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I. Introduction 

Calculation of covariant fermionic loop amplitudes in the heterotic or super- 

string theory have so far been hampered by the apparent complexity of the covari- 

ant fermion emission vertex of Friedan, Martinet and Shenker [l] and Knizhnik 

[2]. In this covariant formalism the vertex describing fermion emission involves 

spin fields of matter and superconformal ghosts, and the calculation of fermionic 

scattering amplitudes would necessarily require correlation functions of these 

fields. Apriori, these are not so straightforward to compute, essentially since the 

spin fields do not possess a local representation in terms of the fundamental fields 

on the world-sheet. 

At the tree level, one way around this was to use the current algebra of 

SO(l0) [3] to d erive a differential equation for the spin field correlator, or more 

conveniently to proceed through bosonization [I]. Both have successfully been 

applied in the calculation of tree level fermion emission amplitudes in ref. [4]* 

and the results seem to agree with those of the light-cone gauge. On the torus 

or higher genus surfaces on the other hand, current bosonization techniques are 

plagued by subtle global issues such as the bosonization of the superconformal 

ghosts. These render their practical utility at this stage doubtful. 

In a previous work [6, 71, we have succeeded in deriving integrable first order 

differential equations for the spin correlators, using complex function theory on 

arbitrary genus Riemann surfaces and the idea that the stress tensor generates 

deformations of the moduli [8]. In this paper we shall use these results to ex- 

plicitly calculate fermion emission amplitudes in the heterotic and superstring 

theories. In order to avoid subtleties associated with the supermoduli [9] on 

higher genera, we shall for the time being restrict ourselves to one loop. 

One of the motivations behind this work is the need for a better understanding 

of the covariant formulation of fermionic strings on the torus and higher genus 

* Covariant tree level amplitudes for general n-point functions with external bosonic vertices 
have also been computed in Ref.[5]. 
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Riemann surfaces. As a first step, one would like to at least verify explicitly 

that this formulation of string theory reproduces the physically sensible l-loop 

scattering amplitudes of the light-cone gauge theory of Green and Schwarz [lo, 

II]. Scattering amplitudes of up to four external bosons have been calculated in 

ref. [12] and [13]. Th ese results agree with the light-cone gauge answer. However 

they do not test the validity of the fermion emission vertex or the prescription of 

Friedan, Martinet and Shenker for calculating scattering amplitudes at the one 

loop. Calculation of scattering amplitudes involving up to three external lines 

(fermionic or bosonic) were presented in ref. [7]’ . These were all shown to vanish 

identically in agreement with the light-cone gauge results and the nonrenormal- 

ization theorems. In this paper we shall present the calculation of the 2 fermion 

2 boson and the 4 fermion scattering amplitudes at the one loop. The results, as 

we shall see, agree with the light cone gauge scattering amplitudes[ll]. 

The organization of this paper is as follows: In section 2 we review the cal- 

culation of spin field correlation functions on the torus. In section 3 we present 

the details of the 2F2B and the 4F calculations. Section 4 contains our conclu- 

sions and some remarks about higher loop scattering amplitudes. Some technical 

details which include our y-matrix and G-function conventions, the proof of a 

new &-function identity and calculation of some relevant bosonic correlators are 

relegated to three appendices at the end of the paper. 

t At genera higher than one, one faces subtleties associated with the supermoduli and the 
ghost background charge. In ref. [7] we proposed an ansatz for handling these subtleties 
which made the calculation feasible. Proof of this ansatz awaits a deeper understanding 
of the supermoduli. Nevertheless, our results in that reference restricted to one loop are 
independent of the ansatz. 
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II. Spin Operators 

In this section we shall review some of the pertinent facts about spin operators 

and their correlation functions [6,7]. For the purposes of this paper it is sufficient 

to restrict ourselves to correlation functions on the torus. The more general case 

on arbitrary genus Riemann surfaces have been dealt with in ref. [7]. 

We shall first analyse the SO(2) s in model, which is a system of one complex p 

Weyl fermion $(z) and its associated spin fields S*(Z). Correlation functions 

of the SO(10) p s in fields that appear in the fermion emission vertices can be 

assembled out of those of the SO(2) model as we indicate at the end of this 

section. 

The fields G(z), S*(z) obey th e o f 11 owing operator product expansions, 

?J(z)S’(w) - (2 - w)-%-(w) + . . . 

?p(z)s-(w) - (2 - w)%-(w) + . . . 

qqz)s+(w) - (z - w)%+(w) + . . . 

$(z)S-(w) - (z - to)-Ls+(w) + . . . 

$(z)?J(w) - (z 4) + . . . 

q!J(z)$(w) - (z - w) + . . * 

7p(z)?J(w) - (z - w)-l + . . . 

s+(z)S-(w)-(z-qt+... 

(24 

where . . . denotes less singular terms and S* are excited spin fields of conformal 

dimension g. It is perhaps important to emphasize at this stage that the oper- 

ator product expansions in (2.1) may be realized explicitly by bosonization [l]. 

However, in order to avoid the subtle global issues of bosonization that arise on 

the torus and higher genus surfaces [14,15], we shall at no stage in our calculation 

use bosonization. Instead we shall calculate the spin field correlation function by 

first deriving a differential equation for it as we now explain. 
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We shall be interested in calculating a correlation function of the form, 

F(Yi, zi, ui, Vi) = ( fj s+(Yi) fj s-(4 f(i i&i> fj ti(Vi,) (2.2) 
i=l i=l i=l i=l 

on the torus. ;(N-X)+(Nq--3) h ere must vanish in order to conserve the 

total fermionic charge. In order to calculate this we start with another Green 

function defined by: 

( $(z)?j(w) 5 Ss-(Yi) 5 s-(Zi) 5 Tw fj w ) 
G(z,w;yi,zi,ui,vi,) z 

i=l i=l i=l i=l 

(fi S-t(y;) f-j s-(Zi) fj 4(%) fj e4) 

i=l i=l i=l i=l 

(2.3) 
An explicit expression for G can be written down by examining its zeros, singu- 

larities and periodicities as a function of z and w. In particular using (2.1) we 

see that G(z, w; yi, zi, ui, vi) has to satisfy the following conditions: 

lim G(z, W; yi, zi, ui, vi) = 
Z-+W (z: w) +.-- 

IimG - (z-yi)-‘y lim G - (w - yi)+a, 
z+Yi W+Yi 

lim G - (z - zi)‘fr , lim G - (w - zi)-fr , 
.Z*Zi W+.Zi 

lim G - (Z - pi), 
Z+Ui 

,ll,G - (w - Ui)-‘; 
1 

1imG - (Z - vi)-‘, 
.Z+Vi 

JliG - (W - Vi) . 

(2.4) 

In addition, as a function of z and w, G has to have the periodicity properties 

dictated by the spin structure of $J. 
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The unique Green’s function that satisfies all the above properties can be 

written as: * 

( I-Ii ‘l(’ - ‘i) nj ‘1 (w - Yj) ~ 

= njfil(z-YYj) fliG1(w-zi) 
Ii 

ni 61(Z - Ui) nj 191(W - Vj) 

J& &(z - “j) ni fil(W - Ui) ) ( Sl;?a,) 

r9,(m-Z+l~yi-~~Zi+~Vi-~“i) 

i=l i=l i=l i=l 

(2.5) 

Here v = 1, 2, 3, 4 correspond to spin structures (P, P), (P,A), (A,A) and 

(A, P) respectively. N ow from (2.5) we may derive a differential equation for F. 

