S-duality Action on Discrete T-duality Invariants

Shamik Banerjee and Ashoke Sen

Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad 211019, INDIA
E-mail: bshamik, sen@mri.ernet.in

Abstract

In heterotic string theory compactified on T^{6}, the T-duality orbits of dyons of charge (Q, P) are characterized by $O(6,22 ; \mathbb{R})$ invariants Q^{2}, P^{2} and $Q \cdot P$ together with a set of invariants of the discrete T-duality group $O(6,22 ; \mathbb{Z})$. We study the action of S -duality group on the discrete T-duality invariants and study its consequence for the dyon degeneracy formula. In particular we find that for dyons with torsion r, the degeneracy formula, expressed as a function of Q^{2}, P^{2} and $Q \cdot P$, is required to be manifestly invariant under only a subgroup of the Sduality group. This subgroup is isomorphic to $\Gamma^{0}(r)$. Our analysis also shows that for a given torsion r, all other discrete T-duality invariants are characterized by the elements of the coset $S L(2, \mathbb{Z}) / \Gamma^{0}(r)$.

Dyons in heterotic string theory on T^{6} are characterized by a pair of charge vectors (Q, P) each taking value on the Narain lattice $\Lambda[1,2]$. Given two pairs of charge vectors, an interesting question is: under what condition can they be related via a T-duality transformation? This question was answered in [3] where a complete set of T-duality invariants classifying a pair of charge vectors (Q, P) were constructed. These include the invariants of the continuous T-duality group $O(6,22 ; \mathbb{R})$

$$
\begin{equation*}
Q^{2}, \quad P^{2}, \quad Q \cdot P \tag{1}
\end{equation*}
$$

together with a set of invariants of the discrete T-duality group $O(6,22 ; \mathbb{Z})$. These are defined as follows. We shall assume that the dyon is primitive so that (Q, P) cannot be written as an integer multiple of $\left(Q_{0}, P_{0}\right)$ with $Q_{0}, P_{0} \in \Lambda$, but we shall not assume that Q and P themselves are primitive. Now consider the intersection of the two dimensional vector space spanned by (Q, P) with the Narain lattice Λ. The result is a two dimensional lattice Λ_{0}. Let $\left(e_{1}, e_{2}\right)$ be a pair of basis elements whose integer linear combinations generate this lattice. We can always choose $\left(e_{1}, e_{2}\right)$ such that in this basis

$$
\begin{gather*}
Q=r_{1} e_{1}, \quad P=r_{2}\left(u_{1} e_{1}+r_{3} e_{2}\right), \quad r_{1}, r_{2}, r_{3}, u_{1} \in \mathbb{Z}^{+} \\
\operatorname{gcd}\left(r_{1}, r_{2}\right)=1, \quad \operatorname{gcd}\left(u_{1}, r_{3}\right)=1, \quad 1 \leq u_{1} \leq r_{3} . \tag{2}
\end{gather*}
$$

It was found in [3] that besides Q^{2}, P^{2} and $Q \cdot P$, the integers r_{1}, r_{2}, r_{3} and u_{1} are T-duality invariants. Furthermore it was found that this is the complete set of T-duality invariants. Thus a pair of charge vectors (Q, P) can be transformed into another pair $\left(Q^{\prime}, P^{\prime}\right)$ via a T-duality transformation if and only if all the invariants agree for these two pairs.

