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Abstract

For heterotic string theory compactified on T 6, we derive the complete set of T-duality
invariants which characterize a pair of charge vectors (Q, P ) labelling the electric and magnetic
charges of the dyon. Using this we can identify the complete set of dyons to which the previously
derived degeneracy formula can be extended. By going near special points in the moduli space
of the theory we derive the spectrum of quarter BPS dyons in N = 4 supersymmetric gauge
theory with simply laced gauge groups. The results are in agreement with those derived from
field theory analysis.
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1 Introduction

We now have a good understanding of the exact spectrum of a class of quarter BPS dyons in a

variety of N = 4 supersymmetric string theories [1–18]. Explicit computation of the spectrum

was carried out for a special class of charge vectors in a specific region of the moduli space.

Using the various duality invariances of the theory we can extend the results to various other

charge vectors in various other regions in the moduli space. However in order to do this we

need to find out the duality orbits of the charge vectors for which the spectrum has been

computed. This is one of the goals of this paper. Throughout this paper we shall focus on a

particular N = 4 supersymmetric string theory – heterotic string theory compactified on a six

dimensional torus T 6.

A duality transformation typically acts on the charges as well as the moduli. Thus using

duality invariance we can relate the degeneracy of a given state at one point of the moduli space

to that of a different state, carrying different set of charges, at another point of the moduli space.

For BPS states however the degeneracy – or more precisely an appropriate index measuring the

number of bosonic supermultiplets minus the number of fermionic supermultiplets for a given

set of charges – is invariant under changes in the moduli unless we cross a wall of marginal

stability on which the state under consideration becomes marginally unstable. Thus for BPS

states, instead of having to describe the spectrum as a function of the continuous moduli

parameters we only need to specify it in different domains bounded by walls of marginal

stability [13,17,18]. It turns out that a T-duality transformation takes a point inside one such
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domain to another point inside the same domain in a sense described precisely in [13,18]. Thus

once we have calculated the spectrum in one domain for a given charge, T-duality symmetry

can be used to find the spectrum in the same domain for all other charges related to the initial

charge by a T-duality transformation. For this reason it is important to understand under

what condition two different charges are related to each other by a T-duality transformation,

ı.e. to classify the T-duality orbits. S-duality transformation, on the other hand, takes a point

inside one domain to a point in another domain. Thus once we have calculated the spectrum

in one domain, S-duality transformation allows us to calculate the spectrum in other domains.

Our results for the T-duality orbit of charges can be summarized as follows. Since heterotic

string theory on T 6 has a gauge group of rank 28, a typical state is characterized by a 28

dimensional electric charge vector Q and a 28 dimensional magnetic charge vector P , each

taking values on the Narain lattice Λ of signature (6,22). We shall take Q and P to be primitive

vectors of the lattice; if not we can express them as integer multiples of primitive vectors and

apply our analysis to these primitive vectors, treating the integer factors as additional T-duality

invariants. Let Qi and Pi denote the components of Q and P along some basis of primitive

vectors of the lattice Λ and Lij denote the natural metric of signature (6,22) under which the

lattice is even and self-dual. Then the complete set of T-duality invariants are as follows. First

of all we have the invariants of the continuous T-duality group:

Q2 = QT LQ, P 2 = P TLP, Q · P = QT LP . (1.1)

Next we have the combination [14, 19]

r(Q, P ) = g.c.d.{QiPj − QjPi, 1 ≤ i, j ≤ 28} . (1.2)

Finally we have

u1(Q, P ) = α · P mod r(Q, P ), α ∈ Λ, α · Q = 1 . (1.3)

u1(Q, P ) can be shown to be independent of the choice of α ∈ Λ. One finds first of all that

each of the five combinations Q2, P 2, Q ·P , r(Q, P ) and u1(Q, P ) is invariant under T-duality

transformation. Furhermore two pairs (Q, P ) and (Q′, P ′) having the same set of invariants can

be transformed to each other by a T-duality transformation. Thus a necessary and sufficient

condition for two pairs of charge vectors (Q, P ) and (Q′, P ′) to be related via a T-duality

transformation is that all the five invariants are identical for the two pairs.
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The computation of [9] of the spectrum of quarter BPS states in heterotic string theory on

T 6 has been carried out for a special class of charge vectors for which r(Q, P ) = 1, and Q2, P 2

and Q ·P are arbitrary. The invariant u1(Q, P ) is trivially 0 for states with r(Q, P ) = 1. Let us

denote the calculated index by f(Q2, P 2, Q ·P ). Then T-duality invariance tells us that for all

states with r(Q, P ) = 1 the index is given by the same function f(Q2, P 2, Q ·P ) in the domain

of the moduli space in which the original calculation was performed. Since S-duality maps

states with r(Q, P ) = 1 to states with r(Q, P ) = 1, but maps the original domain to other

domains, S-duality invariance allows us to extend the result to all states with r(Q, P ) = 1 in

all domains of the moduli space.