Let us consider the following object. 

(T(z) 2 S+(yi) 2 S-(G) 2 ‘tJ(‘%) fi ‘@(vi,> 
i=l i=l i=l i=l u 

(5 S+(?Ji) fi S-(Zi) fj iJ(%> fi $(%I) 

i=l i=l i=l i=l Y 

P-6) 

where T(z) is the stress tensor of the system defined as [ 11: 

T(z) = ;F, ;(a,s(z)ti(w) - Tw%NW>) + (z ‘,,z * P-7) 

* See appendix B for definition of 29-functions. 
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From (2.7) we see that (( T(z) )) is given by 

(( T(z) >>u = ;Fz z~ w; Yi, zi, ui, vi) 

- a,&( Z,W;Yi,zi,ui,vi) 

(2.8) 

The right hand side of the above expression can be calculated explicitly using 

the Green function in (2.5). Given (( T(z) )) one could investigate the limit as z 

approaches some of the insertion points say 

expansion of 2’ with any primary field $ is 

Yi. Now since the operator product 

one could identify the singular part of (( T(z) )) in the limit z + Yi with 

1 1 1 1 
s (z - yip + 

?F(Yiy zi7 ui, vi> - 
(z - Yi) F(Yi, zi, ui, wi) dYi 

(2.10) 

where $ is the conformal dimension of S’(Yi). Thus the residue of the simple 

pole in that limit is equal to the derivative in the variable Yi of the logarithm 

of the correlation function of interest. Studying other limits (e.g., z -+ ui, vi, zi) 

in (( T(z) >> f urnishes differential equations for F in all other variables. It is 

straightforward to verify that the resulting set of differential equations is inte- 

grable and that furthermore they integrate to give the following answer: 

= KU I-181(Yi - yj))“(n Gl(Zi - Zj))‘(n l91(Ui - Uj))(rl[ 'Ic)l(Wi - Wj)) 
i<j i<j i<j i<j 

(~~1(Zi-Yj))-t(~~1(Ui-Yj))-f(~291(Wi-Yj))~(~~l(Uj-Zi))~ 

i,i Q i,j i,j 

(II ?91(Wj - Zi))-‘(II ?Jl(Wj - Ui))-16, i EYi - i 

i,j i,j ( i 
czi + yt+i - EUi) 

i i 
2 (2.11) 
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Here KV is a normalization constant that can be determined by factoring the 

correlator FV on the partition function in the sector with spin structure u. It 

is important to notice that since the argument of 19, contains fzi and $yi, it 

changes to a &function with a different characteristic as we translate yi or zi by 

1 or r on the torus, and hence FV is not periodic. As we shall see in the next 

section, correlation functions of physical vertex operators in string theory involve 

appropriate powers of the correlation functions of the spin fields given here and 

of the superconformal ghosts, which make them periodic after summing over 

the spin structures. The relative phases and normalizations of the contributions 

from different spin structures are fixed by dragging zi and yi around 1 and T and 

demanding periodicity as explained in refs. [6,7]. Generalization of eq. (2.11) to 

arbitrary genus Riemann surfaces has been given in ref. [7]. 

Next we turn our attention to the superconformal ghost system (P,r) with 

the stress tensor 

Tg(z) = ,‘i% ( - ~8(Z)a,r(w) - $w~W - (z ‘,,2 

1 
* 

(2.12) 

We need to analyse correlation functions of the spin fields S$ of this system. In 

particular we would like to calculate correlation functions of the form 

Fg(yiyZi) = ( fiS~(Yi)s~tzil) . 
i=l 

(2.13) 

These appear in the calculation of fermionic amplitudes as we shall see in the 

next section. 

At one loop order there are no subtleties concerning the supermoduli or the 

background ghost charge.* So we can proceed as before by first constructing the 

* In the presence of fermion emission vertex operators carrying ghost charges that add up to 
zero, there are no supermoduli, even in the periodic periodic sector. 
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Green function Gg of the p, 7 system in the presence of the ghost spin operators 

Sgi, i.e., 

(P(Y)7(z) fi s,+(Yi)s,(zi))u 

G!(Y,z; Yi,zi) G 
i=l 

CfjI s,+(Yi)s,(zi))u 

(2.14) 

i=l 

Gg can be written down explicitly by analysing its zeros and poles as dictated by 

the O.P.E. of ,B,r with Sz, and its periodicity properties as a function of y and 

z as dictated by the spin structure V. The unique answer for G is given by: 

G;(~,z;yi>zi) = 
~ifil(Y-Yi)~l(z-zi) 

ni $1 (z - Yi)Ol (Y - zi) 
(2.15) 

( 
19, (Y - Z + + C(Yi - zi)) 

@u (i(Yi - zi)) ) ( 9:Ey)) 

From this we derive a set of first order differential equations for J’$ as before 

using the stress tensor (2.12). The answer is: 

(2.16) 

( I-I dl(Zi - Yj) 
1 

‘ci;‘(: C(Yi - zi)) * 
i<j i 

We next consider the SO( 10) p s in operators appearing in the covariant 

fermion vertex. These operators are most conveniently introduced by first com- 

bining the ten right moving Majorana-Weyl fermions y!+(z) in the NSR formu- 

lation of the superstring or the heterotic string into five complex fermions. One 

-may then in the standard fashion introduce five sets of SO(2) spin operators 
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(S:, St:) i = 1,. . .5. The SO(10) p s in operators are then given by 

s*s* s* 1 2”’ 5’ (2.17) 

There are 32 such operators. We may divide them into two sets according to 

their chiralities. We adopt the convention that operators with an even number 

of S- are positive chirality and those with an odd number of S- are negative 

chirality. In this helicity basis correlation functions of the SO(10) spin operators 

will simply be products of correlation functions of SO(2) spin fields which we 

have already calculated. Covariance can readily be restored by first writing 

down the most general Lorentz structure for a given correlation function and 

then determining the various Lorentz invariant coefficients from the calculation 

of correlation functions in the helicity basis with fixed polarizations. This will be 

illustrated in our calculation of fermion scattering amplitudes in the next section. 
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III. Calculation of Fermionic Amplitudes 