Our first goal is to study some aspects of the action of the S-duality transformation

$$
\begin{equation*}
Q \rightarrow Q^{\prime}=a Q+b P, \quad P \rightarrow P^{\prime}=c Q+d P, \quad a, b, c, d \in \mathbb{Z}, \quad a d-b c=1 \tag{3}
\end{equation*}
$$

on the invariants r_{1}, r_{2}, r_{3} and u_{1}. Substituting (21) into (3), and expressing the resulting $\left(Q^{\prime}, P^{\prime}\right)$ as $\left(r_{1}^{\prime} e_{1}^{\prime}, r_{2}^{\prime}\left(u_{1}^{\prime} e_{1}^{\prime}+r_{3}^{\prime} e_{2}^{\prime}\right)\right)$ for some primitive basis $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ of Λ_{0} we can determine $\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, u_{1}^{\prime}\right)$. Since the resuting expressions are somewhat complicated and not very illuminating we shall not describe them here. Instead we shall focus on some salient features of the transformation laws of $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$. We first note that the torsion $r(Q, P)$ associated with a pair of charges (Q, P), defined as $[4,5]$

$$
\begin{equation*}
r(Q, P)=Q_{1} P_{2}-Q_{2} P_{1} \tag{4}
\end{equation*}
$$

with Q_{i}, P_{i} being the components of Q and P along e_{i}, is invariant under the S-duality transformation (3). Furthermore, for the charge vectors (Q, P) given in (2) we have

$$
\begin{equation*}
r(Q, P)=r_{1} r_{2} r_{3} \tag{5}
\end{equation*}
$$

We shall now show that one can always find an S-duality transformation that brings the Tduality invariants $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$ to $\left(r_{1} r_{2} r_{3}, 1,1,1\right)$ together with an appropriate transformation on Q^{2}, P^{2} and $Q \cdot P$ induced by (3). For this we note that under the S-duality transformation (3), (Q, P) given in (2) transforms to
$Q^{\prime}=\left\{a r_{1}+b r_{2}\left(u_{1}+k r_{3}\right)\right\} e_{1}+b r_{2} r_{3}\left(e_{2}-k e_{1}\right), \quad P^{\prime}=\left\{c r_{1}+d r_{2}\left(u_{1}+k r_{3}\right)\right\} e_{1}+d r_{2} r_{3}\left(e_{2}-k e_{1}\right)$,
where k is an arbitrary integer. We shall choose

$$
\begin{equation*}
k=\prod_{i} p_{i} \tag{7}
\end{equation*}
$$

where $\left\{p_{i}\right\}$ represent the collection of primes which are factors of r_{1} but not of u_{1}. Now we know from (2) that $\operatorname{gcd}\left(r_{1}, r_{2}\right)=1$. On the other hand it follows from a result derived in appendix E of [6] that for the choice of k given in (7) we have $\operatorname{gcd}\left(r_{1}, u_{1}+k r_{3}\right)=1$. Thus if we choose

$$
\begin{equation*}
b=r_{1}, \quad a=-r_{2}\left(u_{1}+k r_{3}\right), \tag{8}
\end{equation*}
$$

we have $\operatorname{gcd}(a, b)=1$ and hence we can always find c, d satisfying $a d-b c=1$. For this particular choice of $S L(2, \mathbb{Z})$ transformation we have

$$
\begin{equation*}
Q^{\prime}=r_{1} r_{2} r_{3}\left(e_{2}-k e_{1}\right), \quad P^{\prime}=-e_{1}+d r_{2} r_{3}\left(e_{2}-k e_{1}\right) . \tag{9}
\end{equation*}
$$

We now define

$$
\begin{equation*}
e_{1}^{\prime}=\left(e_{2}-k e_{1}\right), \quad e_{2}^{\prime}=-e_{1}+\left(d r_{2} r_{3}-1\right)\left(e_{2}-k e_{1}\right) . \tag{10}
\end{equation*}
$$

Since the matrix relating $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ to $\left(e_{1}, e_{2}\right)$ has unit determinant, $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ is a primitive basis of the lattice Λ_{0}. In this basis $\left(Q^{\prime}, P^{\prime}\right)$ can be expressed as

$$
\begin{equation*}
Q^{\prime}=r_{1} r_{2} r_{3} e_{1}^{\prime}, \quad P^{\prime}=e_{1}^{\prime}+e_{2}^{\prime} \tag{11}
\end{equation*}
$$

