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Three-dimensional time-dependent quantum mechanical study of the
reaction He + HY - HeH™ + H |
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Abstract. We report the results of a three-dimensional time-dependent quantum mechanical
study of the reaction He + H; (v =0, 1)»HeH* + Hat {E_,_ ) = 1-:0eV, which reproduces
clearly the vibrational enhancement for the system. In addition, preliminary results for
He + HD" (v = 1-3) suggest the preferential formation of HeD * over HeH* in the products.
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1. Introduction

Recent years have witnessed significant advances in the development of the time-
dependent quantum mechanical (TDQM) method as a viable tool for investigating
atomic and molecular collisions (Gerber et al 1986; Kosloff 1988, Mohan and
Sathyamurthy 1988; Kulander 1991). However, progress towards three-dimensional
(3D) study of reactive scattering has been rather limited (Judson et al 1990; Neuhauser
et al 1990). Difficulties in methodology arise because of the presence of multiple
arrangement channels and the usual Jacobi coordinates for inelastic scattering are
not the most suited for modelling reactive scattering events. Hyperspherical coordinates
(Smith 1962; Whitten and Smith 1968; Kuppermann 1975) have proved to be quite
successful in describing reactive collisions as all arrangement channels are represented
evenhandedly in this system. In this communication, we present the results of a 3D
TDQM study of the reaction

He +H; -HeH" +H

on the chemically accurate McLaughlin-Thompson-Joseph—Sathyamurthy (McLaughlin
and Thompson 1979; Joseph and Sathyamurthy 1987) (MTIS) ab initio potential
energy surface (PES) for zero total angular momentum (J = 0) collisions in hyper-
spherical coordinates.

2. Methodology

The hyperspherical coordinates used in the present study are a slightly modified
version of Johnson’s hyperspherical coordinates (Johnson 1980), as used by Muckerman
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et al (1988). These consist of three internal coordinates (p, 6, ¢) and three external
coordinates (%, f,7) which are the three Euler angles. The potential energy of the
system is a function of only the internal coordinates. The hyper-radius, p, represents
the overall size of the system, 6 is a bending angle, and ¢, the kinematic angle represents
the arrangement channel. Their ranges of variation are: 0 < p < o0, 0 <6< /2 and
0< ¢ <2r. For the special case of J =0 collisions, the Hamiltonian contains only
the internal coordinates. It can be written after a proper transformation of the wave-
function (Muckerman et al 1988) as

A h? or .
H=~—_1.,____+H1, (1)
2uép?
where
M=ol 58 Tontoaer T p2\a Temzg ) | T V000 2
1 2;1[092 sin?0 o¢> p2(4 Sin229):| (p,6,9) (2)

The initial wavefunction, at time t =0, required for solvmg the time-dependent
Schrédinger equation

0¥

HY = 1h3t— 3)
was set up on a (p, 6, ¢) grid as
¥(p,6,0)=F(p)D(8, $; p), (4)

where F(p) was taken to be a minimum uncertainty Gaussian wavepacket and
(0, ¢; p) was initialized as an asymptotic eigenfunction to H, (Muckerman ez al
1988). That is, in the limit p — oo, ®(6, ¢; p) is the vib-rotational wavefunction,

¥, ;06m) = [X,(x)/x"2]P;(n), | ()

where X, (x) is a Morse oscillator eigenfunction for the vth vibrational state and P;(r)
a Legendre polynomial for the jth rotational state. The variables x and 5 are expressed
in terms of @ and ¢ through the asymptotic relations (Muckerman et al 1988; Markovié
et al 1990; Markovi¢ and Billing 1992a)

6=0,+ (x/p)sin7, (6a)

and
¢ = ¢ +(x/p)cosn, (6b)

with 6, = n/2, which is the same for all the channels. ¢, is different for the different
arrangement channels which are obtained by a kinematic rotation along ¢. The hyper-
spherical coordinates used in the present study are especially suited to A + B, systems
as a unique diatomic origin occurs at ¢ = ¢, = n with the two other diatomic origins
symmetrically located on either side of it at ¢ = m + &, where ¢ = 2tan ™! (mp/y) with
my the mass of the atom B and u the three-body reduced mass. For the present
system, the He + H; channel is situated at ¢ = 180°, and the two HeH * + H channels
at ¢ =281-61° and d) 78:39°.