A. FERMION EMISSION VERTICES 

Fermion emission vertices in the covariant formulation of the string theory 

have been constructed by Friedan, Martinet and Shenker [l], and by Knizhnik 

[2]. Here we shall briefly review their construction. The basic fermion emission 

vertex denoted by V-; (u, k, z) is given by, 

V-;(u, k,z) = P(k) S,(z) S;(z) eik’X(z), (3.1) 

where ua is a Majorana spinor reflecting the polarization of the external state 

and k is the momentum of that state. S,(z) and S;(z) are the SO(10) and 

the ghost spin fields introduced in sec. II. Since S; carries a ghost charge of -i 

the correlation function involving several V-i’s on the torus vanishes identically 

due to the ghost charge conservation. The solution to this problem was given in 

ref. [1,2] where a new vertex V+i was introduced as follows: 
2 

v+i(u,k,z) = dyk)s,+(z)?i_mp - z)~(~CL(W)dX~(W)s~(z)eik’X(z)) , (3.2) 

where SS+ is the ghost spin field carrying ghost charge +i. The appearance of the 

fermionic component of the stress tensor $,(w)aXp(w) is eq. (3.2) may be traced 

to the integration over the extra supermoduli that appear in the calculation of 

a correlator if we represent each of the fermion vertices by V-; and explicitly 

remove the integration over the zero modes of p(z) [16]. Note that the most 

singular part of the operator product expansion in eq. (3.2) given by,* 

us(k) ST(z)(w - z)-’ (r~)apSP(z)(-ikll)eik’X(Z) , (3.3) 

_ * See appendix A for our y-matrix conventions. 
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vanishes by the on-shell condition ,ku = 0. Hence we can write (3.2) as, 

V++(u,k,z) =u*(k) ST(z)eik.X(z) 

[(-y& Sp(z)W‘(z) - iP()fflz(w - z)-%+.&+%(z))] 
(3.4 

The prescription for calculating an amplitude with (2n) external fermions, 

as given in ref. [I] is to use the vertex V-i for n of the fermions, and the vertex 

V+; for the other n. Since the total ghost charge now adds up to zero, as it 

should, on the torus we expect a nonzero answer. At the intermediate stages of 

the calculation we loose manifest (anti)-symmetry under the interchange of the 

external fermions if one of them is represented by the vertex V-; and the other 

is represented by the vertex V+i. However, general arguments were presented in 
2 

ref. [l] showing that the final result is independent of the particular assignment 

of V+i and VW5 1 to different vertices, and must be totally antisymmetric in the 
2 

external lines. We shall verify explicitly that this is indeed the case. 

For our calculation we also need the bosonic vertex operator. This is canon- 

ically given by, 

Vo(<, k, Z) = <p[i3Xp(~) + iky$p(z)@‘(z)] eik’X(z) , (3.5) 

where < is the polarization tensor of the external bosonic particle. 

Finally we should point out that the various vertex operators listed so far 

only furnish half of a complete vertex operator, namely they only give the (0, 

1) part of a vertex operator (except the e ik’X factor which receives contribution 

from both the left and the right handed sectors). For example in the Es x Es 

heterotic string theory, if we are interested in the scattering of gaugino or gauge 

bosons, we must multiply each of these vertex operators by 

or by an appropriate spin operator of SO( 16) x SO( 16) [ 17,6]. Here As are 

,the 32 gauge fermions transforming in the (16, 1) or (1, 16) representation of 
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SO(16) x SO(16), and Ta is a generator of the group. If instead we are interested 

in the scattering of gravitons or gravitinos, the antianalytic part of the vertex 

operator is given by, 

axr” . (3.7) 

In the next two subsections we shall calculate the 2F2B and 4F scattering 

amplitudes. For simplicity we first restrict ourselves to the scattering of gauge 

bosons and gauginos, since in this case the left and the right sectors decouple 

from each other, except for the e ik’X factors. We shall discuss the scattering of 

gravitons, gravitinos and other members of the supergravity multiplet at the end 

of each subsection. 

B. 2 FERMION - 2 BOSON SCATTERING 

The relevant correlation function for the calculation of 2 fermion - 2 boson 

scattering is, 

(Vo(h, s (‘I, a) Vo(ks, s c2), z2) V-&h, u(3), a) V ; (hry4)+4)) - +- (3.8) 

Using eqs. (3.1), (3.4) and (3.5), this correlation function may be written as the 

sum of eight different correlation functions. For each of them, we shall first use 

eq. (2.11) and (2.16) of the previous section to evaluate the correlation functions 

involving the spin operators S,, S: and the fermion fields $J, sum over spin 

structures, and if the answer is non-zero, multiply it by the relevant correlation 

function involving the bosonic X fields. We shall illustrate the evaluation of the 

various terms appearing in (3.8) through a few examples. 

;) One of the eight terms in (3.8) looks like 

m eiki’X(zi)) dXpl ( z1 ) dXp2 ( z2) dP4 ( z4)) & &A$) UT;) (?rp4) a4P4 
i 

. (s~,(z3)sp4(z4))(sg(z3)s~(z4)) 

(3-g) 
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The correlation function involving the spin fields can be written as, 

(s,,(~~)Sp4(~4)) = A(z3, z4)s,p,4 , (3.10) 

since this is the only possible Lorentz invariant tensor structure. A(.zg,.q) may 

be evaluated by calculating the correlator for specific values of a3 and ,&, say 

a3 = (+ + + + +), ,04 = (- - - - -). Th e answer for this correlator in a given 

spin structure is next multiplied by the ghost correlator (S;(zg)S~(q)) in that 

spin structure, and a sum over spin structures is performed. The relative normal- 

izations between the contribution from different spin structures are determined 

by demanding that the final result be periodic in z3( and 24) with periods 1 and 

7. The combined contribution from the ghost and the SO(10) spin correlators is 

given by, 

191(23 - 24)-l p(9, (z3;z4))4, (3.11) 

where 61 = 1, 62 = -1, 63 = 1 and 64 = -1. This expression vanishes identically 

using the Riemann G-identity (see Appendix B). 

ii) A less trivial term in the correlator (3.8) is the term 

(1) (2) bl bz q;)q;) hLq)c& i(kl)v, ((n eiki’X(zi)) aXpz (Z2)axp4(Z4)) 

i (3.12) 

The most general tensor structure for the correlator involving the spin fields is 

(11”1(~l)1CIV’(~l)Sas(~3)S~4(Zq))(Sg(Z3)Sg+(Z4)) 

A 6p1v16t; + B (y’L’yy’)g , 
(3.13) 

= 

of this the first term does not contribute to (3.12) due to the mass shell condition 

e<(1) - kl = 0. Th e second term may be evaluated by setting ~1 = 1, VI = 2 
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a3=(--+++)Jq=(-----). Th e answer after multiplying by the ghost 

correlator and summing over spin structures turns out to be proportional to: 

(3.14) 

which again vanishes as a consequence of the Riemann d-identity. 

In this fashion we may analyse the rest of the eight terms appearing in (3.8). 

