
j η

(ρ)
κ + A

(3)
rαsD

(0)
ακC

(0)
sj φ

(m)
j η

(ρ)
κ

+K
(1)
rsκÃ

(2)
st C

(0)
tj φ

(m)
j η

(ρ)
κ , for all r,m, ρ.

(4.2)

We now divide the set {φ(m)
j } into two linearly independent sets, {φ̂(m̂)

j } and

{φ̃(m̃)
j }, satisfying,

Ã
(2)
st C

(0)
tj φ̂

(m̂)
j = 0, for all s;

Ã
(2)
st C

(0)
tj φ̃

(m̃)
j 6= 0, for some s.

(4.3)

In other words φ̂
(m̂)
j denote field configurations which are solutions of the linearized

equations of motion, φ̃
(m̃)
j denote those which are not. Similarly we divide the set

{η(ρ)
κ } into linearly independent sets {η̂(ρ̂)

κ } and {η̃(ρ̃)
κ } satisfying:

B
(2)
iκ η̂

(ρ̂)
κ = 0, for all i;

B
(2)
iκ η̃

(ρ̃)
κ 6= 0, for some i.

(4.4)

In other words, η̂
(ρ̂)
κ denote the set of gauge transformations for which the field

independent components in the expression for δφi vanishes. {η̂(ρ̂)
κ } thus includes

rigid translation and rigid antisymmetric tensor gauge transformations, as well as

antisymmetric tensor gauge transformations of the form ξµ = ∂µχ for some χ.
⋆

⋆ Note that global rotation is not included in the set {η̂(ρ̂)
κ }, since the gauge transformation

parameters for global rotation blow up at infinity. Another way of saying this is that the
gauge transformation parameters are linear in the space-time coordinates Xµ, and hence
the corresponding states in H do not correspond to well defined local fields in the conformal
field theory.
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Recall that {〈Φc
3,r|} form a basis conjugate to {|Φ2,s〉}. We now divide the set

of states {〈Φc
3,r|} into two sets {〈Φ̂c

3,r̂|} and {〈Φ̃c
3,r̃|} such that,

〈Φ̂c
3,r̂|QB = 0, 〈Φ̃c

3,r̃|QB 6= 0. (4.5)

Let us now consider eq.(4.2) with the free indices m, ρ and r restricted to m̂, ρ̂

and r̂ respectively. Thus in this case the terms involving C(1) and K(1) vanish by

eq.(4.4) and (4.3) respectively. Furthermore, from eqs. (2.6) and (4.5) it follows

that,

A
(2)
r̂α = 0. (4.6)

In deriving the above equation we have used the fact that 〈Φ̂c
3,r̂|O|Φ1,α〉 = 0 if

the operator O does not contain the mode c−0 . Thus the term involving D(1) in

eq.(4.2) also vanishes when we choose the index r to be r̂. This equation may then

be written as:

C
(0)
r̂i B

(3)
ijκφ̂

(m̂)
j η̂

(ρ̂)
κ = A

(3)
r̂αsD

(0)
ακC

(0)
sj φ̂

(m̂)
j η̂

(ρ̂)
κ (4.7)

Note that the undetermined coefficients C(1), D(1) and K(1) have disappeared from

the above equation, whereas C(0) and D(0) have already been determined in the

previous section. Hence unless the above equation is satisfied identically, there is a

genuine obstruction to solving the set of equations (4.2). We show in appendix A

that eq.(4.7) is satisfied identically. For the time being we assume this to be true

and look for other possible obstructions of this kind.

Next, let us restrict the index r to be of type r̂, and take φ
(m)
j to be of the form

B
(2)
jκ′η

(ρ′)
κ′ . This causes the term involving D(1) in eq.(4.2) to vanish, since A

(2)
r̂α = 0.

On the other hand, using eqs.(3.13) the term involving K(1) in eq.(4.2) may be

brought to the form:

K
(1)
rsκÃ

(2)
st C

(0)
tj B

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ = K

(1)
rsκÃ

(2)
st A

(2)
tα D

(0)
ακ′η

(ρ′)
κ′ η

(ρ)
κ (4.8)
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From eqs.(2.2) and (2.6) we get,

Ã
(2)
st A

(2)
tα = −〈Φ2,s|c−0 QB|Φ2,t〉〈Φc

3,t|c−0 QB|Φ1,α〉

= −〈Φ2,s|c−0 QBb
−
0 c

−
0 QB|Φ1,α〉

= 0

(4.9)

In deriving the above equation, we have used the completeness relation that follows

from eq.(2.4), and the nilpotence of the BRST charge (QB)2 = 0. Thus the term

involving K(1) in eq.(4.2) also vanishes in this case. The equation then takes the

form:

C
(0)
r̂i B

(3)
ijκB

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ + C

(1)
r̂jiB

(2)
iκ B

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ = A

(3)
r̂αsD

(0)
ακC

(0)
sj B

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ (4.10)

From the definition of C
(1)
rji given in eq.(2.8) we see that it is symmetric under the

exchange of i and j. (We have used this symmetry property to get eq.(2.9).) Thus

the term involving C(1) in eq.(4.10) is symmetric under the exchange of ρ and ρ′.