Since at special points in the moduli space of heterotic string theory on T 6 we can get N = 4

supersymmetric gauge theories with simply laced gauge groups [20,21] in the low energy limit,

we can use the dyon spectrum of string theory to extract information about the dyon spectrum

of N = 4 supersymmetric gauge theories. For this we need to work near the point in the moduli

space where we have enhanced gauge symmetry. Slightly away from this point we have the

non-abelian part of the gauge symmetry spontaneously broken at a scale small compared to

the string scale, and the spectrum of string theory contains quarter BPS dyons whose masses

are of the order of the symmetry breaking scale. These dyons can be identified as dyons in the

N = 4 supersymmetric gauge theory. Thus the knowledge of the quarter BPS dyon spectrum

in heterotic string theory on T 6 gives us information about the quarter BPS dyon spectrum

in all N = 4 supersymmetric gauge theories which can be obtained from the heterotic string

theory on T 6. This method has been used in [22] to compute the spectrum of a class of quarter

BPS states in N = 4 supersymmetric SU(3) gauge theory.

Since the result for the quarter BPS dyon spectrum in heterotic string theory on T 6 is

known only for the states with r(Q, P ) = 1, we can use this information to compute the index

of only a subset of dyons in N = 4 super Yang-Mills theory with simply laced gauge groups.

For this subset of states the result for the index can be stated in a simple manner, – we find

that the index is non-zero only for those charges which can be embedded in the root lattice

of an SU(3) subalgebra. Thus these states fall within the class of states analyzed in [22] and

can be represented as arising from a 3-string junction with the three external strings ending

on three parallel D3-branes [23]. This result for general N = 4 supersymmetric gauge theories

is in agreement with previous results obtained either by direct analysis in gauge theory [24,25]

or by the analysis of the spectrum of string network on a system of D3-branes [26].1

1Different aspects of dyon spectrum in N = 4 supersymmetric gauge theories have been discussed in [27].

4



Some related issues have been addressed in [28].

2 T-duality orbits of dyon charges in heterotic string

theory on T 6

We consider heterotic string theory compactified on T 6. In this case a general dyon is charac-

terized by its electric and magnetic charge vectors (Q, P ) where Q and P are 28 dimensional

charge vectors taking values in the Narain lattice Λ [20]. We shall express Q and P as linear

combinations of a primitive basis of lattice vectors so that the coefficients Qi and Pi are inte-

gers. There is a natural metric L of signature (6,22) on Λ under which the lattice is even and

self-dual. The discrete T-duality transformations of the theory take the form

Q → ΩQ, P → ΩP , (2.1)

where Ω is a 28 × 28 matrix that preserves the metric L and the Narain lattice Λ

ΩT LΩ = L, ΩΛ = Λ . (2.2)

Since Ω must map an arbitrary integer valued vector to another integer valued vector, the

elements of Ω must be integers.

We shall assume from the beginning that Q and P are primitive elements of the lattice.2

Our goal is to find the T-duality invariants which characterize the pair of charge vectors (Q, P ).

First of all we have the continuous T-duality invariants

Q2 = QT LQ, P 2 = P TLP, Q · P = QT LP . (2.3)

Besides these we can introduce some additional invariants as follows. Consider the combination

[14, 19]

r(Q, P ) = g.c.d.{QiPj − QjPi, 1 ≤ i, j ≤ 28} . (2.4)

We shall first show that r(Q, P ) is independent of the choice of basis in which we expand Q

and P . For this we note that the component form of Q and P in a different choice of basis

will be related to the ones given above by multiplication by a matrix S with integer elements

2If this is not the case then the gcd a1 of all the elements of Q and the gcd a2 of all the elements of P will be
separately invariant under discrete T-duality transformation. We can factor these out as Q = a1 Q, P = a2 P

with a1, a2 ∈ ZZ, Q, P ∈ Λ, and then apply our analysis on the resulting primitive elements Q and P .
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and unit determinant so that the elements of S−1 are also integers. Thus in this new basis r

will be given by

r(SQ, SP ) = gcd {SikSjl(QkPl − QlPk), 1 ≤ i, j ≤ 28} . (2.5)

Since Sik are integers, eq.(2.5) shows that r(SQ, SP ) must be divisible by r(Q, P ). Applying

the S−1 transformation on (SQ, SP ), and noting that S−1 also has integer elements, we can

show that r(Q, P ) must be divisible by r(SQ, SP ). Thus we have

r(Q, P ) = r(SQ, SP ) , (2.6)

ı.e. r(Q, P ) is independent of the choice of basis used to describe the vectors (Q, P ). As a

special case where we restrict S to T-duality transformation matrices Ω, we find

r(Q, P ) = r(ΩQ, ΩP ) . (2.7)

Thus r(Q, P ) is invariant under a T-duality transformation.