All of these can shown to vanish either by on shell constraints or through a 

Riemann G-identity, except for one term which takes the form: 

(3.15) 

A simple group theoretic analysis shows that A has 26 independent tensor 

structures. (This is the number of independent singlets in the 10 @ 10 @ 10 @I 10 @ 
10 @ 16 69 16 representation of SO(10)). W e write down the general expansion 

for the correlator as 
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+G6 p1u2~p2u1 (7”‘)a3a4 + H(7’147LL17YV1)a4~s6~*V* + ~(7~47~17~2)a4a3~v1v2 

+J(7p47p17Y”2)a4as 6u1p2 + K(7~47~27V’)a4a3~~1v2 + L(7~47~27V*)a4a36VlCL' 

+x(7pL’7p27v1)ck4a3 6u2p4 + Y(7’27v17v2)a4a3~/11~4 + Z(7~27~17v*)a4a36v1~4 

(3.16) 

The tensor structures have been chosen in such a way that the contribution 

from the tensors multiplying A through 0 vanish by on-shell constraints when 

substituted in eq. (3.15). H ence we only need to evaluate the coefficients N 

through 2. The calculation simplifies by noting that the result must be sym- 

metric under the simultaneous exchange ~1 +-+ ~2, vr * ~2, zr ++ 22. Symmetry 

under this exchange gives 

W(.%z2) = Y(z2,a) 

R(a,~2) = N(z2,~1) 

P(wz2) = Q(z2,a) 

X(Zl, z2) = Z(z2, Zl) 

(3.17) 

S(Zl,Z2) = V(Z2,Zl) 

T(Zl,Z2) = U(Z2,Zl) . 
16 



This has the advantage of cutting down the number of terms that we need to 

evaluate by half. 

LetusnowsetCL2=1,V1=i,CLq=2,V2=2,CL1=3,(YQ=(----+)and 

a4 = (++-+-). Th e only term in (3.16) that contributes for this configuration 

is N. On the other hand the correlator of the spin fields on the left hand side of 

(3.16) contributes by 

N =c &(z3 - z~)-&~~(z~ - w4)-hl(zl - 24)-l 
1 

t91(wq - Z4)b9l(Zl - z2)-161(z2 - wq 1 
)- 1 

~6,29,(z3 ; z4 + Zl - z2)9,(23 ; z4 + z2 - w4) 

Y 

(3.18) 

“u( 
Z3 + Z4 

2 - 21)29,(z3; ““) , 

where c is an overall normalization factor independent of zi. c can be fixed as 

follows: consider the following limit of the correlation function (3.15) for the 

particular polarizations that we have chosen 

lim lim lim lim (~3(zl)~i(Zl)~1(Z2)&Z2)~2(~4)s~~(Z3)S~~(z4)) 
Z2’.t?1w4’~2~3’~l~4-+z3 

\ (3.19) 

&-(Z3)sg+(Z4))) - 

From the operator product expansion we see that in this limit the correlation 

function should diverge as 

(z4 - z3)-qz1 - z3)-yw4 - z2)-722 - 21)-l{ 1 >v (3.20) 

where ( I )y is the expectation value of the identity operator in a spin structure 

characterized by Y. In this limit the contibution to (3.18) from a given spin 

structure diverges as: 
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~(&(0))~($(0))-;(z4 - z3)-i(z1 - 23)~7~4 - z2)7q - z2)-l . (3.21) 

But ( I )u is the partition function of a system of ten Majorana-Weyl fermions 

together with ten bosons and the corresponding ghosts. As is well known* 

(3.22) 

Comparing (3.20) and (3.21) we get that 

c = p;(o))-: , (3.23) 

where we have ignored an overall total phase in c. 

We may now simplify (3.18) by using the Riemann &-identity (B.4). We 

further need to multiply by (wq - ~4)~; and take the limit w4 + ~4. In this 

limit, we see that all the zi dependence of N cancels except for a prefactor of 

2(w4 - ZJ)++ (6:(O))+. So we finally get, 

lim (w4 - zq) -+N = lim (W4 - Z4)-bC(t$(o))$(W4 - Zq); = 2. (3.24) 
woq+z4 w4-+z4 

Next consider the configuration ~2 = 1, ~1 = i, p4 = 2, 24, = 2, p1 = 3, a3 = 
(+ - - - -), a4 = (- + - + +). F rom (3.16) we see that this contribution is 

given by -N - X. On the other hand application of the Riemann &--identity 

shows that this correlator vanishes in the limit w4 + z4. Thus we conclude that 

1 
XN-NN--2(W4-Z4)5, (3.25) 

where 11 denotes equality up to the desired accuracy. Evaluation of the correlator 

withCll=l,y2=i,C14=2,~2=Z,Vl=3,(Y3=(---+-),(Yq=(++--+) 

-gives 

* We have used only the analytic part of the partition function for normalization. The other 
parts containing the antianalytic dependence, Im 7 and an overall numerical factor will be 
put in later. 
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se0 , 

and with 23 = 1,p4 = i,.p2 = 2, pl = 2, vl = 3, cy3 = (+ + 

(- - - - +) gives 

T=o . 

Finally setting vz = I, vl = i,p4 = 2,p2 = 2, Pl = 3, a3 = (- _ 

(+ + - + -) gives 

P = 277(w4 - z4)% 

- 

-- 

(3.26) 

+ -),a4 = 

(3.27) 

-- +)+4 = 

(3.28) 

and~2=1,v~=i,~~=2,~~=Z,~~=3,~~=(+------),~~=(-+~++) 

gives, 

P+W210. (3.29) 

Here Q is a phase factor which is undetermined at this stage. (Q could be de- 

termined by several ways. One way would be to find polarizations that would 

contribute to say P and N at the same time. This will determine the relative 

phase between P and N just as in eqs. (3.25) and (3.29). Another way which is 

typically easier is to use symmetry considerations as we do below). 

Using eq. (3.17) we may now determine all the coefficients N through 2 up 

to the phase 7. We obtain 

R II N II -2 z -X e 2(w4 - z$ , 

P=Q---W---Ycx2r](w~--z4)~ . 
(3.30) 

with this (3.16) reduces to 

2(W4 - z4): [(7P17V17P2)a4a3 bClru2 + (7P27v27P1)a4a36P4V1 
(3.31) 

+ rl((7p’7v’7v2)a4aa b~2~4 + (7~*7V27Vl)a4a36Cl’C14)] , 

up to terms which do not contribute on-shell.+ Q may now be determined by 

demanding that (3.31) is antisymmetric under the interchange of ~1 and ~1 up 

to terms which vanish on-shell. This gives 

f We have used the r-matrix commutation relation {$‘, rV} = 6pV in deriving eq.(3.31). 
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7) = -1. (3.32) 

Substitution into eq. (3.15) and some trivial r-matrix manipulations yield 

, (3.33) 

where 

K p, gC2) 3 U(3)) U(4) 9 w 
‘U(4)< (l) * 7(h + k4) * 7 5 (2) -7U(3)(% * k4) 

+ “(4)b’) - 7(k2 + k4) * 7 bl) - O/U(g)(% * k4) - 
Thus the final amplitude has the form 

A (1, 2, 3, 4) = s 
F (zl, ,F~, z3, z4 > } 

qP, P, U(3), U(4), k) * 

(3.34) 

(3.35) 

Here p is the properly normalized contribution to the correlator involving the 

antianalytic part of the vertex operators. (n eiki’X(zi)) is the standard bosonic 

correlator normalized to unity. More explicitly it is given by 

rI eiki.X(zi) 

> 

= n (Xij)ki.kj , (3.36) 
i i<j 

where xii = 1 tir(zi - zj)/tii(O) I2 exp {-& (Im(zi - ~j))~} in the convention 

that the slope parameter CX’ has been set to 1. The results in (3.35) and (3.34) 