If we exchange ρ and ρ′ in eq.(4.10) and subtract from the original equation, we

get,

C
(0)
r̂i B

(3)
ijκB

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ − (ρ↔ ρ′) = A

(3)
r̂αsD

(0)
ακC

(0)
sj B

(2)
jκ′η

(ρ′)
κ′ η

(ρ)
κ − (ρ↔ ρ′) (4.11)

Note that all the undetermined constants C(1), D(1) and K(1) have dropped out of

the above equation, and hence it again represents a possible obstruction to solving

the set of equations given in eq.(4.2).

Finally, let us choose η
(ρ)
κ in eq.(4.2) to be of the form η̂

(ρ̂)
κ and multiply both

sides of the equation by Ã
(2)
rt′C

(0)
t′j′φ

(m′)
j′ . In this case the term involving C(1) vanishes

since B
(2)
iκ η̂

(ρ̂)
κ = 0. The term involving D(1) is given by,

D
(1)
ακjφ

(m)
j η̂

(ρ̂)
κ A

(2)
rα Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′ (4.12)

which vanishes by eq.(4.9) and the fact that Ã
(2)
rs is symmetric in the indices r and
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s. Thus the equation takes the form:

C
(0)
ri B

(3)
ijκφ

(m)
j η̂

(ρ̂)
κ Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′ = A

(3)
rαsD

(0)
ακC

(0)
sj φ

(m)
j η̂

(ρ̂)
κ Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′

+K
(1)
rsκÃ

(2)
st C

(0)
tj φ

(m)
j η̂

(ρ̂)
κ Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′

(4.13)

As we have seen in sect. 2, the quantity Krs and hence K
(1)
rsκ defined in eq.(2.14)

must be antisymmetric in r and s. Hence the term involving K(1) in eq.(4.13) in

antisymmetric in the indices m and m′. Thus if we symmetrize both sides of the

equation in m and m′, the term involving K(1) drops out and we are left with the

equation:

C
(0)
ri B

(3)
ijκφ

(m)
j η̂

(ρ̂)
κ Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′ + (m↔ m′)

= A
(3)
rαsD

(0)
ακC

(0)
sj φ

(m)
j η̂

(ρ̂)
κ Ã

(2)
rt′C

(0)
t′j′φ

(m′)
j′ + (m↔ m′)

(4.14)

Since the above equation involves only the known quantities, this represents a third

set of obstructions to solving the set of equations (4.2).

We shall now show that once eqs.(4.7), (4.11) and (4.14) are satisfied, we can

always find a solution of the set of equations (4.1) (or, equivalently, eqs. (4.2)). In

other words we can find appropriate C(1), D(1) and K(1) satisfying these equations.

To start with, let us consider the case where the index r is of type r̃, i.e. 〈Φ̃c
3,r̃|QB 6=

0. In this case we may express eq.(4.1) as,

A
(2)
r̃αD

(1)
ακj = C

(0)
r̃i B

(3)
ijκ + C

(1)
r̃jiB

(2)
iκ − A

(3)
r̃αsD

(0)
ακC

(0)
sj −K

(1)
r̃sκÃ

(2)
st C

(0)
tj (4.15)

Let us now note that A
(2)
r̃α has no eigenvector with zero eigenvalue acting on the

left. For, if there was such an eigenvector (say xr̃) then it would give,

0 =
∑

r̃

xr̃A
(2)
r̃α =

∑

r̃

xr̃〈Φ̃c
3,r̃|c−0 QB|Φ1,α〉, for all α (4.16)

which, in turn, would imply that
∑

r̃ xr̃〈Φ̃c
3,r̃| is annihilated by QB . But we have

already chosen the basis states such that all such states are included in the set
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{〈Φ̂c
3,r̂|}; the set {〈Φ̃c

3,r̃|} contains only those states which are not annihilated by

QB. Thus there is no vector xr̃ for which
∑

xr̃A
(2)
r̃α = 0. This, in turn, shows that

the matrix A
(2)
r̃α has a (non-unique) right inverse Mαs̃, satisfying,

⋆

A
(2)
r̃αMαs̃ = δr̃s̃ (4.17)

We thus get a solution of eq.(4.15) of the form:

D
(1)
ακj = Mαr̃[C

(0)
r̃i B

(3)
ijκ + C

(1)
r̃jiB

(2)
iκ − A

(3)
r̃αsD

(0)
ακC

(0)
sj −K

(1)
r̃sκÃ

(2)
st C

(0)
tj ] (4.18)

In other words, we can always adjust the coefficients D
(1)
ακj so as to satisfy eq.(4.15).