Another set of T-duality invariants may be constructed as follows. Let α, β ∈ Λ satisfy

α · Q = 1, β · P = 1 . (2.8)

Since Q and P are primitive and the lattice is self-dual one can always find such α, β. Then

we define

u1(Q, P ) = α · P mod r(Q, P ), u2(Q, P ) = β · Q mod r(Q, P ) . (2.9)

One can show that [19]

1. u1 and u2 are independent of the choice of α, β.

2. u1 and u2 are T-duality invariants.

3. u2 is determined uniquely in terms of u1.

The proof of these statements goes as follows. To prove that u1 is independent of the choice

of α we note that since Q is a primitive vector we can choose a basis of lattice vectors so that
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the first element of the basis is Q itself. Then in this basis3

Q =




1
0
·
·
0




, P =




P1

P2

·
·

P28




, (2.10)

and we have

r(Q, P ) = gcd(P2, · · ·P28) . (2.11)

Now suppose α1 and α2 are two vectors which satisfy Q·α1 = Q·α2 = 1. Then (α1−α2)·Q = 0,

and hence we have

(α1 − α2) · P = (α1 − α2) · (P − P1Q) = (α1 − α2) ·




0
P2

P3

·
·

P28




. (2.12)

Eq.(2.11) shows that the right hand side of (2.12) is divisible by r. Thus α1 · P = α2 · P

modulo r. This shows that u1 defined through (2.9) is independent of the choice of α. A

similar analysis shows that u2 defined in (2.9) is independent of the choice of β. From now

on all equalities involving u1(Q, P ) and u2(Q, P ) will be understood to hold modulo r(Q, P )

although we shall not always mention it explicitly.

T -duality invariance of u1 follows from the fact that if α · Q = 1 then Ωα · ΩQ = 1. Thus

u1(ΩQ, ΩP ) = Ωα · ΩP mod r(ΩQ, ΩP ) = α · P mod r(Q, P ) = u1(Q, P ) . (2.13)

A similar analysis shows the T-duality invariance of u2.

To show that u2 is determined in terms of u1 and vice versa we first note that for the choice

of (Q, P ) given in (2.10), we have

u1(Q, P ) = α · P = α · (P − P1Q) + P1 α · Q = P1 mod r(Q, P ) (2.14)

since P − P1Q is divisible by r due to eqs.(2.10), (2.11), and α ·Q = 1. On the other hand we

have

1 = β · P = {β · (P − P1Q) + P1β · Q} = u1(Q, P )u2(Q, P ) mod r(Q, P ) , (2.15)

3Note that in this basis the metric takes a complicated form, e.g. the 11 component of the metric must
be equal to Q2. However all components of the metric are still integers since the inner product between two
arbitrary integer valued vectors – representing a pair of elements of the lattice – must be integer.

7



since (P − P1Q) = 0 modulo r, P1 = u1, and β · Q = u2. Thus we have

u1(Q, P ) u2(Q, P ) = 1 mod r(Q, P ) . (2.16)

This shows that neither u1 nor u2 shares a common factor with r. We shall now show that

(2.16) also determines u2 uniquely in terms of u1. To prove this assume the contrary, that

there exists another number v2 satisfying u1 v2 = 1 mod r(Q, P ). Then we have

u1(Q, P ) (u2(Q, P ) − v2(Q, P )) = 0 mod r(Q, P ) . (2.17)

Since u1 has no common factor with r, this shows that v2 = u2 modulo r. Hence u2 is

determined in terms of u1 modulo r.

Thus we have so far identified five separate T-duality invariants characterizing the pair

of vectors (Q, P ): Q2, P 2, Q · P , r(Q, P ) and u1(Q, P ). We shall now show that these are

sufficient to characterize a T-duality orbit, ı.e. given any two pairs (Q, P ) and (Q′, P ′) with the

same set of invariants they are related by a T-duality transformation. We begin by defining4

P̂ = Q2P − Q · P Q , (2.18)

and

P̃ =
1

K
P̂ , K ≡ gcd{P̂1, · · · P̂28} . (2.19)

By construction P̃ is a primitive vector of the lattice satisfying

Q · P̃ = 0 . (2.20)

We shall now use the result of [19] that the T-duality orbit of a pair of primitive vectors (Q, P̃ )

satisfying Q ·P̃ = 0 is characterized completely by the invariants Q2, P̃ 2, r(Q, P̃ ) and u1(Q, P̃ ).