-agree with the light-cone gauge answer (see for example ref. [ll]). 
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Note that in order to obtain the final form (3.35) we never had to use cor- 

relators involving the X fields . As a result, our analysis goes through even if 

the contribution to the anti-analytic part of the vertex operator involves the field 

X. For example in the heterotic string theory, the two graviton two gravitino 

scattering amplitude is given by, 

A(1, 2, 3, 4, =@(4)~4 $?I ?(h + k4) '7 &La 7p2U(3)p3(2k2. k4) 

+ U(4)p4 &* ry2 @2 + k4) '7 &?17u1u(3)p3(2kl - k4)} 

J cIf:-)5 { 1 @Pzi ( ~e”“.X(“‘)BX”(zl)Bx~*(zz) 
(3-37) 

axp3 (z3)zP4(z4) , >I 
where c$‘), ~(~1 are symmetric and traceless and ~(~1, ZL(~) are 7-traceless. Scat- 

tering amplitudes involving antisymmetric tensor fields are also given by (3.37) 

if we take < to be antisymmetric. 

This concludes our analysis of the 2F2B scattering amplitudes. 

C. 4 FERMION SCATTERING 

Next we turn our attention to the four fermion scattering amplitude. In this 

case the relevant correlator is, 

Using Eqs.(S.l) and (3.4) we may express this correlator as a sum of four terms. 

Of these the term, 

qij”~;)qiiy(4) a4 (7r3)a3P3(7~4)orPI(Ie 
iki’X(zi) dXp3 ( z3) dXp4 ( z4)) 

(s,-(Zl)s;(~2)s,+[Z3~~~~~~~~~~~l(Zl)S~2(L2)~~3(Z3)SPI(Y)) 

(3.39) 

may be shown to vanish as a consequence of Riemann &-identity. 
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The next term to be considered is, 

(3.40) 

Although this correlator may be evaluated directly, in order to fix the relative 

phases of various terms, it is more convenient to express (3.40) as, 

iki~x’zi’C9x~3(Z3))(S~(Zl)S;(Z2)Sg+(Z3)Sg+(Z4)) 

~~z4zu1,‘-“z3 [(w4 - Z4)-‘;,, - Z3)‘(&l(zl)‘%~(Z2)&~(Z3)‘%~(z4) 

tip”” (w3)V’(w4~)] - 
(3.41) 

The spin field correlator appearing in (3.41) has 11 independent tensor structures 

(number of independent singlets in 16 @ 16 @ 16 @3 16 @I 10 C9 10). We may express 

this as, 

= A(7p3)Wd7p4)a4a2 + ~(7p3)a3~2(7p4)~4c31 + C(7p3)a3a4(7p4)ala2 

+ D6~3~4(7P)a3al(7P)araz + E6p3p4(7P)a3a2(7P)a4al + ~(7p4)~3~l(7p3)~4~2 

+ G(7p4)ad7p3)ar~~ + H(7p4)03&p3)Wz + I(7~37~47P)a3al(rP)ara2 

+ J(7p47p37P)a4a1 (7P)~@z + K(7CL47P7~3)0403(7P)ala2 

(3.42) 

The contribution to (3.41) f rom the tensors multiplying A, B, H, J and K 

vanish due to the on-shell constraint ,k4u14) = 0. Also, as can be seen from 

eq.(3.41), the only terms in the correlator which may contribute to (3.41) are the 

ones which blow up at least as fast as (wg - ~3)~; as wg + zs. Hence in the 
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evaluation of (3.41) we may ignore terms which are less singular than (ws - ~3)~: 

in this limit. 

Before we start evaluating the various coefficients, let us investigate the two 

other terms that appear in the evaluation of the correlator (3.38). One of them 

(A,) is related to (3.40) by an interchange 3 f-f 4, and an extra - sign due to the 

antisymmetry of the fermionic vertex operators. The last term to be evaluated 

is, 

~~z4~~z3 [(w4 - z4)-‘(w3 -z3)-~(sOl(Z1)Sa2(Z2)s~3(Z3)s~4(Z4) 

We see that we need to evaluate the same correlator that appears in the evaluation 

of (3.41). But now all terms except the ones proportional to D, E, F and G vanish 

by the on-shell condition ,I&u(~) =,k4~(~) = 0. Furthermore, we need to evaluate 

D, E, F and G to an accuracy of order (wg - za) i (~4 - ~4) 4, as can be seen from 

the prefactor appearing in (3.43). 

Thus in order to evaluate the complete amplitude given in (3.38), we need to 

know the coefficients C and I to an accuracy of order (WQ - ~3)~; (~4 - 24) i, and 

D, E, F and G to order (WQ -23); (wq-24);. We proceed as before, by evaluating 

the correlator given in (3.41) f or various polarizations using eq.(2.11) and (2.16), 

and comparing with the results expected from (3.42). Taking ~3 = 1, ~4 = i, 

CX~=(-+---),CY~=(+--++),(YQ=(+++++),~~~Q~=(--+--), 

we obtain, 

D N 0, (3.44) 

p4 = 1, p3 = I, CY I = (- + - - -), 02 = (+ - - + +), (~4 = (+ + + + +), and 

03 = (- - + - -) gives, 

E N 0, (3.45) 
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p3 = 1, p4 = 2, QI~ = (- - + + +), CQ = (- - - - +), (~3 = (+ - + + -), and 

(~4 = (- + - - -) gives, 

G 31 S(w3 - ~3); (w4 - ~4); (3.46) 

Normalization of G has been determined as before. E is an arbitrary phase. 

Since F is the only other term that contributes to (3.43) on shell, and since 

the tensor structure multiplying F is related to the one multiplying G by the 

interchange 3 t--f 4, we get, 

F N -G N -%(w3 - z3)t(w4 - z4)t (3.47) 

The rest of the terms need to be evaluated only to an accuracy (ws - z3)-4(w4 - 

z4):. Setting p3 = 1, p4 = 2, cq = (- - - - +), ~2 = (+ - + - +), a3 = 

(- - - + -), and (~4 = (- + + + -), and using the fact that G is of order 

(w3 - z3)i(w4 - z4)i, we get, 

I?0 (3.48) 

We are now left with the coefficient C. As we shall see it will turn out to be 

non-zero. In order to evaluate it completely, we must also determine its phase 

relative to G. This requires a careful analysis which we present now. First, 

setting pug = 1, p4 = 2, cq = (+ - + + -), a2 = (- - - - +), a3 = (- - + + +), 

and cx4 = (- + - - -), we get 

c =r1P:Kv(~l(zl - z2))-ydl(zl - 23))~(til(Zl - w3))+1(z1 - z4))-i 

(81 (zl - w4))-’ (81 (z2 - z3)) ’ (81 (z2 - W3))-’ (81 (z2 - z4)) $ 

(29dz2 - w4))%91(z3 - z4))-1(61(z3 - w4))-$9l(w3 - z4))-i 

(191 (w3 - 23)) -+ (61 (w4 - zq)) f 

c [&&( 
z1 + 22~3 - ~2 - z3 - z4 

2 )&(” $-,% +z;- -4) 