Next we consider the case where the index r is taken to be of the type r̂, but the

index ρ (in eq.(4.2)) is taken to be of the type ρ̃. In this case, the term involving

D(1) in eq.(4.2) vanishes, and we may rewrite this equation as,

C
(1)
r̂jiB

(2)
iκ φ

(m)
j η̃

(ρ̃)
κ = (A

(3)
r̂αsD

(0)
ακC

(0)
sj +K

(1)
r̂sκÃ

(2)
st C

(0)
tj − C

(0)
r̂i B

(3)
ijκ)φ

(m)
j η̃

(ρ̃)
κ (4.19)

Let us consider the matrix Siρ̃ ≡ B
(2)
iκ η̃

(ρ̃)
κ . From our choice of basis described in

eq.(4.4) it is clear that this matrix cannot have an eigenvector with zero eigenvalue

while acting on the right; for if there was such an eigenvector (say {yρ̃}) then

the combination yρ̃η̃
(ρ̃)
κ would have to be included in the set {η̂(ρ̂)

κ }, and the set

{η̂(ρ̂)
κ }, {η̃(ρ̃)

κ } will not together form a set of linearly independent basis vectors.

This, in turn, shows that the matrix Siρ̃ must have a (non-unique) left inverse Nρ̃j

satisfying,

Nρ̃iB
(2)
iκ η̃

(ρ̃′)
κ ≡ Nρ̃iSiρ̃′ = δρ̃ρ̃′ (4.20)

Thus we see that eq.(4.19) is satisfied if we choose,

C
(1)
r̂ji = (A

(3)
r̂αsD

(0)
ακC

(0)
sj +K

(1)
r̂sκÃ

(2)
st C

(0)
tj − C

(0)
r̂l B

(3)
ljκ)η̃

(ρ̃)
κ Nρ̃i (4.21)

We must, however, make sure that the expression for C
(1)
r̂ji obtained this way is

⋆ Although A(2) is an infinite dimensional matrix, it is block diagonal in the basis where the
states are taken to be eigenstates of the momentum operator and L+

0 , with each block being
a finite matrix. Thus all the results for finite dimensional matrices can be applied here.
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symmetric in i and j. To do this it is convenient to choose a specific basis for the

variables {φi}, which makes the matrix Siρ̃ look simple. Let us assume that ρ̃ takes

N different values. (In general N is infinite, but if we work within a subspace of

states with a given momentum, then N is finite.) Let us choose the basis for the

variables φi such that
†

Siρ̃ =

{

δiρ̃ for 1 ≤ i ≤ N

0 for i > N
(4.22)

In this case

Nρ̃i =

{

δρ̃i for 1 ≤ i ≤ N

arbitrary for i > N
(4.23)

Hence eq.(4.21) may be written as,

C
(1)
r̂ji =

{

(A
(3)
r̂αsD

(0)
ακC

(0)
sj +K

(1)
r̂sκÃ

(2)
st C

(0)
tj − C

(0)
r̂l B

(3)
ljκ)η̃

(i)
κ , for 1 ≤ i ≤ N

arbitrary for i ≥ N + 1.
(4.24)

Thus we see that if i ≤ N and j > N , then the relation C
(1)
r̂ij = C

(1)
r̂ji can be satisfied

by setting C
(1)
r̂ij (which is undetermined otherwise) to be equal to C

(1)
r̂ji . For i, j > N

one can always choose C
(1)
r̂ij to be symmetric in i and j, since it is not constrained

at all. Thus the only possible source of discrepancy comes when both i and j are

less than or equal to N . However, in this case, using eq.(4.22) we may write,

C
(1)
r̂ji = C

(1)
r̂j′iSj′j , 1 ≤ i, j ≤ N. (4.25)

Substituting the solution (4.21) on the right hand side of the above equation, using

† Such a choice of basis is possible through a linear field redefinition of the form φi → Wijφj ,
with

Wij =

{

Nij for 1 ≤ i ≤ N

Vik(δkj − Skρ̃′Nρ̃′j) for i > N

where V is a matrix which should be chosen so as to make W non-singular, but is otherwise
arbitrary.
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the relation Nρ̃i = δρ̃i, and that Sj′j = B
(2)
j′κη̃

(j)
κ for 1 ≤ j ≤ N , we get,

C
(1)
r̂ji =(A

(3)
r̂αsD

(0)
ακC

(0)
sj′ +K

(1)
r̂sκÃ

(2)
st C

(0)
tj′ − C

(0)
r̂l B

(3)
lj′κ)η̃

(i)
κ B

(2)
j′κ′ η̃

(j)
κ′

for 1 ≤ i, j ≤ N.
(4.26)

Since K
(1)
r̂sκÃ

(2)
st C

(0)
tj B

(2)
jκ′ η̃

(j)
κ′ vanishes (see eqs.(4.8) and (4.9)) the term involving

K(1) vanishes in the above equation. Eq.(4.11) then implies that the right hand

side of the equation is symmetric in i and j, showing that C
(1)
r̂ji calculated from

eq.(4.21) in indeed symmetric in i and j.

Thus it remains to show that if in eq.(4.2) we take the index r to be of type r̂,

and ρ to be of the type ρ̂, then this equation can still be satisfied. In this case the

terms involving C(1) as well as D(1) drop out of the equation. The only other free

index in this equation is m, which can either be of type m̃, or of type m̂. If this

index is of type m̂ then eq.(4.7) guarantees that eq.(4.2) is automatically satisfied.