The different channel locations are illustrated with the aid of potential-energy
contours in (6, ¢) coordinates for different values of p in figure 1.
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Figure 1. Potential-energy contours for the HeH; system in (6, ¢) space for different values
of the hyper-radius p =4, 6, 8, 10 and 12a.u. in (a)—(e) respectively.
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A (128,32,64) grid was used to discretize the wavefunction in (p, 6, ¢) with p =
2(0-14)19-78 a.u., and ¢ =0(n/32)2x. The grid along 6 needed special attention as the
Hamiltonian, H, is singular at 8 =0 and 6 = n/2. The singularity at 6 =0 was more
problematic because of the 1/sin?6 term in the Hamiltonian which contributes the
highest to the eigenvalue of H and hence decides the time increment for the numerical
propagation of the wavefunction. In order to avoid the difficulties arising from these
singularities, the grid was discretized in therange 6, <0 <6_, ,whered , =023892

and 6_, = 1-55859 rad with Af = 0-04257. The choice of §,_; was dictated by various

factors Tt had to be as small as possible in order to encompass the entire region of
6 in which the wavefunction was being propagated. But we knew that the lowest
energy of the symmetric top configuration (6 = 0) of HeH was approximately 2V,
and hence symmetric and near-symmetric top configurations would not be attained
at energies much lower than that, validating the exclusion of 6 = 0 and nearby points
in the present study. In addition, a value of 6_, close to zero would drastically
increase the upper bound to the eigenvalue of the Hamiltonian and hence necessitate
very small time increments for the numerical propagation of the wavefunction, making
the computation prohibitively expensive.

The translational wave packet was centered at p, = 8 a.u. and was given a momentum
corresponding to an (E_,_ > of 1eV. The time evolution of the wavefunction was
carried out using the Chebyschev polynomial expansion of the evolution operator
(Tal-Ezer and Kosloff 1984) and a three-point finite difference scheme for the spatial
derivatives. The fast Fourier transform method was not used for the evaluation of
the spatial derivatives as the wavefunction along 6 was not periodic. To make it
periodic along 6, we would have had to extend the 6 grid to the range 7/2 to =, thus
doubling the storage and computational requirements.

3. Results and discussion

As a test case, for v=1, j=0 of H; at {E, > =1eV, the wavefunction was
propagated for 50 time steps with each time step At = 5-38fs. The probability density
distribution obtained in (6, ¢) space at the end of the time evolution for different
values of p =466, 6:06, 746 and 8-86a.u. is illustrated in figure 2. It is evident from
figure 2a for p = 4-66 a.u. that a significant portion of the wave packet is trapped in
the interaction region. With increase in p, the coupling between the different channels
becomes weaker, and the wavefunction begins to concentrate around the different
asymptotic channel positions as can be seen from figures 2b—d. It is also clear from
these plots that the wavefunction has not reached the 6, . boundary, and our choice
of 6_. has not had any deleterious effect on the propagation of the wavefunction.
Due to the trapping of a significant portion of the final wavefunction in the inter-
action region, we could not adopt the usual method of projecting the final wave-
function onto different asymptotic (diatomic) vib-rotational states for obtaining state-
resolved reaction probabilities. Such a procedure can be applied only if the wave
function has completely moved out of the interaction region and well over into the
different asymptotic channels. Temporal evolution till this is achieved would lead to
problems arising from artificial interference due to reflection of the wavefunction
from the large p boundary. But this can be circumvented by employing absorbing
boundaries at large p values. In addition, it is possible to monitor the flux at a large
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Figure 2. Plots of probability density as a function of 6 and ¢ for fixed values of p = 4-66,
6-06, 7-46 and 8-86a.u. in (a)-(d) respectively, at the end of the time evolution for 50 time
steps with each time step = 538fs, for v=1 of H}, (E_ > =1¢V, the initial wavepacket
centred at p, = 8a.u. ‘
p and determine the energy-resolved reaction probability by switching over to an
o E-representation (for example, see Markovi¢ and Billing 1992b). But as a first step
f we have computed the overall reaction probability by integrating numerically the

probability density in the two HeH* + H channels using the extended Simpson’s
rule. We hope to report on the E,___dependence of state-to-state reaction probabilities
in the near future.

Results for v =0 and 1 given in table 1 show a clear vibrational enhancement of
the reaction, in qualitative accord with the experimental (Chupka and Russel 1968;

trans

Table 1. Average reaction probabilities {(P*) for
v=0and 1 of H} (j=0) at <E_, > =1eV for the

trans
wavepacket centred at p, =8a.u.