U 

Zl - z2 + z3 - zq Zl - z2 - z3 + z4 z1 + 22 - z3 - 24 

2 2 2 )I 
(3.49) 
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where the normalization of C has been determined as before. Since the prefactor 

diverges as (ws - ~3)~; (w4 - z4) 4, we may set ws = z3, w4 = 24 inside the sum 

over spin structures. This gives, 

c 
Zl-Z2;Z3+Z+ju (Zl+Zn$Z3-3Ze 

Zl+Z2-Zg-Z 

U 2 9 

(3.50) 

We may evaluate this sum with the help of the identity, 

c &&(Xl)~u(X2)~y(X3)9v(14)~l’(X5)~;1(Xl + X2 + X3 + X4 + X5) 
U 

= -2191(X1 + X2 + X3 + X4)&(X2 + X3 + X4 + X5)&(X1 + X5 + X3 + X4) 

+(X1 + X2 + X4 + 55)&(X1 +X2 + X3 + X5)8,1(2(xl + x2 +x3 + x4 +x5)). 
(3.51) 

This identity has been proved in appendix B. Setting, x1 = i(zr + zs - zz - ZJ), 

X2 = X3 = -;(zr+z3-zz-z4), X4 = ;(zr+z4-z2-z3) and X5 = +(Zl+Z2+23-324) 

in (3.51) we see that (3.50) is equal to 

-~~l(Z4-Z3)(~l(Z~-Z4))2~l(Z2-Z4)~l(Z2-Z3)(~l(Zl+Z2-Z3-Z4))-1. (3.52) 

Substituting (3.52) in eq.(3.49) we get in the wa + z3, w4 + zq limit, 

1 &(zl - Z4)&(Z2 - Z4)8l(Z2 - Z3)8l(Zl - Z3) 
C = 2~7(dJ;(O))-~(w3 -z3)-+(w4 -z4)2 

&(Zl - Z2)&(Z3 - Z4)291(Zl + Z2 - Z3 - Z4) ’ 

(3.53) 

This determines C up to the phase factor 7. In order to determine q we consider 

another set of polarizations: ~3 = 1, p4 = 2, c.q = (----+),a~ = (+-++-), 
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(~3 = (- - - - +), and CY~ = (- + + + -). This gives, 

c + G =dP:(w-l(~l(zl - z2))-1(61(zl - z3))~(ti1(z1 - w3))-~(t91(zl - z4))-4 

(291(z1 -w4))-‘(h(z2 - z3))-+l(z2 - w3))$l(z2 - Z4))’ 

(29d2.2 - w4))%91(z3 - 24))-+91(23 - w4))-4 (61(W3 - Z4))-f 

p&J3 - z3))-i (dl(W4 - z4))i 

c [6,29,( 
Z1 - 2W3 - z2 + z3 + z4 

2 )TJu(z’ +z2+z;-z4 -2wy 

U 

( ( 

Zl - z2 + z3 - zq 3 
19, 2 0 ( 

9,’ 
Zl + z2 - z3 - zq 

2 )I 
(3.54) 

where V’ is another as yet undetermined phase. First we determine the relative 

phase of Q and q’ by demanding that in the w3 -+ zs, w4 + z4 limit the leading 

term in (3.54) must be equal to (3.53), since G is nonleading in this limit. The 

sum over spin structures in (3.54) may again be performed using eq.(3.51) and 

we get, 

rl’=rl (3.55) 

We may now evaluate G by subtracting (3.49) from (3.54). This gives, 

G =dP:(o))-‘(WI - z2))-91(zl - z3))+l(zl - w3))-$(zl - z4))-: 

(%(zl - “4))~‘(h(z2 - z3))-‘(dl(z2 - w3))-+l(z2 - Z4))’ 

(h(z2 - w4))-$91(23 - z4))-7til(z3 - w4))-$91(w3 - z4))-i 

(‘19l(W3 - z3p (&(w4 - z4))$ 

z1 + z2 - z3 - zq ~[~u29;‘( 2 )Bu(zl+z2+z;-z4-~W4)g~(zl-z2;z3-z4) 

u 

( 
8u( 

21 - 2w3 - z2 + z3 + z4 
> ( 6, 

Zl + z3 - z2 - z4 

2 2 )h(zl - z3)‘lj)l(z2 - 203) 

-b( 
zl + 22~3 - ~2 - z3 - z4 

2 > ( 8, 
Zl + z4 - z2 - z3 

2 )h(zl - w3)h(z2 - z3) 
>I 

(3.56) 
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We now use the following identity, 

( fi4 21 - 2w3 -2”” + z3 + Z4)29,(Z’ + z3 ; z2 - z4)gl(zl _ z3)2c)l(z2 - w3) 

-fi”( zl + 22~3 - z2 - z3 - z4 

2 > ( #U " + z4 2 z2 - z3)91(zl - W3)Gl(Z2 - Z3) 

) 
= -&(w3 - z3)&(z1 - z2)6u(z’ + z2 ; z3 - z4)s”( - w3 + z1 + z2 ; z3 + “‘) 

(3.57) 

This identity may be proved by noting that: 

i) Both sides of eq.(3.57) h ave exactly the same periodicity properties as a 

function of the variables zr, ~2, zs, zq and w3. 

ii) The left hand side vanishes whenever the right hand side does. 

Thus the ratio of the laft hand side and the right hand side must be a constant. 

This constant may be determined to be unity by evaluating both sides at zr = wg. 

After substituting (3.57) into (3.56) we may evaluate the sum over spin struc- 

tures using ordinary Riemann &identity. The result is, 

G N -Q(w3 - z3)k(w4 - ~4); (3.58) 

Comparing this with eq.(3.46) we get, 

q = --E (3.59) 

From now on we shall set e = 1 for convenience. This determines all the 

relevant constants that appear in eq.(3.42). We may now proceed to evaluate 

(3.41) and (3.43). Th e evaluation of (3.41) requires the relation (see appendix 

i 
-;(rl[ eiki*X(zi) 

(3.60) 
= 

i $ ln (291(z3 - zi)) + 
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The i = 4 term and the terms proportional to Im z3 in (3.60) do not con- 

tribute to (3.41) on-shell, as can be easily seen using eq.(3.40). Substituting 

(3.60) in (3.41) and subtracting from it the term with 3 and 4 interchanged, we 

Al -t A2 = (-2) 2 [(G#))-‘(yl)(-i /c4)y2)) @(3)(-i h&(4))(~ eikj*X(zj)) 

i=l j 

&(zl - Z4)h(Z2 - Z4)h(Z2 - Z3)91(Zl - Z3) 

61(Zl - Z2)IYl(Z3 - Z4)I91 (Zl + Z2 - Z3 - Z4) I 

- (3 +-+ 4). 
(3.61) 

Here we have used the expression (3.53) f or C. Using on-shell constraints and 

momentum conservation (3.61) may be reduced to, 

= 2(fl#))-‘(yl) b4u(2)) (u(3) /cl”(4))(n eiki*X(zi)) 

[&{ In (6r(z3 - zl)) - ln (h(z3 - z2)) j- +-{ ln (h(z4 - ~1)) - ln P&4 - z2))}] 