Thus we now need to ensure that we can satisfy eq.(4.2) by adjusting K(1) when

the indices r, ρ and m are of the type r̂, ρ̂ and m̃ respectively. In this case we can

write eq.(4.2) as,

K
(1)
r̂sκÃ

(2)
st C

(0)
tj φ̃

(m̃)
j η̂

(ρ̂)
κ = C

(0)
r̂i B

(3)
ijκφ̃

(m̃)
j η̂

(ρ̂)
κ − A

(3)
r̂αsD

(0)
ακC

(0)
sj φ̃

(m̃)
j η̂

(ρ̂)
κ . (4.27)

Let us define,

Tsm̃ = Ã
(2)
st C

(0)
tj φ̃

(m̃)
j (4.28)

Using eq.(4.3) and arguments similar to the case of the matrix Siρ̃, it is clear that

Tsm̃, acting on the right, does not have any eigenvector with zero eigenvalue. As a

result, it has a left inverse; let us call this Um̃r:

Um̃rTrñ = δm̃ñ (4.29)

Also note that since {η(ρ)} form a complete set of linearly independent vectors,
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η
(ρ)
κ , regarded as a matrix in (ρ, κ) space, is invertible. Thus if we define,

K(1)
rsρ = K

(1)
rsκη

(ρ)
κ (4.30)

then we can freely obtain K from K and vice versa with the help of the matrix

η
(ρ)
κ or its inverse. A solution to eq.(4.27) is given by,

K(1)
rsρ̂ = (C

(0)
ri B

(3)
ijκ −A

(3)
rαs′D

(0)
ακC

(0)
s′j )φ̃

(m̃)
j Um̃sη̂

(ρ̂)
κ

K(1)
rsρ̃ = arbitrary.

(4.31)

Note that only K(1)
r̂sρ̂ is determined by eq.(4.27). Eq.(4.31) gives a specific solution

of eq.(4.27), but in general K(1)
r̃sρ̂ can be chosen arbitrarily. Finally we need to verify

that K(1) determined this way is antisymmetric in r and s. For this we assume

that the index m̃ runs from 1 to M and, as in the case of the matrix Siρ̃, choose a

basis of states |Φ2,r〉 such that:

Trm̃ =

{

δrm̃ for 1 ≤ r ≤M

0 for r > M
(4.32)

so that Um̃r can be taken to be,

Um̃r =

{

δm̃r for 1 ≤ r ≤M ,

arbitrary for r > M .
(4.33)

In this basis K(1)
rsρ̂ given in eq.(4.31) takes the form

K(1)
rsρ̂ =

{

(C
(0)
ri B

(3)
ijκ − A

(3)
rαs′D

(0)
ακC

(0)
s′j )φ

(s)
j η̂

(ρ̂)
κ , for 1 ≤ s ≤M ;

arbitrary for s ≥M + 1.
(4.34)

Thus we see that as long as either s or r is larger than M , the antisymmetry of

K(1)
rsρ̂ may be satisfied by judicious choice of K(1)

rsρ̂ in the region s ≥ M + 1, where

it is undetermined otherwise. The only possible problem comes from the range
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where both r and s lie in the range between 1 and M . But note that in this basis

eq.(4.14) takes the form:

(C
(0)
ri B

(3)
ijκφ

(s)
j η̂

(ρ̂)
κ − A

(3)
rαs′D

(0)
ακC

(0)
s′j φ

(s)
j η̂

(ρ̂)
κ ) + (r ↔ s) = 0, for 1 ≤ r, s ≤M

(4.35)

which is precisely the statement that K(1)
rsρ̂ given in eq.(4.34) is antisymmetric in r

and s.

This completes the proof that once eqs.(4.7), (4.11) and (4.14) are satisfied,

we can choose appropriate C(1), D(1) and K(1) so as to satisfy eq.(4.1). We have

shown explicitly in appendix A that these equations are indeed satisfied. This in

turn means that it is possible to identify appropriate string field configurations

to off shell field configurations in low energy effective field theory, and to identify

appropriate symmetries in string field theory to gauge symmetries in low energy

effective field theory, so as to get the correct transformation laws of various fields

in low energy effective field theory to first non-linear order.

Before we conclude this section, we would like to show that a solution to eq.(4.1)

(or eq.(4.2)) cannot be obtained if we set K
(1)
rsκ = 0. For this let us take K

(1)
rsκ = 0,

and choose η
(ρ)
κ , and 〈Φc

3,r| to be of the forms η̂
(ρ̂)
κ and 〈Φ̂c

3,r̂| respectively. As a

result, terms involving C(1) and D(1) drop out of eq.(4.2) and it takes the form:

C
(0)
r̂i B

(3)
ijκφ

(m)
j η̂

(ρ̂)
κ = A

(3)
r̂αsD

(0)
ακC

(0)
sj φ

(m)
j η̂

(ρ̂)
κ (4.36)

Since this equation involves only known coefficients, this is a consistency equation.

In appendix A we show one example of a specific choice of 〈Φ̂c
3,r̂|, η̂

(ρ̂)
κ and φ

(m)
j for

which this equation is not satisfied. This, in turn, shows that it is not possible to

obtain solutions of eq.(4.2) with K(1) = 0.
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5. DISCUSSION

In this paper we have studied how off-shell general coordinate transformations

and antisymmetric tensor gauge transformations arise in string field theory. Work-

ing to first non-linear order, we have shown that it is possible to identify specific

string field configurations with off-shell field configurations in low energy effective

field theory, and specific symmetry transformations in string theory with off-shell

gauge transformations in low energy effective field theory, so that the symmetry

transformations in the former theory are compatible with those in the latter theory.