A proof of this statement has been reviewed in appendix A. Given this, we shall show that the

five invariants Q2, P 2, Q · P , r(Q, P ) and u1(Q, P ) completely characterize the duality orbits

of an arbitrary pair of charge vectors (Q, P ). The steps involved in the proof are as follows:

1. We shall first show that the quantities P̃ 2, r(Q, P̃ ), u1(Q, P̃ ) and the constant K appear-

ing in (2.19) are determined completely in terms of Q2, P 2, Q · P , r(Q, P ) and u1(Q, P )

4This procedure breaks down for Q2 = 0, but as long as P 2 6= 0 we can carry out our analysis by reversing
the roles of Q and P . If both Q2 and P 2 vanish then our analysis does not apply. However a different proof
given in §3 applies to this case as well.
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via the relaions

K = r(Q, P ) gcd
{
(u1(Q, P )Q2 − Q · P )/r(Q, P ), Q2

}
,

r(Q, P̃ ) = Q2r(Q, P )/K, u1(Q, P̃ ) =
1

K
(u1(Q, P )Q2 − Q · P ) mod r(Q, P̃ ) ,

P̃ 2 =
1

K2
Q2(Q2P 2 − (Q · P )2) . (2.21)

The last equation follows trivially from the definition of P̃ . To prove the other relations

we again use the form of (Q, P ) given in (2.10). We have

P̂ = Q2 P −Q ·P Q = Q2(P −P1Q)−Q ·(P −P1Q) Q = r(Q, P ){Q2γ−Q ·γ Q) , (2.22)

where

γ =
1

r(Q, P )
(P − P1Q) =

1

r(Q, P )




0
P2

·
·

P28




. (2.23)

γ has integer elements due to (2.11). The same equation tells us that

gcd(γ2, · · · γ28) = 1 . (2.24)

Expressing (2.22) as

P̂ = r(Q, P )




−Q · γ
Q2γ2

·
·

Q2γ28




, (2.25)

and using (2.24) we see that K defined in (2.19) is given by

K = r(Q, P ) gcd(−Q · γ, Q2) . (2.26)

Using (2.23) and that P1 = u1(Q, P ) modulo r(Q, P ) we may express (2.26) as

K = r(Q, P ) gcd
{
(u1(Q, P )Q2 − Q · P )/r(Q, P ), Q2

}
. (2.27)

This establishes the first equation in (2.21). Note that a shift in u1 by r(Q, P ) does

not change the value of K. Thus K given in (2.27) is independent of which particular

representative we use for u1(Q, P ).
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To derive an expression for r(Q, P̃ ) we note from the form of Q given in (2.10), the form

of P̂ given in (2.25), and (2.24) that

r(Q, P̂ ) = gcd{QiP̂j − QjP̂i, 1 ≤ i, j ≤ 28} = r(Q, P ) Q2 . (2.28)

Since P̃ = P̂ /K we have

r(Q, P̃ ) = Q2 r(Q, P )/K . (2.29)

This establishes the second equation in (2.21). Finally to calculate u1(Q, P̃ ) we pick the

vector α for which α · Q = 1, and express u1(Q, P̃ ) as

u1(Q, P̃ ) = α · P̃ =
1

K

(
Q2α · P − Q · P α · Q

)
=

1

K

(
Q2u1(Q, P ) − Q · P

)
. (2.30)

This establishes the third equation in (2.21). Note that under a shift of u1(Q, P ) by

r(Q, P ), the expression for u1(Q, P̃ ) given above shifts by r(Q, P̃ ). Thus u1(Q, P̃ ) given

above is determined unambiguously modulo r(Q, P̃ ).

2. Now suppose we have two pairs (Q, P ) and (Q′, P ′) with the same set of invariants:

Q2 = Q′2, P 2 = P ′2, Q · P = Q′ · P ′, r(Q, P ) = r(Q′, P ′), u1(Q, P ) = u1(Q
′, P ′) .

(2.31)

Let us define P̂ ′, K ′ and P̃ ′ as in (2.18), (2.19) with (Q, P ) replaced by (Q′, P ′) so that

Q′ · P̃ ′ = 0. Then by eq.(2.21), its analog with (Q, P ) replaced by (Q′, P ′), and eq.(2.31),

we have

Q2 = Q′2, K ′ = K, P̃ 2 = P̃ ′2, r(Q, P̃ ) = r(Q′, P̃ ′), u1(Q, P̃ ) = u1(Q
′, P̃ ′) .

(2.32)

Thus by the result of [19], reviewed in appendix A, (Q, P̃ ) and (Q′, P̃ ′) must be related

to each other by a T-duality transformation Ω:

Q′ = ΩQ, P̃ ′ = ΩP̃ . (2.33)

It follows from this that

P̂ ′ = ΩP̂ , −→ P ′ = ΩP . (2.34)

Thus (Q, P ) and (Q′, P ′) are related by the duality transformation Ω.

This establishes that the T-duality orbits of pairs of charge vectors (Q, P ) are completely

characterized by the invariants Q2, P 2, Q · P , r(Q, P ) and u1(Q, P ). Two pairs of charge

vectors, having the same values of all the invariants, can be related to each other by a T-

duality transformation.
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3 An Alternative Proof

In this section we shall give a different proof of the results of the previous section.

We shall begin by giving a physical interpretation of the discrete T-duality invariants

r(Q, P ) and u1(Q, P ). Let E denote the two dimensional vector space spanned by the vectors

Q and P , and Λ′ = E ∩ Λ denote the two dimensional lattice containing the points of the

Narain lattice in E. Let (e1, e2) denote a pair of primitive basis elements of the lattice Λ′.