Comparing this with (22) we see that for the new charge vector $\left(Q^{\prime}, P^{\prime}\right)$ we have

$$
\begin{equation*}
r_{1}^{\prime}=r_{1} r_{2} r_{3}, \quad r_{2}^{\prime}=1, \quad r_{3}^{\prime}=1, \quad u_{1}^{\prime}=1 \tag{12}
\end{equation*}
$$

This proves the desired result.
Next we shall study the subgroup of S-duality transformations which takes a configuration with $\left(r_{1}=r, r_{2}=1, r_{3}=1, u_{1}=1\right)$ to another configuration with $\left(r_{1}=r, r_{2}=1, r_{3}=1, u_{1}=\right.$ 1). The initial configuration has

$$
\begin{equation*}
Q=r e_{1}, \quad P=e_{1}+e_{2} . \tag{13}
\end{equation*}
$$

An S-duality transformation (3) takes this to

$$
\begin{equation*}
Q^{\prime}=\operatorname{are}_{1}+b\left(e_{1}+e_{2}\right), \quad P^{\prime}=\operatorname{cr} e_{1}+d\left(e_{1}+e_{2}\right) . \tag{14}
\end{equation*}
$$

In order that Q^{\prime} is r times a primitive vector, we must demand

$$
\begin{equation*}
b=0 \bmod r . \tag{15}
\end{equation*}
$$

Expressing b as $b_{0} r$ with $b_{0} \in \mathbb{Z}$ we get

$$
\begin{equation*}
Q^{\prime}=r e_{1}^{\prime}, \quad P^{\prime}=e_{1}^{\prime}+e_{2}^{\prime}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{1}^{\prime}=\left(a+b_{0}\right) e_{1}+b_{0} e_{2}, \quad e_{2}^{\prime}=\left(c r+d-a-b_{0}\right) e_{1}+\left(d-b_{0}\right) e_{2} . \tag{17}
\end{equation*}
$$

Since the determinant of the matrix relating $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ to $\left(e_{1}, e_{2}\right)$ is given by

$$
\begin{equation*}
\left(a+b_{0}\right)\left(d-b_{0}\right)-b_{0}\left(c r+d-a-b_{0}\right)=a d-b c=1, \tag{18}
\end{equation*}
$$

we conclude that $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ is a primitive basis of Λ_{0}. Comparison with (2) now shows that $\left(Q^{\prime}, P^{\prime}\right)$ has $r_{1}^{\prime}=r, r_{2}^{\prime}=r_{3}^{\prime}=u_{1}^{\prime}=1$ as required. Thus the only condition on the $S L(2, \mathbb{Z})$ matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for preserving the $\left(r_{1}=r, r_{2}=1, r_{3}=1, u_{1}=1\right)$ condition is that it must have $b=0 \bmod r$, i.e. it must be an element of $\Gamma^{0}(r)$.

Using this we can now determine the subgroup of $S L(2, \mathbb{Z})$ that takes a pair of charge vectors (Q, P) with invariants $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$ to another pair of charge vectors with the same invariants. For this we note that any $S L(2, \mathbb{Z})$ transformation matrix $g_{0}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a, b given in (8) takes the set $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$ to the set $\left(r_{1} r_{2} r_{3}, 1,1,1\right)$. Since the latter set is preserved by the $\Gamma^{0}(r)$ subgroup of $S L(2, \mathbb{Z})$, the original set must be preserved by the subgroup $g_{0}^{-1} \Gamma^{0}(r) g_{0}$. This is isomorphic to the group $\Gamma^{0}(r)$.