One of the specific results of our analysis is that the off-shell gauge symmetries

of low energy effective field theory cannot be identified to just a combination of off-

shell gauge symmetries alone of string field theory. Instead, they can be identified

to a combination of off-shell gauge symmetries of string field theory and the trivial

symmetries of the form given in eq. (1.1).

The gauge algebra of string field theory is characterized by two important

features. The first is that it closes only on-shell; the second is that the algebra

has field dependent structure constants. More specifically, if |Λ1〉 and |Λ2〉 are two

independent gauge transformation parameters, the commutator of these two gauge

transformation parameters, acting on the string field |Ψ〉 gives
⋆
:

[δΛ1
, δΛ2

]ψr = δΛψr +Mrs({ψt})
δS

δψs
(5.1)

where,

b−0 |Λ〉 =
∞

∑

N=0

gN+1

N !
[Λ2Λ1Ψ

N ] (5.2)

and Mrs is an antisymmetric matrix, given by,

Mrs(Ψ,Λ1,Λ2) =
∞

∑

N=0

gN+2

N !
{(c−0 Φc

3,s)(c
−
0 Φc

3,r)Ψ
NΛ1Λ2} (5.3)

Antisymmetry of Mrs follows from the property of { } [4] [14]. On the other hand,

⋆ This observation has been made independently by Zwiebach [17]
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the gauge symmetries of the low energy effective Lagrangian closes off-shell, and

have field independent structure constants. Thus if our analysis can be extended

to all orders in the string field Ψ, this would imply that the string field theory

contains a symmetry (sub-)algebra which does close even when the massless field

in the theory are off-shell (whereas the massless auxiliary fields and the massive

fields are eliminated by their equations of motion). It is therefore natural to ask

how to reconcile these apparently different features of string field theory and low

energy effective field theory.

Let us first address the question of closure of the algebra. Note that although

the commutator of two gauge transformations in string field theory contains trivial

symmetry transformations given in eq.(1.1), and hence the gauge algebra closes

only on-shell, it is conceivable that one can redefine the gauge transformation laws

by adding appropriate combination of the trivial symmetry transformations to each

gauge transformation, so that the resulting algebra (or some subalgebra of the re-

sulting algebra) closes off-shell. We expect that this is precisely what happens in

this case. In fact, from our analysis, we have already seen that the gauge transfor-

mations of low energy effective field theory indeed correspond to combinations of

gauge transformation and the trivial symmetry in string field theory.

On the other hand, the structure constants of the algebra can be changed

by appropriate redefinition of gauge transformation parameters. (A somewhat

contorted example is of a U(1) gauge theory, where we could have defined the gauge

transformation law of the gauge field Aµ to δAµ = ∂µ((1+f(A))ǫ) where f is some

function of Aµ. This would, in general, give field dependent structure constants

for the gauge group, although the standard U(1) algebra has field independent

structure constants.) Thus it is not surprising that one can obtain suitable (field

dependent) combination of gauge transformations in string field theory to get a

subalgebra of the gauge group with field independent structure constants. To show

that such combinations can really be obtained we need to extend the analysis of

the paper to higher orders in the fields.
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We expect that the extension of our analysis to higher orders in Ψ can be

carried out using a method of induction, where we assume that a solution of the

set of first N equations appearing in eq.(2.17) have been obtained, and then prove

that the (N + 1)th equation in that set can also be solved. We hope to come back

to this question in the future.

APPENDIX A

EXPLICIT VERIFICATION OF THE CONSISTENCY CONDITIONS

In this appendix we shall show that the consistency conditions represented by

eqs.(4.7), (4.11) and (4.14) are indeed satisfied by the vertices of string field theory.

We also demonstrate by one example that eq. (4.36) is in general not satisfied.

We begin with eq.(4.7). Let us define,

b−0 |Ψ̂(m̂)〉 = C
(0)
sj φ̂

(m̂)
j |Φ2,s〉 (A.1)

and,

b−0 |Λ̂(ρ̂)〉 = D
(0)
ακ η̂

(ρ̂)
κ |Φ1,α〉 (A.2)

From this we see that,

〈Φ2,r|c−0 QBb
−
0 |Ψ̂(m̂)〉 = −C(0)

sj φ̂
(m̂)
j Ã

(2)
rs = 0 (A.3)

and,

〈Φc
3,r|c−0 QBb

−
0 |Λ̂(ρ̂)〉 = D

(0)
ακ η̂

(ρ̂)
κ A

(2)
rα = C

(0)
ri B

(2)
iκ η̂

(ρ̂)
κ = 0 (A.4)

using eq.(4.3) and eqs.(3.13) and (4.4) respectively. This, in turn, shows that

QBb
−
0 |Ψ̂(m̂)〉 and QBb

−
0 |Λ̂(ρ̂)〉 vanish identically.
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Using eq.(2.6) and the definition of { } [4] [14] we get