Since Q is a primitive vector, we can always choose e1 = Q. Then we claim that in this basis

Q = e1, P = u1(Q, P ) e1 + r(Q, P ) e2 . (3.1)

The proof goes as follows. First of all since (e1, e2) form a primitive basis of Λ′, by a standard

result [29] one can show that (e1, e2) can be chosen as the first two elements of a primitive

basis of the full lattice Λ. In such a basis Q1 = 1, P1 = u1, P2 = r and all the other componets

of Q and P vanish. Thus we have gcd {QiPj − QjPi} = r as required. Furthermore, it is

clear from (3.1) that if α · Q = 1 then α · P = u1 modulo r as required by the definition

of u1. Finally, we see that a different choice of e2 that preserves the primitivity of the basis

(e1, e2) is related to the original choice by e2 → e2 + s e1 for some integer s. Under such a

transformation u1 defined through (3.1) is shifted by a multiple of r. Thus u1 defined through

(3.1) is unambiguous modulo r as required. We shall choose e2 such that u1 appearing in (3.1)

lies between 0 and r − 1.

Eq.(3.1) provides a physical interpretation of u1 and r in terms of the components of Q

and P along a primitive basis of the Narain lattice in the plane spanned by Q and P . As a

consequence of (3.1) we have

e2

1
= Q2, e2

2
=

{
P 2 + u1(Q, P )2Q2 − 2u1(Q, P )Q · P

}
/r(Q, P )2,

e1 · e2 =
{
Q · P − u1(Q, P )Q2

}
/r(Q, P ) . (3.2)

Now take a different pair of charges (Q′, P ′) with the same invariants, e.g. satisfying (2.31),

and define (e′
1
, e′

2
) as in (3.1) with (Q, P ) replaced by (Q′, P ′). Then as a consequence of (2.31)

and (3.2) we have

e2

1
= (e′

1
)2, e2

2
= (e′

2
)2, e1 · e2 = e′

1
· e′

2
. (3.3)

Thus the lattices generated by (e1, e2) and (e′
1
, e′

2
) can be regarded as different primitive embed-

dings into Λ of an abstract even lattice of rank two with a given metric. We now use the result

of [30–32] that an even lattice of signature (m, n) has a unique primitive embedding in an even
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self-dual lattice Λ of signature (p, q) up to a T-duality transformation if m+n ≤ min(p, q)−1.

Setting m + n = 2 and (p, q) = (6, 22) we see that the required condition is satisfied and hence

(e1, e2) must be related to (e′
1
, e′

2
) by a T-duality transformation:

e′
1

= Ωe1, e′
2

= Ωe2 . (3.4)

Eq.(3.1) and its analog with (Q, P ) −→ (Q′, P ′), (e1, e2) −→ (e′
1
, e′

2
) then tells us that

Q′ = ΩQ, P ′ = ΩP . (3.5)

This is the desired result.

One interesting question is: for a given set of values of Q2, P 2, Q · P and r, what is the

maximum number of possible orbits? This is given by the maximum number of allowed values

of u1. Since u1 and r cannot share a common factor, the number is bounded from above by

the number of positive integers below (r − 1) with no common factor with r. This in turn is

given by

r ×
∏

primes p, p|r

(
1 −

1

p

)
. (3.6)

4 Predictions for gauge theory

At special points in the moduli space heterotic string theory on T 6 has enhanced gauge sym-

metry. As we move away from this point the gauge symmetry gets spontaneously broken, with

the moduli fields describing deformations away from the enhanced symmetry point playing the

role of the Higgs field. When the deformation parameter is small the scale of gauge symmetry

breaking is small compared to the string scale and the theory contains massive states with

mass of the order of the gauge symmetry breaking scale and small compared to the string

scale. These states can be identified as the states of the spontaneously broken gauge theory.

Thus if we know the spectrum of the string theory, we can determine the spectrum of spon-

taneously broken gauge theory. In particular the known spectrum of quarter BPS dyons in

string theory should give us information about the spectrum of quarter BPS dyons in N = 4

supersymmetric Yang-Mills theory.

The dyon charges in a gauge theory of rank n are labelled by a pair of n-dimensional vectors

(q, p) in the root lattice of the gauge algebra. If we choose a set of n simple roots as the basis

of the root lattice then the components qa and pa will label the coefficients of the simple roots
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in an expansion of the charge vectors in this basis. When the root lattice is embedded in the

Narain lattice the vectors (q, p) correpond to a pair of vectors (Q, P ) in the Narain lattice,

and the metric L on the Narain lattice, restricted to the root lattice, gives the negative of the

Cartan metric. Denoting by ◦ the inner product with respect to the Cartan metric, we have

q2 ≡ q ◦ q = −Q2, p2 ≡ p ◦ p = −P 2, q ◦ p = −Q · P . (4.1)

Since the Cartan metric is positive definite, we must have q2, p2 ≥ 0, |q ◦ p| ≤ (q2 + p2)/2.