To see an example of this consider the case

$$
\begin{equation*}
r_{1}=r_{2}=1, \quad r_{3}=2, \quad u_{1}=1 \tag{19}
\end{equation*}
$$

In this case the $S L(2, \mathbb{Z})$ transformation $g_{0}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ takes a configuration given in (19) to a configuration with $r_{1}=2, r_{2}=r_{3}=u_{1}=1$. Thus the $S L(2, \mathbb{Z})$ transformations which take a configuration with $\left(r_{1}=1, r_{2}=1, r_{3}=2, u_{1}=1\right)$ to a configuration with the same discrete invariants will be of the form:

$$
\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \tag{20}\\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 2 b_{0} \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a-c & a-c-d+2 b_{0} \\
c & c+d
\end{array}\right) .
$$

Since the condition $a d-2 b_{0} c=1$ requires a and d to be odd, we have

$$
\begin{equation*}
a^{\prime}+b^{\prime} \in 2 \mathbb{Z}+1, \quad c^{\prime}+d^{\prime} \in 2 \mathbb{Z}+1 \tag{21}
\end{equation*}
$$

Conversely given any $S L(2, \mathbb{Z})$ matrix $\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ satisfying (21), it can be written as g_{0} conjugate of the $\Gamma^{0}(2)$ matrix $\left(\begin{array}{cc}a^{\prime}+c^{\prime} & -a^{\prime}-c^{\prime}+b^{\prime}+d^{\prime} \\ c^{\prime} & -c^{\prime}+d^{\prime}\end{array}\right)$. Thus (21) characterizes the subgroup of S-duality group which preserves the condition (19).

The results derived so far make it clear that for a given torsion r the discrete T-duality invariants are in one to one correspondence with the elements of the coset $S L(2, \mathbb{Z}) / \Gamma^{0}(r)$. The representative element for a given set of invariants $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$ is the element $g_{0}^{-1} \in S L(2, \mathbb{Z})$ that takes a configuration with $\left(r_{1} r_{2} r_{3}, 1,1,1\right)$ to a configuration with discrete invariants $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$. Multiplying g_{0}^{-1} by a $\Gamma^{0}(r)$ element from the right does not change the final values $\left(r_{1}, r_{2}, r_{3}, u_{1}\right)$ of the discrete invariants since a $\Gamma^{0}(r)$ transformation does not change the discrete T-duality invariants of the initial configuration.

We shall now examine the consequences of these results for the formula expressing the degeneracy $d(Q, P)$ - or more precisely an appropriate index measuring the number of bosonic supermultiplets minus the number of fermionic supermultiplets for a given set of charges ${ }^{1}$ of quarter BPS dyons as a function of (Q, P). We note first of all that besides depending on (Q, P), the degeneracy can also depend on the asymptotic values of the moduli fields, collectively denoted as ϕ. We expect the dependence on ϕ to be mild, in the sense that the degeneracy formula should be ϕ independent within a given domain bounded by walls of

[^0]marginal stability. It follows from the analysis of $[7,8]$ that the decays relevant for the walls of marginal stability are of the form
\[

$$
\begin{equation*}
(Q, P) \rightarrow(\alpha Q+\beta P, \gamma Q+\delta P)+((1-\alpha) Q-\beta P,-\gamma Q+(1-\delta) P), \tag{22}
\end{equation*}
$$

\]

where $\alpha, \beta, \gamma, \delta$ are not necessarily integers, but must be such that $\alpha Q+\beta P$ and $\gamma Q+\delta P$ belong to the Narain lattice Λ. If we denote by $m(Q, P ; \phi)$ the BPS mass of a dyon of charge (Q, P) then the wall of marginal stability associated with the set $(\alpha, \beta, \gamma, \delta)$ is given by the solution to the equation

$$
\begin{equation*}
m(Q, P ; \phi)=m(\alpha Q+\beta P, \gamma Q+\delta P ; \phi)+m((1-\alpha) Q-\beta P,-\gamma Q+(1-\delta) P ; \phi) \tag{23}
\end{equation*}
$$