A
(3)
r̂αs = g〈f1 ◦ Φ̂c

3,r̂(0)f2 ◦ Φ1,α(0)f3 ◦ Φ2,s(0)〉 (A.5)

where fi are known conformal maps [18] [3] [4] [14]. From this we see that the right

hand side of eq.(4.7) takes the form:

g〈f1 ◦ Φ̂c
3,r̂(0)f2 ◦ b−0 Λ̂(ρ̂)(0)f3 ◦ b−0 Ψ̂(m̂)(0)〉 (A.6)

where b−0 Λ̂(ρ̂) and b−0 Ψ̂(m̂) are the local fields in conformal field theory which create

the states b−0 |Λ̂(ρ̂)〉 and b−0 |Ψ̂(m̂)〉 acting on the vacuum [19]. As we have seen,

Φ̂c
3,r̂, b

−
0 Λ̂(ρ̂) and b−0 Ψ̂(m̂) are all BRST invariant fields. Hence if any of them

is a BRST trivial field, then expression (A.6) vanishes identically, − the only

contribution comes from the term when Φ̂c
3,r̂, Λ̂(ρ̂) and Ψ̂(m̂) all correspond to

(non-zero) elements of BRST cohomology.

We thus first need to verify that the left hand side of eq.(4.7) vanishes when

either of Φ̂c
3,r̂, Λ̂(ρ̂) or Ψ̂(m̂) is BRST trivial. To this end, note that under the

antisymmetric tensor gauge transformation, the transformation of the fields have

only linear term (δBµν ∝ ∂µξν − ∂νξµ), hence B
(3)
ijκ vanishes in this case. Thus

we need to look for contribution to the left hand side of eq.(4.7) from general

coordinate transformation. For a general coordinate transformation labelled by

the parameter ǫµ(x), we see from eq.(3.11) that,

b−0 |Λ̂(ρ̂)〉 = −i
∫

dDkǫ̂µ(k)(c1α
µ
−1 − c̄1ᾱ

µ
−1)|k〉 (A.7)

It is easy to see that for no ǫ̂µ this can be written as QB|s〉. Thus b−0 |Λ̂(ρ̂)〉 must be

a (non-zero) member of the BRST cohomology. A straightforward analysis of the

BRST cohomology shows that such states are given by ǫ̂µ(k) = −(1/
√

2g)ǫµδ
(D)(k),

corresponding to rigid translation by an amount ǫµ (see eqs.(3.9)). Thus in this
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case,

B
(3)
ijκφ̂

(m̂)
j η̂

(ρ̂)
κ = iǫµk

µφ̂
(m̂)
i (A.8)

where k is the D-momentum carried by φ̂
(m̂)
j .

⋆
Since C

(0)
ri is block diagonal in the

momentum space (i.e. if φ
(m)
j carries momentum k then b−0 |Ψ(m)〉 ≡ C

(0)
rj φ

(m)
j |Φ2,r〉

also carries momentum k), we can express C
(0)
r̂i B

(3)
ijκφ̂

(m̂)
j as (iǫµk

µ)C
(0)
r̂j φ̂

(m̂)
j . Using

eq.(A.1) we now see that,

C
(0)
r̂j φ̂

(m̂)
j = 〈Φ̂c

3,r̂|Ψ̂(m̂)〉 (A.9)

Hence if either 〈Φ̂c
3,r̂| or b−0 |Ψ̂(m̂)〉 is BRST trivial, C

(0)
r̂j φ̂

(m̂)
j vanishes. This, in turn,

shows that the left hand side of eq.(4.7) also vanishes unless 〈Φ̂c
3,r̂|, b−0 |Ψ̂(m̂)〉 and

b−0 |Λ̂(ρ̂)〉 are all (non-zero) elements of the BRST cohomology.

We can now restrict our attention to the case where 〈Φ̂c
3,r̂|, |Ψ̂(m̂)〉 and |Λ̂(ρ̂)〉

are all (non-zero) elements of the BRST cohomology. First let us consider the

case where |Λ̂(ρ̂)〉 corresponds to gauge transformation associated with antisym-

metric tensor field. As remarked before, in this case the left hand side of eq.(4.7)

vanishes. The right hand side is given by eq.(A.6). Standard analysis of BRST co-

homology shows that b−0 |Λ̂(ρ̂)〉 must have the form ξµ(c1α
µ
−1 + c̄1ᾱ

µ
−1)|0〉, whereas

b−0 |Ψ̂(m̂)〉 and 〈Φ̂c
3,r̂| can be taken to be of the form aµν(k)c1c̄1α

µ
−1ᾱ

ν
−1|k〉, and

〈−k|αµ
1 ᾱ

ν
1 c̄−1c−1c

+
0 eµν(k) respectively, with kµaµν = kνaµν = kµeµν = kνeµν = 0,

k2 = 0. Since each of these are primary states, it is straightforward to compute

expression (A.6). It turns out to vanish, showing that eq.(4.7) is satisfied for the

case where η̂
(ρ̂)
κ is taken to be an antisymmetric tensor gauge transformation.