Furthermore quarter BPS dyons require q and p to be both non-zero and non-parallel. Hence

none of the above inequalities can be saturated. This translates to the following conditions on

Q, P :

Q2 < 0, P 2 < 0 |Q · P | <
(
|Q2| + |P 2|

)
/2 . (4.2)

Finally, since the string theory dyon spectrum is known only for charges (Q, P ) with r(Q, P ) =

1 we need to know what this condition translates to on the vectors (q, p). This is done most

easily if the Narain lattice admits a primitive embedding of the root lattice, ı.e. if we can choose

the n simple roots of the root lattice as the first n basis elements of the full 28 dimensional

Narain lattice. In that case we can easily identify (q, p) in the root lattice as a pair of charge

vectors (Q, P ) in the Narain lattice where the first n components of Q (P ) are equal to the

components of q (p) and the rest of the components of Q, P vanish. Thus we have

r(Q, P ) = gcd{qipj − qjpi} ≡ rgauge(q, p) . (4.3)

The condition r(Q, P ) = 1 then translates to rgauge(q, p) = 1.

Let us now investigate under what condition the Narain lattice does not admit a primitive

embedding of the root lattice. Let F be the n-dimensional vector space spanned by the root

lattice, and let Λ′ = F ∩ Λ. Then by a standard result [29] one finds that the root lattice has

a primitive embedding in the Narain lattice if Λ′ does not contain any element other than the

ones in the root lattice. So we need to examine under what condition Λ′ can contain elements

other than the ones in the root lattice. Now clearly the elements of Λ′ must belong to the

weight lattice of the algebra. Furthermore, since Narain lattice is even, any element of Λ′

will be even. Thus we can classify all possible extra elements of Λ′ by examining the possible

even elements of the weight lattice outside the root lattice. For many algebras we have no

such element, and hence in those cases the embedding of the root lattice in the Narain lattice

is necessarily primitive. Exceptions among the rank ≤ 22 algebras are so(16), so(32), su(8),

su(9), su(16) and su(18); for each of these the weight lattice has even elements other than
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those in the root lattice [33].5 Hence in these cases Λ′ could contain elements other than the

ones in the root lattice, preventing the root lattice from having a primitive embedding in the

Narain lattice. But since Λ′ would have a primitive embedding in the Narain lattice, if we

choose a basis for Λ′, and define qi, pi as the componets of q and p expanded in this basis, then

(4.3) continues to reproduce the value of r(Q, P ).

With this understanding we can now study the implications of the known dyon spectrum in

N = 4 supersymmetric string theory. As is well known, for dyons with r(Q, P ) = 1 the dyon

spectrum in different parts of the moduli space can be different. The situation is best described

in the axion-dilaton moduli space at fixed values of the other moduli [13]. In particular in the

upper half plane labelled by the axion-dilaton field6 τ = a + iS the spectrum jumps across

walls of marginal stability, which are circles or straight lines passing through rational points

on the real axis [13, 16, 17]. These curves do not intersect in the interior of the upper half

plane and divide up the upper half plane into different domains, each with three vertices lying

either at rational points on the real axis or at ∞. Inside a given domain the index d(Q, P ) that

counts the number of bosonic supermultiplets minus the number of fermionic supermultiplets

remains constant, but as we move from one domain to another the index changes. We shall

first consider the domain bounded by a straight line passing through 0, a straight line passing

through 1 and a circle passing through 0 and 1, – the domain called R in [13, 18]. This has

vertices at 0, 1 and ∞. In this domain the only non-zero values of d(Q, P ) for Q2 < 0, P 2 < 0

are obtained at Q2 = P 2 = −2. For Q2 = P 2 = −2 the result for d(Q, P ) is [9, 13, 22]

d(Q, P ) =

{
0 for Q · P ≥ 0
j(−1)j−1 for Q · P = −j, j > 0

. (4.4)

The condition (4.2) on Q · P now shows that for (Q, P ) describing the elements of the root

lattice, non-vanishing index exists only for Q2 = P 2 = −2, Q · P = −1. Translated to a

condition on the charge vectors in the gauge theory this gives7

dgauge(q, p) =

{
1 for q2 = p2 = 2, q ◦ p = 1, rgauge(q, p) = 1
0 for other (q, p) with rgauge(q, p) = 1

. (4.5)

5Both for so(16) and su(9), inclusion of the extra even elements of the weight lattice makes the lattice F ∩Λ
into the root lattice of e8. Thus for such embeddings we are actually counting the dyon spectrum of an E8

gauge theory rather than SO(16) or SU(9) gauge theory. On the other hand for su(8) the extra even elements
of the weight lattice makes F ∩ Λ into the root lattice of e7. Thus in this case we get an E7 gauge theory.