&(zl - z4)&(z2 - z4)‘lc)l(z2 - 23)29+1 - z3) 

fil(zl - z2)h (z3 - 24)291 (zl + z2 - z3 - z4) 
(3.62) 

Examining the periodicity properties and the positions of the zeros and the poles, 

the expression inside the square bracket may be shown to be identical to, 

S{(O) I9 ( 1 zl - z2)&(z3 - z4)h(zl + 22 - z3 - z4) 

&(zl - z4)&(z2 - z4)& (z2 - 23)29l(zl - z3) 

Using eq.(3.63), (3.62) reduces to, 

(3.63) 

Al + A2 = 2(1~(1) b4y2)) (u(3) ,h(4)) (IT eiki*X(zi)) 

i 
(3-64) 
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On the other hand, (3.43), which receives contribution only from the tensors F 

and G in (3.43), gives, 

A3 = 2 [(U(3) /c4U(l)) (U(4) F3U(2)) - (U(3) h4U(2)) (U(4) kiyl))] (j--J eiki*X(zi)) 
i 

(3.65) 

Thus (3.38) may be written as, 

(“;“&V$ = Al + b? + A3 

= cn 
eiki*X(zi))K(u 

(l), U(2)) U(3)) u(4); k) 
(3.66) 

i 

where, 

G(l), U(2)? U(3)) y4)N 

= 2 @(l) jcq”(2)) @(3) b(4)) + @(3) hI”(l)) (u(4) jc3”(2)) 

- b(3) b4”(2)) b(4) k311(1))} * 

(3.67) 

This may easily be seen to be totally antisymmetric in 1,2,3 and 4. By r-matrix 

manipulations this may also be shown to agree with the light-cone gauge result 

of ref. [ 111. The final answer for the amplitude is: 

A (1, 2, 3, 4) = 
J 

(3.68) 

where P is the properly normalized contribution from the anti-analytic sector. 
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Note that in order to arrive at the final form (3.68) for the amplitude we had 

to explicitly evaluate the correlation function involving the X fields. Hence one 

might expect that the final form of the amplitude might be different if the vertex 

operators from the anti-analytic sector involve the field X. We shall now show 

that this is not the case. Let us, for example, consider the scattering amplitude 

of four gravitinos in the heterotic string theory. In this case the antianalytic 

sector will contribute terms of the form aXy to the vertex operators, and the 

X correlator appearing in eq.(3.41) 1 a so involves these operators. The relevant 

correlator has been derived in eq. (C.6) in Appendix C which contains some 

extra terms. Note however that after we substitute this expression in (3.41) and 

subtract the term obtained by interchanging 3 and 4 ( this interchange is only 

done for the analytic sector ) the extra terms drop out, and we get back the 

kinematical structure given in eq. (3.67). 

Finally, for completeness, we write down the answer for the scattering am- 

plitude of four bosonic external legs. The answer has the same form as (3.35) or 

(3.68), except that the kinematic factor K is now given by, 

K(+‘), ~(~1, ~(~1 <(4);kl, k2, h, k4) , 
(3.69) 
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where 

+ 9 more terms obtained by antisymmetrizing in 

(3.70) 

+ 45 more terms obtained by antisymmetrizing in 

(,wl), (w-4, (~34 and (w4h 

The scattering amplitudes in the type II superstring theory are calculated 

in the same fashion. As shown here the evaluation of the X correlators in the 

analytic and antianalytic sectors do not interfere with each other except in the 

evaluation of the overall factor (Hi eiki’X(zi) ). The answer for various scattering 

amplitudes are obtained by taking the direct product of the tensors K given in 

eq. (3.34), (3.67) and (3.69) in the left and the right sector. 

This concludes our analysis of the four particle scattering amplitudes in the 

heterotic and superstring theories. 
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IV. Conclusion 

In this paper we have calculated the 2 fermion 2 boson and the 4 fermion scat- 

tering amplitudes in the covariant formulation of the heterotic and superstring 

theories. The agreement of these results with the corresponding light-cone gauge 

answers provide an explicit verification of the validity of the covariant fermion 

emission vertex and the prescription of Friedan, Martinet and Shenker for cal- 

culation of scattering amplitudes at the one loop level. We feel that, aside from 

making covariant one-loop calculations as feasible as the light-cone gauge, this 

should shed some further insight on the structure of covariant fermionic strings. 

The first logical thing one should try to do next is to understand how the 

results of this paper extend to higher genus. In any attempt along that direction 

one is immediately confronted with several new problems that were absent on 

the torus. For one, the supermoduli now exist and play an important role, for 

another , the background ghost charge of the superconformal ghosts is nonzero 

and hence one has to find a prescription for soaking up this charge. 

An ansatz for handling the above subtleties was presented in ref [7]. Within 

this prescription amplitudes with less than 4 external states vanish identically 

as they should because of the nonrenormalization theorems[ll,l8]. Moreover the 

2 fermion 2 boson calculation can be carried through without major obstacles. 

The kinematical factor that we get coincides with the one obtained in section 

III. However we cannot normalize the correlation functions since the partition 

function is not known. The 4 fermion calculation is harder to extend to higher 

loops. This calculation entails the use of new generalized G-function identities 

analogous to the one that was needed at the one loop in section III. Currently 

these are not fully known. 

Finally we wish to mention that the techniques developed here may also be 

used to calculate various amplitudes involving untwisted fields on orbifolds. In 

particular one may verify by explicit string calculation [19] the existence of the 

Fayet-Illiopoulos D term predicted from low energy considerations in ref [20]. 
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APPENDIX A: y-matrix conventions 

In this appendix we shall give a convenient representation for the SO(10) 7- 
matrices. The r-matrices give the Clebsch-Gordon coefficients for 16 x 16 t 10 
in SO(lO), and are denoted by 7$, where p is the vector index and cy, ,8 are 
spinor indices. We shall group the 10 real vector indices into 5 complex ones, 

1 , “‘, 5 and their complex conjugates i , . . . . 5. We choose the r-matrices as, 

(l- cJ3) 7L- 2 c3 u2 8 d @ u2 @ u1 

(1 + 03) 7L- 2 8 u2 8 0-l @ CT2 8 u1 

YZ Z-Q2@ (1 + a3) 
2 ci3 u1 c3 a2 @ CT1 

73 = -g @ J @ 0 - a3) @ g @ o1 

2 

73 = -&J~l @ (1 + a3) 
2 63 a2 8 u1 

r4 = -u2 @dgm2@ (I- 03) @ J 

2 

74 = -u2 @ d 8 a2 @ (1 + 03> @ J 

2 

r5 = --CT2 @a1 @CT2 @CT1 c‘$ (1 - 03) 
2 

r6 = -u2 @I CT1 @ u2 8 u1 @ (1 + 0s) 
2 * 

These r-matrices as is easily verified are real and symmetric. 
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A spinor of SO(10) will b e represented by a direct product of 5 SO(2) spinors. 

We shall denote the SO(2) spinor (i) by + and (T) by -. Thus for example the 

SO(10) spinor (+ - + + -) corresponds to 

This is known as the helicity basis. 