We now look at the case where |Λ̂(ρ̂)〉 (or equivalently η̂
(ρ̂)
κ ) correspond to gen-

eral coordinate transformation. As remarked before, the only (non-zero) element

of BRST cohomology is generated by rigid translation, and using eq.(A.9) and the

⋆ We have chosen a basis {φ(m)
j } such that φ

(m)
j has a fixed momentum.
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discussion above it, we can bring the left hand side of eq.(4.7) to the form:

iǫµk
µ〈Φc

3,r|Ψ̂(m̂)〉 (A.10)

The right hand side of eq.(4.7) is given by eq.(A.6). From eq.(A.7) and the fact

that ǫ̂µ = (−1/
√

2g)ǫµδ
(D)(k) (eq.(3.9)), we get,

b−0 |Λ̂(ρ̂)〉 =
i√
2g
ǫµ(c1α

µ
−1 − c̄1ᾱ

µ
−1)|0〉 (A.11)

〈Φ̂c
3,r̂| and b−0 |Ψ̂(m̂)〉 have the same form as given in the previous paragraph. Since

Φ̂c
3,r̂, b

−
0 Λ̂(ρ̂) and b−0 Ψ̂(m̂) are all dimension (0, 0) primary fields, it is straightforward

to evaluate eq.(A.6) and we get the answer:

iǫµk
µ〈Φ̂c

3,r̂|Ψ̂(m̂)〉 (A.12)

which agrees with eq.(A.10).

Finally, note that if k = 0, then the set {|Ψ̂(m̂)〉} contains an extra physical

state of the form (c1c−1− c̄1c̄−1)|0〉, and the set {〈Φ̂c
3,r̂|} contains an extra physical

state of the form 〈0|(c1c−1 − c̄1c̄−1)c
+
0 . It is easy to see that both for |Λ̂(ρ̂)〉 rep-

resenting a rigid translation or a rigid antisymmetric tensor gauge transformation,

the right and the left hand side of eq.(4.7) vanishes.

This completes the proof that eq.(4.7) is satisfied for all values of r̂, ρ̂ and m̂.

We now turn to eq.(4.11). Defining b−0 |Λ(ρ)〉 = η
(ρ)
κ D

(0)
ακ |Φ1,α〉 as before, and

noting that,

C
(0)
sj B

(2)
jκ′η

(ρ′)
κ′ |Φ2,s〉 =A

(2)
sαD

(0)
ακ′η

(ρ′)
κ′ |Φ2,s〉

=〈Φc
3,s|c−0 QB|Φ1,α〉D(0)

ακ′η
(ρ′)
κ′ |Φ2,s〉

=QBb
−
0 |Λ(ρ′)〉

(A.13)

(we have used eq.(3.13)); we can express the right hand side of eq.(4.11) as,

g[〈f1◦Φ̂c
3,r̂(0)f2◦b−0 Λ(ρ)(0)f3◦QBb

−
0 Λ(ρ′)(0)〉−〈f1◦Φ̂c

3,r̂(0)f2◦Λ(ρ′)(0)f3◦QBb
−
0 Λ(ρ)(0)〉]
(A.14)

Since the closed string vertex is completely symmetric, we can replace f2 by f3 and
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f3 by f2 in the last term in eq.(A.14). Using the fact that Φ̂c
3,r̂ is BRST invariant,

we can deform the QB contour in the first term so that it acts on b−0 Λ(ρ)(0) instead

of b−0 Λ(ρ′)(0). We pick up two minus signs in this process, one from reversing the

contour, the other from commuting QB through b−0 Λ(ρ). The result is that the first

term exactly cancels the second term, showing that the right hand side of eq.(4.11)

vanishes identically.

What about the left hand side? Note that φj ≡ B
(2)
jκ η

(ρ)
κ represents a field

configuration of the low energy effective field theory that is obtained from the

zero field configuration by the gauge transformation generated by η
(ρ)
κ . Acting

on this field configuration with the gauge transformation η
(ρ′)
κ′ we generate a field

configuration,

φi +B
(2)
iκ′ η

(ρ′)
κ′ +B

(3)
ijκ′φjη

(ρ′)
κ′ = B

(2)
iκ η

(ρ)
κ +B

(2)
iκ′ η

(ρ′)
κ′ +B

(3)
ijκ′η

(ρ′)
κ′ B

(2)
jκ η

(ρ)
κ (A.15)

Antisymmetrizing the above expression in ρ and ρ′, we get a field configuration

generated by the commutator of the two transformations generated by η
(ρ)
κ and

η
(ρ′)
κ′ . This configuration is given by,

B
(3)
ijκB

(2)
jκ′η

(ρ)
κ η

(ρ′)
κ′ − (ρ↔ ρ′) (A.16)

Since the gauge algebra of the low energy effective field theory closes off-shell, the

commutator of two gauge transformations is another gauge transformation. Let

η
(0)
κ be the parameter labelling this new gauge transformation. Then eq.(A.16)

may be expressed as,

B
(2)
iκ η

(0)
κ (A.17)

Using eq.(3.13), and the fact that A
(2)
r̂α = 〈Φ̂c

3,r̂|c−0 QB|Φ1,α〉 = 0, the left hand side

of eq.(4.11) may be written as,

C
(0)
r̂i B

(2)
iκ η

(0)
κ = A

(2)
r̂αD

(0)
ακη

(0)
κ = 0 (A.18)