6From the point of view of the gauge theory the axion-dilaton moduli correspond to the theta parameter
and the inverse square of the coupling constant.

7It has been shown in appendix B that for states with Q2 = P 2 = −2, Q ·P = ±1 the condition r(Q, P ) = 1
is satisfied automatically. Thus we do not need to state this as a separate condition.
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This condition in turn implies that q and −p can be regarded as the simple roots of an

su(3) subalgebra of the full gauge algebra, with the Cartan metric of su(3) being equal to the

restriction of the Cartan metric of the full algebra. Thus we learn that in the domain R the

only dyons with rgauge(q, p) = 1 and non-vanishing index are the ones which can be regarded as

SU(3) dyons for some level one su(3) subalgebra of the gauge algebra, with q and −p identified

with the simple roots α and β of the su(3) algebra.

The index in other domains can be found using the S-duality invariance of the theory. An

S-duality transformation of the form τ → (aτ + b)/(cτ + d) maps the domain R to another

domain with vertices
a

c
,

b

d
,

a + b

c + d
. (4.6)

Under the same S-duality transformation the charge vector (q, p) = (α,−β) gets mapped to

(q, p) = (aα − bβ, cα − dβ) . (4.7)

It can be easily seen that r(Q, P ) remains invariant under an SL(2, ZZ) transformation:

r(Q, P ) = r(aQ + bP, cQ + dP ), a, b, c, d ∈ ZZ, ad − bc = 1 . (4.8)

Thus we conclude that in the domain (4.6), the index of gauge theory dyons with rgauge(q, p) = 1

is given by

dgauge(q, p) =
{

1 for (q, p) = (aα − bβ, cα − dβ),
0 otherwise

, (4.9)

with (α, β) labelling the simple roots of some level one su(3) subalgebra of the full gauge

algebra.

This general result agrees with the known results for quarter BPS dyons in gauge theories

[23–26, 34].8 In particular in the representation of SU(N) dyons as string network with ends

on a set of parallel D3-branes, this is a reflection of the fact that networks with three external

strings ending on three D3-barnes are the only quarter BPS configurations at a generic point

in the moduli space [26].

Acknowledgement: We wish to thank Suvrat Raju for useful discussions and for draw-

ing our attention to the results of [35]. We would also like to thank Nabamita Banerjee,
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8In codimension ≥ 1 subspaces of the moduli space the dyon spectrum, computed in some approximation,
has a rich structure [24–26, 34]. However the index associated with these dyons vanish and these results are
not in contradiction with the spectrum of string theory.
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A T-duality orbits of pair (Q, P̃ ) with Q · P̃ = 0

In this appendix we shall review the proof, given in [19], of the fact that for a pair of primitive

lattice vectors (Q, P̃ ) with Q · P̃ = 0, the invariants Q2, P̃ 2, r(Q, P̃ ) and u1(Q, P̃ ) completely

characterize the T-duality orbit. We shall choose a basis in which the metric L given by the

direct sum of six σ1’s and two −LE8
’s where σ1 =

(
0 1
1 0

)
and LE8

is the Cartan metric of

E8. Using the known result [35] that in this lattice any pair of primitive vectors of the same

norm can be related by a T-duality transformation, we can choose the vector Q to be

Q =




−1
n
0
·
·
0




, n = −Q2/2 . (A.1)

After this T-duality transformation the new P̃ satisfying Q · P̃ = 0 has the form




k
kn
~p





for some 26 dimensional vector ~p and some integer k. In general ~p is not a primitive vector;

however if l is the gcd of the elements of ~p then ~p/l is a primitive vector. We can now use the

result of [35] on the vector ~p/l, belonging to the Narain lattice of signature (5,21), to bring P̃

into the form9

P̃ ′ =




k
kn
l

lm
0
·
·
0




, m =
~p2

2 l2
∈ ZZ , (A.2)

via a T-duality transformation acting on the last 26 elements that does not affect the form of

Q. Furthermore since P̃ is a primitive vector so is P̃ ′, and we have

gcd(k, l) = 1 . (A.3)

It follows from (A.3) and the definitions of r(Q, P ) and u1(Q, P ) given in (2.4), (2.9) that

r(Q, P̃ ) = r(Q, P̃ ′) = gcd(l, 2kn) = gcd(l, 2n), u1(Q, P̃ ) = u1(Q, P̃ ′) = −k . (A.4)

9The result of [35] is valid on a Lorenzian lattice of signature (k, k + 16) if k ≥ 2.
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In arriving at (A.4) we have chosen α =




0
−1
0
·
·
0




.