For appropriate choice of $(\alpha, \beta, \gamma, \delta)$ this describes a codimension one subspace of the moduli space labelled by ϕ. Since the BPS mass formula is invariant under a T-duality transformation $Q \rightarrow \Omega Q, P \rightarrow \Omega P, \phi \rightarrow \phi_{\Omega}:$

$$
\begin{equation*}
m\left(\Omega Q, \Omega P ; \phi_{\Omega}\right)=m(Q, P ; \phi) \quad \Omega \in O(6,22 ; \mathbb{Z}) \tag{24}
\end{equation*}
$$

eq.(23) may be written as
$m\left(\Omega Q, \Omega P ; \phi_{\Omega}\right)=m\left(\alpha \Omega Q+\beta \Omega P, \gamma \Omega Q+\delta \Omega P ; \phi_{\Omega}\right)+m\left((1-\alpha) \Omega Q-\beta \Omega P,-\gamma \Omega Q+(1-\delta) \Omega P ; \phi_{\Omega}\right)$.

This is identical to eq.(23) with (Q, P, ϕ) replaced by $\left(\Omega Q, \Omega P, \phi_{\Omega}\right)$. This shows that under a T-duality transformation on charges and moduli, the wall of marginal stability associated with the set $(\alpha, \beta, \gamma, \delta)$ gets mapped to the wall of marginal stability associated with the same $(\alpha, \beta, \gamma, \delta)$. Thus if we consider a domain bounded by the walls of marginal stability associated with the sets $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}\right)$ for $1 \leq i \leq n$ - collectively denoted by a set of discrete variables \vec{c} - then under a simultaneous T-duality transformation on the charges and the moduli this domain gets mapped to a domain labelled by the same vector \vec{c}. The precise shape of the domain of course changes since the locations of the walls in the moduli space depends not only on $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}\right)$ for $1 \leq i \leq n$ but also on the charges (Q, P) which transform to $(\Omega Q, \Omega P)$.

We now use the fact that the dyon degeneracy formula must be invariant under a simultaneous T-duality transformation on the charges and the moduli, and also the fact that the dependence of $d(Q, P ; \phi)$ on the moduli ϕ comes only through the domain in which ϕ lies, 1.e. the vector \vec{c}. Since \vec{c} remains unchanged under a T-duality transformation, we have

$$
\begin{equation*}
d(Q, P ; \vec{c})=d(\Omega Q, \Omega P ; \vec{c}), \quad \Omega \in O(6,22 ; \mathbb{Z}) \tag{26}
\end{equation*}
$$

This shows that $d(Q, P ; \vec{c})$ must depend only on (Q, P) via the T-duality invariants:

$$
\begin{equation*}
d(Q, P ; \vec{c})=f\left(Q^{2}, P^{2}, Q \cdot P, r_{1}, r_{2}, r_{3}, u_{1} ; \vec{c}\right) \tag{27}
\end{equation*}
$$

for some function f.
Let us now study the effect of S-duality transformation on this formula. Typically an Sduality transformation will act on the charges and hence on all the T-duality invariants and also on the vector \vec{c} labelling the domain bounded by the walls of marginal stability $[5,9,10]$. Indeed, as is clear from the condition (23), under an S-duality transformation of the form (3), the wall associated with the parameters $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ gets mapped to the wall associated with

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \tag{28}\\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}
$$

Thus S-duality invariance of the degeneracy formula now gives

$$
\begin{equation*}
f\left(Q^{2}, P^{2}, Q \cdot P, r_{1}, r_{2}, r_{3}, u_{1} ; \vec{c}\right)=f\left(Q^{\prime 2}, P^{2}, Q^{\prime} \cdot P^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, u_{1}^{\prime} ; \vec{c}^{\prime}\right) \tag{29}
\end{equation*}
$$

where \vec{c}^{\prime} stands for the collection of the sets $\left\{\alpha_{i}^{\prime}, \beta_{i}^{\prime}, \gamma_{i}^{\prime}, \delta_{i}^{\prime}\right\}$ computed according to (28). We now use the result that there exists a special class of S-duality transformations under which

$$
\begin{equation*}
\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, u_{1}^{\prime}\right)=\left(r_{1} r_{2} r_{3}, 1,1,1\right) \tag{30}
\end{equation*}
$$