PR

v Channel I  Channel I Total (P*}

0 0:037 0042 0079
1 0103 0110 0213
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Chupka et al 1969; Chupka 1972; Pacak et al 1977; Turner et al 1984; van Pijkeren
et al 1984; Govers and Guyon 1987; Achtenhagen et al 1991; Pollard et al 1991) and
3D quasiclassical trajectory (QCT) results (Kuntz and Whitten 1975; Whitten and
‘Kuntz 1976; Joseph and Sathyamurthy 1984, 1987; Kumar and Sathyamurthy 1989,
1993). This is in striking contrast to the earlier time-independent (Kouri and Baer
1974; Adams 1975; Joseph and Sathyamurthy 1985; Sathyamurthy et al 1987) as well
as time-dependent (Stroud et al 1977; Balakrishnan and Sathyamurthy 1991, 1993)
quantum mechanical results for the reaction in collinear geometrices which did not
reveal vibrational enhancement. Recent 3D time-independent quantal calculations
(Kress et al 1990; Zhang et al 1990; Lepetit and Launay 1991) for the reaction have,
however, revealed vibrational enhancement. Unfortunately, our results are not directly
comparable to the 3D time-independent quantum mechanical (TIQM) results as the
latter are highly energy-resolved and they reveal a large number of narrow reactive
scattering resonances. In such situations, the standard practice (see, for example,
Balakrishnan and Sathyamurthy 1991) is to obtain the energy-averaged result from
the TIQM calculations and compare it with the TDQM result. Unfortunately, the
TIQM results are available only over a limited range of E, .- An indication of
resonances in 3D dynamics is available from the complicated structures in the
probability density plots. Furthermore, the fact that quite a bit of the probability
density is confined to small p values at the end of the time evolution puts a lower
bound on the lifetime of the collision complex: 0-27 ps, in accord with the estimates
from the TIQM calculations. A more quantitative account of the complex formation
will be reported subsequently. Already the present set of calculations took about 7
hours of cpu time for each choice of v and {E,,_ > on our Convex C220. -
We have also carried out a preliminary investigation of the isotopic exchange
reaction

He+HD* >HeH" +D; HeD* + H

which is particularly relevant in the light of some discrepancies between experimental
(Turner et al 1984) and 3D QCT calculations (Bhalla and Sathyamurthy 1989; Kumar
et al 1993) for this reaction. For example, experiments showed that the isotopic
branching ratio

pe_ 2 Gl ™
c"(HeD™)

where ¢F is the exchange cross section for the appropriate channel, was an increasing
function of v, for v=1-3 of HD™* at E_,__ = 1€V, whereas the 3D QCT calculations
showed that I'® remained approximately constant at about 0-9 for v = 1-3 (see table 2).

Grid parameters used in the TDQM calculations for HeHD™* are the same as
those used for HeH; . The different asymptotic channel positions however are as
- follows: the He + HD* channel at ¢ = 180°, the HeH* + D channel at ¢ =93-73°
and the HeD ™ + H channel at ¢ = 303-82°. The results for v = 1-3 and j=00ofHD™,
CE, s> = 1€V, in table 2 show a preferential HeD* formation with I'E being almost
constant (0-5-0-6), in qualitative agreement with the QCT results. A more detailed

study of the isotopic branching, especially the translational dependence of I'%, is being
pursued further. ‘
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Table 2. Average reaction probabilities (P®) and branching
ratios F'Eforv=1,2and 3 of HD*(j=0), (E
the isotopic branching in HeHD ™ obtained from 3D TDQM
calculations using po=8au. I values from 3D QCT
calculations and experimental results

trans

are included for

> =10¢eV, for

comparison.

<Py re
v HeH* + H HeD* + H a b c
1 0-078 0-153 0-51 091 072
2 0-088 0-168 052 092 104
3 0-094 0-155 061 086 1-38

a - Present; b-3D QCT (Bhalla and Sathyamurthy 1989);

¢— Experiment (Turner et al 1984).

4. Conclusion
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Preliminary results of three-dimensional (J = 0) time-dependent quantal calculations
for He-H; (v =0, 1) collisions reproduce the vibrational enhancement known from
experiments and 3D QCT calculations. TDQM calculations for He-HD* reveal a
preferential HeD* formation over HeH ™, in accord with experiment and 3D QCT
theory for v=1 of HD*. But with increase in v to 2 and 3, I'® obtained from the
TDQM calculations remains approximately constant in contrast to the experiments,
which suggest an increase in I'E.
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