Thus we see that the left hand side of eq.(4.11) also vanishes identically. This

proves that eq.(4.11) is satisfied for all values of r̂, ρ and ρ′.
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Let us now consider eq.(4.14). If we define b−0 |Ψ(m′)〉 = C
(0)
t′j′φ

(m′)
j′ |Φ2,t′〉 and

b−0 |Λ̂(ρ̂)〉 = η̂
(ρ̂)
κ D

(0)
ακ |Φ1,α〉, then, by standard manipulations, the right hand side of

eq.(4.14) may be shown to be proportional to,

[〈f1 ◦QBb
−
0 Ψ(m′)(0)f2 ◦ b−0 Λ̂(ρ̂)(0)f3 ◦ b−0 Ψ(m)(0)〉 + (m↔ m′)] (A.19)

Since QBb
−
0 |Λ̂(ρ̂)〉 = 0, we can again deform the BRST contour in the first term

so that QB acts on b−0 Ψ(m)(0). Using the symmetry of the vertex we can also

interchange f1 and f3 in the second term, and make appropriate rearrangement of

the operators inside the correlator, picking up appropriate signs in the process. The

final result is that the two terms in eq.(A.19) exactly cancel each other, thereby

showing that the right hand side of eq.(4.14) vanishes identically.

It thus remains to show that the left hand side of eq.(4.14) also vanishes iden-

tically. To see this, let us write the action for the low energy effective field theory

in the following form:

Seff (φ) =
∞

∑

N=2

1

N
B̃

(N)
i1...iN

φi1 . . . φiN (A.20)

Invariance of this action under the gauge transformation given in eq.(2.7) then

gives,

B̃
(2)
ij B

(2)
jκ =0

B̃
(3)
ijl B

(2)
iκ + B̃

(2)
ij B

(3)
ilκ + (j ↔ l) =0

(A.21)

Multiplying the second of eq.(A.21) by η̂
(ρ̂)
κ and using eq.(4.4) we get,

B̃
(2)
ij B

(3)
ilκ η̂

(ρ̂)
κ + (j ↔ l) = 0 (A.22)

Using eqs.(2.1), (2.8), and (A.20) we get,

B̃
(2)
ij = Ã

(2)
rt C

(0)
ri C

(0)
tj (A.23)

(Note that this relation has already been verified in sect. 3, where the quadratic

part of the action obtained from string field theory was shown to agree with that
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of low energy effective field theory.) Eq.(A.22) then takes the form,

Ã
(2)
rt C

(0)
ri C

(0)
tj B

(3)
ilκ η̂

(ρ̂)
κ + (j ↔ l) = 0 (A.24)

Vanishing of the left hand side of eq.(4.14) is an immediate consequence of this

equation.

Hence both sides of eq.(4.14) vanish, and are, therefore equal to each other.

This completes the verification of eqs.(4.7), (4.11) and (4.14).

Finally we give an example to show that eq.(4.36) breaks down for specific

choices of Φ̂c
3,r̂, η̂

(ρ̂)
κ and φ

(m)
j . We choose,

b−0 |Λ̂(ρ̂)〉 ≡ D
(0)
ακ η̂

(ρ̂)
κ |Φ1,α〉 =

i√
2g
ǫµ(c1α

µ
−1 − c̄1ᾱ

µ
−1)|0〉 (A.25)

〈Φ̂c
3,r̂| = aµν〈−k|c−1c̄−1α

µ
1 ᾱ

ν
1QB (A.26)

and,

b−0 |Ψ(m)〉 ≡C(0)
rj φ

(m)
j |Φ2,r〉

=[hµνc1c̄1α
µ
−1ᾱ

ν
−1 −

1√
2
(kνhνµ − 1

2
kµh

ν
ν)c+0 (c1α

µ
−1 − c̄1ᾱ

µ
−1)

+
1

2
hµ

µ(c1c−1 − c̄1c̄−1)]|k〉

(A.27)

with hµν = hνµ. In other words, η̂
(ρ̂)
κ denotes a rigid translation with parameter

ǫµ, 〈Φ̂c
3,r̂| denotes a pure gauge (BRST-exact) state and φ

(m)
j corresponds to an

off-shell graviton background with momentum k (see eq.(3.12)). In this case the

left hand side of the equation is proportional to,

iǫ · kC(0)
r̂j φ

(m)
j = iǫ.k〈Φ̂c

3,r̂ |Ψ(m)〉 (A.28)

On the other hand, the right hand side of the equation is given by,

g〈f1 ◦ Φ̂c
3,r̂(0)f2 ◦ b−0 Λ̂(ρ̂)(0)f3 ◦ b−0 Ψ(m)(0)〉 (A.29)
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which can be shown to be equal to

iǫ.k〈Φ̂c
3,r̂|Ψ(m)〉 + extra terms proportional to the equations of motion. (A.30)

The expressions (A.28) and (A.29) therefore differ unless the background fields

φ
(m)
j are solutions of the equations of motion. This, in turn, shows that we cannot

solve the set of equations (4.1) with K(1) = 0.
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