Using this S-duality transformation we get

$$
\begin{equation*}
f\left(Q^{2}, P^{2}, Q \cdot P, r_{1}, r_{2}, r_{3}, u_{1} ; \vec{c}\right)=f\left(Q^{\prime 2}, P^{\prime 2}, Q^{\prime} \cdot P^{\prime}, r_{1} r_{2} r_{3}, 1,1,1 ; \vec{c}^{\prime}\right) \tag{31}
\end{equation*}
$$

Thus the complete information about the spectrum of quarter BPS dyons is contained in the set of functions

$$
\begin{equation*}
g\left(Q^{2}, P^{2}, Q \cdot P, r ; \vec{c}\right) \equiv f\left(Q^{2}, P^{2}, Q \cdot P, r, 1,1,1 ; \vec{c}\right) \tag{32}
\end{equation*}
$$

We shall focus our attention on this function during the rest of our analysis. Using the fact that $\Gamma^{0}(r)$ transformations leave the set $\left(r_{1}=r, r_{2}=1, r_{3}=1, u_{1}=1\right)$ fixed, we see that
$g\left(Q^{2}, P^{2}, Q \cdot P, r ; \vec{c}\right)=g\left(Q^{\prime 2}, P^{2}, Q^{\prime} \cdot P^{\prime}, r ; \vec{c}^{\prime}\right) \quad$ for $\binom{Q^{\prime}}{P^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{Q}{P}, \quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma^{0}(r)$.
In other words, the function $g\left(Q^{2}, P^{2}, Q \cdot P, r ; \vec{c}\right)$ is expected to have manifest invariance under the $\Gamma^{0}(r)$ subgroup of S-duality transformations.

So far our discussion has been independent of any specific formula for the function $g\left(Q^{2}, P^{2}, Q\right.$. $P, r ; \vec{c})$. For $r=1$ dyons an explicit formula for the function g has been found in a wide class of $\mathcal{N}=4$ supersymmetric theories [5,9-25]. In all the known examples the function g is obtained as a contour integral of the inverse of an appropriate modular form of a subgroup of $S p(2, \mathbb{Z})$. In particular for heterotic string theory on T^{6} the modular form is the well known Igusa cusp form of weight 10 of the full $S p(2, \mathbb{Z})$ group, with the S-duality group $S L(2, \mathbb{Z})$ embedded in $S p(2, \mathbb{Z})$ in a specific manner. Furthermore the dependence on the domain labelled by \vec{c} is encoded fully in the choice of the integration contour and not in the integrand. If a similar formula exists for $g\left(Q^{2}, P^{2}, Q \cdot P, r ; \vec{c}\right)$ for $r>1$, then our analysis would suggest that the integrand should involve a modular form of a subgroup of $S p(2, \mathbb{Z})$ that contains $\Gamma^{0}(r)$ in the same way that the full $S p(2, \mathbb{Z})$ contains $S L(2, \mathbb{Z})$. It remains to be seen if this constraint together with other physical constraints reviewed in [25] can fix the form of the integrand.

Acknowledgement: We wish to thank Sandip Trivedi for useful discussions.