We now consider the T-duality transformation generated by

Ω′ =




1 0 0 0 −1 0
0 1 0 0 −n 0
0 0 1 0 0 0
0 0 0 1 0 0
n 1 0 0 −n 1
0 0 0 0 1 0

I22




. (A.5)

This leaves the charge vector Q invariant, but transforms P̃ ′ to

P̃ ′′ =




k
kn
l

lm
2kn
0
·
·
0




≡




k
kn
~p′′



 . (A.6)

We now regard the vector ~p′′ as an element of Narain lattice of signature (5, 21). The gcd of

all the elements of ~p′′ is given by

gcd(l, 2kn) = gcd(l, 2n) = r(Q, P̃ ) , (A.7)

using (A.3) and (A.4). Thus ~p′′ is r(Q, P̃ ) times a primitive lattice vector. Hence we can again

use the result of [35] to show that by a T-duality transformation acting on the last 26 elements

of the charge vector, ~p′′ can be brought into the form



r(Q, P̃ )

r(Q, P̃ ) a
0
·
·
0




, a =
~p′′2

2r(Q, P )2
. (A.8)
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This does not change the form of Q. Thus at this stage we have brought (Q, P̃ ) to the form

Q =




−1
n
0
·
·
0




, P̃ ′′′ =




k
kn

r(Q, P̃ )

r(Q, P̃ ) a
0
·
·
0




. (A.9)

Finally we apply another T-duality transformation generated by the matrix

Ω′′ =




1 0 −q 0
0 1 −nq 0
nq q −nq2 1
0 0 1 0

I24




, (A.10)

with q is an integer to be specified below. This leaves Q unchanged but brings P̃ ′′′ to the form

P̃std =




k − qr(Q, P̃ )

nk − nqr(Q, P̃ )

2knq − nq2r(Q, P̃ ) + ar(Q, P̃ )

r(Q, P̃ )
0
·
·
0




. (A.11)

We choose q such that k − q r(Q, P̃ ) is an integer between 0 and r(Q, P̃ )− 1. By eq.(A.4) this

is a representative of −u1(Q, P̃ ) in the range [0, r(Q, P̃ )− 1]. Hence it is determined uniquely

by u1(Q, P̃ ). Let us call this integer d(Q, P̃ ). We can then express (A.11) as

P̃std =




d(Q, P̃ )

nd(Q, P̃ )
b

r(Q, P̃ )
0
·
·
0




, (A.12)
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where b is a constant. It is determined by equating (P̃std)
2 to P̃ 2:

2 n d(Q, P̃ )2 + 2 b r(Q, P̃ ) = P̃ 2 . (A.13)

Since n = −Q2/2, this determines the form of Q and P̃std completely in terms of the invariants

Q2, P̃ 2, r(Q, P̃ ) and d(Q, P̃ ). Thus any two pairs of charge vectors (Q1, P̃1) and (Q2, P̃2) having

same values of these invariants and satisfying Q1 · P̃1 = Q2 · P̃2 = 0 can be related to each other

by a T-duaity transformation, since each pair can be brought by a T-duality transformation

to the standard form (Q, P̃std) given in (A.1), (A.12). This is the desired result.

B Analysis of r(Q, P ) = 1 condition

In this appendix we shall derive a condition on Q2, P 2 and Q · P which is sufficient but not

necessary to gurantee that r(Q, P ) = 1.

As usual, we shall assume that Q and P are primitive vectors of the lattice. In this case

we can represent Q and P as in (3.1). This gives

Q2P 2 − (Q · P )2 = r(Q, P )2
(
e2

1
e2

2
− (e1 · e2)

2
)

. (B.1)

Thus in order for r(Q, P ) to be different from 1, Q2P 2 − (Q · P )2 must have a factor that

is square of an integer. Conversely, if Q2P 2 − (Q · P )2 is square free we can conclude that

r(Q, P ) = 1. In particular, for Q2 = P 2 = −2 and Q · P = ±1 we have Q2P 2 − (Q · P )2 = 3.

Since this is square free we must have r(Q, P ) = 1.

So far we have taken Q and P to be arbitrary vectors in the lattice. However if Q and

P are to be identified as the elements of the root lattice of a gauge algebra then the induced

metric on the vector space E spanned by Q and P is euclidean. In this case we can do slightly

better by noting that since the lattice is even, e2

1
and e2

2
must be even, while e1 ·e2 is an integer.

Thus e2

1
e2

2
is a multiple of 4, while (e1 · e2)

2 has the form 4s or 4s + 1 for some integer s. This

implies that for positive e2

1
e2

2
− (e1 · e2)

2 – which is the case since the induced metric in E is

euclidean – we must have e2

1
e2

2
− (e1 · e2)

2 ≥ 3. Thus in order for r(Q, P ) to be different from

1, the combination Q2P 2 − (Q · P )2 must have the form kl2 with k ≥ 3, l ≥ 2.

While the above analysis tells us under what condition r(Q, P ) = 1, it does not tell us that

if Q2P 2 − (Q · P )2 has the form kl2 with k ≥ 3, l ≥ 2 then r(Q, P ) is necessarily larger than

one. Thus Q2P 2 − (Q ·P )2 being square free is sufficient but not necessary for r(Q, P ) to be 1.
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