A useful rule to remember about the above r-matrices is the following : 

Any entry in these r-matrices say 7$(7$) where cy = (or, CQ, ~3, cq, (~5) and 

t@ = (P1,@2,P3,P4,P5), is nonvanishing if CY~ = ,Bi = - (if q = pi = +) and 

CY~ # /?j for j # i. For a nonvanishing entry the answer is either +l or -1. The 

phase is given by the product of all oj’s preceding the ith slot in cx times the 

product ,O2p4 i.e., the phase is (q...c~~-l)(~2~4). For example 

73+-++,+----= (-)(+)(-)(-)1 = -1. 

With this in mind we never need to use the explicit representation in (A.l). 

Although the representation looks 2 5 = 32 dimensional, we restrict the 

spinors belonging to the 16 representation by the chirality projection i.e., by 

demanding that the total number of (-) in the spinor must be even. Thus for 

example the spinor (+ + + - -) belongs to the 16 representation, whereas the 

spinor (+ + - - -) belongs to i6. 

Finally we introduce the concept of raising and lowering indices which takes 

us from a spinor in the 16 representation to the one in the 16 representation in 

the 32 dimensional space. This is done by the tensor cap, given by, 

with this we may define , 

(rP),P = (7qY@. 
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Multiplication of two r-matrices is defined as, 

(r’“r”>,r E (r’L!(r”)pr - (7p)apEP6(7u)6?f~97, (A.41 

with this rule, it is easy to see that the r-matrices in (A.l) satisfy the anti- 

commutation relations: 

{7P,yU} = vu. (A.5) 
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APPENDIX B : A Theta Identity 

We define the Jacobi &-function as [21], 

19 i (2 IT) = C ezp[irrr(n + CY)~~- + 27ri(n + cy)(z + P)] [I 7x2 
= ezp[i7ra27 + 27ria(z + p)]Zr, i [I 

(B.1) (2 + QT + p) 
and [22] 

P.2) 

For cy, @’ = 0 or f 29 [z] satisfy the periodicity properties : 

5 [I (z + 1 IT) = ezp[27ria]t9 p* (z 17)~ [I 
5 [I (2 + 7 IT) = ezp[-i7rT - 27ri(z + p)]S p” (z 17). [I (B-3) 

From now on and in the text we shall suppress the T dependence of &functions. 
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The G-functions also satisfy the “Riemann Identity ” : 

U 

= 26r( 
21 + 22 g z3 + 24)291(zl + z2 ; 23 - z4)291(a - 22 ; 23 + “4) 

VW 

w 
Zl - 22 + z3 - 24 

2 L 

where, 

61 = 63 = +1, 62 = 64 = -1. P.5) 

It is important to note that 291 is an odd function of z while 292,193,84, are even. 

Finally the zeros of 29 [F] (z IT) as a function of z are at 

(B-6) 

where m and n are integers. 

We propose the following d-identity, 

c ~u~u(~l)‘29u(~2)~u(~3)~u(~4)~u(~5)~,1(~1 + 22 + z3 + =4 + z5) 
U 

= -219&r + 22 + 23 + z4)‘lol(z2 + 23 + 24 + 25)291(21 + 25 + 23 + 24) 

19~(,q + z2 + z4 + 25)29&q + 22 + 23 + z5)fi,1(2(z~ + z2 + z3 + 24 + 25)). 

(B.7) 

This identity is crucial in the calculation of the 4 fermion amplitude. Its proof 

goes as follows: 

i) As a function of zl, the right and the left hand sides of eq. (B.7) may be 

shown to have the same periodicity properties. 
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ii) The only poles of the left hand side as a function of zr are at, 

21 = - 
c 

Zj + Ot + PT, 
i#l 

(B-8) 

where cx = 0, $, p = O,i. This gives, 

221 = -2 c Zj -I- m -I- nr, P.9) 
j#l 

where m, n are integers. As can be easily seen, the right hand side of (B.7) has 

poles precisely at the same points. 

iii) Consider the point in the zr plane : 

21 = -z2 - z3 - 24. (B.lO) 

The right hand side of (B.7) vanishes at this point. Substituting zr = -z2-23-24 

on the left hand side of (B.7) and using eq. (B.4) we see that the left hand side 

also vanishes at this point. Similarily one can show that the left hand side 

vanishes identically whenever the right hand side does. 

Let us now consider the ratio of the left and right hand side of eq.(B.7) , 

and consider it as a function of 21. From our discussion so far we conclude that 

this function is periodic in 21, and has no poles in the zr plane, hence it must 

be independent of 21. But since the function is symmetric in all zi it must be 

independent of each zi and hence must be a constant. Comparing the residues 

at the pole zr = -22 - 23 - z4 - 2s on the two sides of eq.(B.7) we recover the 

factor of -2 appearing on the right hand side of this equation. This establishes 

the identity (B.7). 
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APPENDIX C: Evaluation of the correlators of the X fields 

In this appendix we shall evaluate an expression for the correlator: 

(~xP(~> fi axuj(wj) fi eiki-X(Zi)) E F~“l...uN(Z, wj, zi, ki) 

j=l i=l 

(C.1) 

In order to evaluate this we start with the correlator, 

( 
N 4 

= (e 
i&.X(z) 

rI 
eiElj.X(Wj) 

) 
I-I 

eiki.X(Zi) 
> 

j=l i=l 

(C.2) 

where f& ei are light-like vectors and E is a small number. Note that, 

a,a,, . . . a~Nf(Z,Wj,Zi,ki,E,e,ei) 

iN+l~N+‘C,(el)ul s s s (~N)uNF’~~“‘~~ (2, Wj, pi, ki) + O(E~+~) = 
(C-3) 

Thus we may know the expression for F if we know the expression for f.* f is 

obtained from the formula[ II],’ 

eiki*X(Zi) -C ) - 
i=l 

n [~zP( - 2~k~~k~(‘m~~~Tz’))2) 
i<j 

ki.kj 
(C-4) 

* 1;s may be taken to be linearly independent by making small shifts of order E in the kis, 
which does not affect the right hand side of eq.(C.3) to order eN+l. 

t We are using a convention where the slope parameter CL’ has been set to unity. 
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The relevant part of F that contributes to the left hand side of eq.(C.3) to 

order cNfl is given by, 

4 

n[ ( 
ew 

_ ,J& k (Irnk - ‘d2 
* i 

i=l 

Im r ) (91(z-zi))‘(aki] 

~ ~ [ exp ( _ 2~Eej.ki ““‘I”~, zi”2) (~(17jj - ii,) ““ki] 

j=l i=l 

N 

n[ ( 
exP - 27TtZ21.Lj (Im(z - ZU~))~ 

j=l 
Im r )I 

(C-5) 

Substituting this in the left hand side of eq.(C.3) and comparing the two sides 

we obtain, 

FP ul*.*uN (z, wj, pi, k;) 

-;azln19(z-z2;)+- 
i=l i=l j=l 

_ Iz, ‘$ sPuj(fI eiki.X(zi) n 8xuk (wk)) 
j=l i=l ljk#j<N 

(C-6) 
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