References

[1] K. S. Narain, "New Heterotic String Theories In Uncompactified Dimensions < 10," Phys. Lett. B 169, 41 (1986).
[2] K. S. Narain, M. H. Sarmadi and E. Witten, "A Note on Toroidal Compactification of Heterotic String Theory," Nucl. Phys. B 279, 369 (1987).
[3] S. Banerjee and A. Sen, "Duality Orbits, Dyon Spectrum and Gauge Theory Limit of Heterotic String Theory on $T^{6 "}$, arXiv:0712.0043 [hep-th].
[4] N. Askitas, Embeddings of 2-spheres in 4-manifolds, Manuscripta Math. 8935 (1996).
[5] A. Dabholkar, D. Gaiotto and S. Nampuri, "Comments on the spectrum of CHL dyons," arXiv:hep-th/0702150.
[6] S. Nampuri, P. K. Tripathy and S. P. Trivedi, "Duality Symmetry and the Cardy Limit," arXiv:0711.4671 [hep-th].
[7] A. Sen, "Rare Decay Modes of Quarter BPS Dyons," arXiv:0707.1563 [hep-th].
[8] A. Mukherjee, S. Mukhi and R. Nigam, "Dyon Death Eaters," arXiv:0707.3035 [hep-th].
[9] A. Sen, "Walls of marginal stability and dyon spectrum in $\mathrm{N}=4$ supersymmetric string theories," arXiv:hep-th/0702141.
[10] M. C. N. Cheng and E. Verlinde, "Dying Dyons Don't Count," arXiv:0706.2363 [hep-th].
[11] R. Dijkgraaf, E. P. Verlinde and H. L. Verlinde, "Counting dyons in N $=4$ string theory," Nucl. Phys. B 484, 543 (1997) arXiv:hep-th/9607026.
[12] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, "Asymptotic degeneracy of dyonic $\mathrm{N}=4$ string states and black hole entropy," JHEP 0412, 075 (2004) arXiv:hep-th/0412287.
[13] D. Shih, A. Strominger and X. Yin, "Recounting dyons in N $=4$ string theory," arXiv:hep-th/0505094.
[14] D. Gaiotto, "Re-recounting dyons in $\mathrm{N}=4$ string theory," arXiv:hep-th/0506249.
[15] D. Shih and X. Yin, "Exact black hole degeneracies and the topological string," JHEP 0604, 034 (2006) arXiv:hep-th/0508174].
[16] D. P. Jatkar and A. Sen, "Dyon spectrum in CHL models," JHEP 0604, 018 (2006) arXiv:hep-th/0510147.
[17] J. R. David, D. P. Jatkar and A. Sen, "Product representation of dyon partition function in CHL models," JHEP 0606, 064 (2006) arXiv:hep-th/0602254.
[18] A. Dabholkar and S. Nampuri, "Spectrum of dyons and black holes in CHL orbifolds using Borcherds lift," arXiv:hep-th/0603066.
[19] J. R. David and A. Sen, "CHL dyons and statistical entropy function from D1-D5 system," JHEP 0611, 072 (2006) arXiv:hep-th/0605210.
[20] J. R. David, D. P. Jatkar and A. Sen, "Dyon spectrum in N $=4$ supersymmetric type II string theories," arXiv:hep-th/0607155.
[21] J. R. David, D. P. Jatkar and A. Sen, "Dyon spectrum in generic N $=4$ supersymmetric Z(N) orbifolds," arXiv:hep-th/0609109.
[22] A. Dabholkar and D. Gaiotto, "Spectrum of CHL dyons from genus-two partition function," arXiv:hep-th/0612011.
[23] N. Banerjee, D. P. Jatkar and A. Sen, "Adding charges to N $=4$ dyons," arXiv:0705.1433 [hep-th].
[24] A. Sen, "Two Centered Black Holes and N=4 Dyon Spectrum," arXiv:0705.3874 [hep-th].
[25] A. Sen, "Black Hole Entropy Function, Attractors and Precision Counting of Microstates," arXiv:0708.1270 [hep-th].

[^0]: ${ }^{1} \mathrm{Up}$ to a normalization this is equal to the helicity trace $B_{6}=\operatorname{Tr}(-1)^{2 h} h^{6}$ over all states carrying charge quantum numbers (Q, P). Here h denotes the helicity of the state.

