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Experimental and computational studies indicate that the

formation of a series of zinc 4-cyclohexene-1,2-dicarboxylates

takes place under thermodynamic rather than kinetic control.

There has been extensive work in recent years on the synthesis and

characterization of hybrid inorganic–organic framework materials

based on metal carboxylates.1 These syntheses have yielded an

extraordinary diversity of products2–4 depending on parameters

such as the reaction temperature, time, the concentration of

starting materials and the solvent. A systematic study on cobalt

succinates5 revealed the most important variable to be the reaction

temperature, suggesting that the products form under local

thermodynamic control. Here, we report three new hybrid

materials resulting from reactions of zinc oxide with 4-cyclohexene

cis-1,2-dicarboxylic acid (H2CY). The structures of several alkali

metal salts6 of CY and a cobalt–CY coordination polymer7 have

been reported, all containing the cis isomer; these materials were

prepared at room temperature. By contrast, we recently described8

hydrothermal reactions of manganese and cobalt salts with the cis-

dicarboxylic acid that yielded only products containing the trans-

acid, indicating that an isomerization of the organic component

took place during the reactions. The driving force for this behavior

was not clear. We have now studied the reaction of ZnO with

H2CY at different temperatures and obtained products with both

the cis and the trans ligands. On the basis of our experimental

observations and ab initio calculations, we have attempted to

rationalise the kinetic and thermodynamic factors that control the

formation of the various products under different conditions.

Hydrothermal reactions{ led to single crystals of three new zinc

1,2-dicarboxylates: Zn(C8H8O4)?2H2O, 1, a dihydrate that forms

at temperatures ,100 uC, and two anhydrous polymorphs,

a-Zn(C8H8O4), 2, and b-Zn(C8H8O4), 3, which were prepared at

150 uC. The b polymorph is the dominant product at higher

temperatures, especially at longer reaction times. Varying the

reaction conditions did not reveal any further phases.

The crystal structure9 of 1 shows an unusual Zn2+ coordination

geometry (Fig. 1). There are four short Zn–O bonds (one to O5, a

water O atom) with typical10 bond lengths of 1.9409 (13)–2.0287

(12) Å and two much longer bonds, with Zn1–O1 5 2.5595 (12)

and Zn1–O4b 5 2.8445 (12) Å (see Figure captions for symmetry

codes). These long bonds arise from bidentate –CO2 moieties that

are also linked to Zn by short bonds. The bond angles for the short

Zn–O bonds correspond to distorted tetrahedral geometry [87.99

(5)–124.06 (5)u], but when the long bonds are also considered, no

simple polyhedral shape results. An alternative description11 is a

‘‘double-capped tetrahedron,’’ with the long Zn1–O1 and Zn1–

O4b bonds protruding through the tetrahedral face described by

O2, O3b and O5. The CY dianion in 1 is clearly the starting cis

isomer, with the C1 carboxylate group equatorial and the C8

group axial with respect to the half-chair cyclohexene ring [torsion

angle C8–C7–C2–H2 5 177u]. The second water molecule, O6,

does not coordinate to the zinc but is located in the channels of the

structure. Both water molecules participate in two O–H…O

hydrogen bonds each. The crystal packing for 1 results in a two-

dimensional coordination polymer with the zinc cations linked into

bc-plane sheets by the CY dianions. The pendant organic groups

interact with their neighbours in adjacent sheets by van der Waals

forces (Fig. 2).

Compound 2 contains12 two zinc cations and two CY dianions

in the asymmetric unit (Fig. 3). Again, the zinc coordination is

unusual: Zn1 has four close neighbours [Zn–O 5 1.957 (3)–

2.038 (3) Å] and a fifth O atom in its coordination sphere some

2.488 (4) Å distant. This ZnO5 polyhedron could be described as a

‘‘singly capped tetrahedron’’, with the long Zn1–O1 bond roughly

protruding through the tetrahedral face defined by O2, O4b and
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Fig. 1 Fragment of 1 showing the bicapped tetrahedron surrounding Zn.

Symmetry codes: (a) 2x, K + y, K 2 z, (b) 2x, 2y, 2z. Ellipsoids shown

at 50% displacement with arbitrary spheres for the hydrogen atoms.
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O6. Zn2 is unambiguously tetrahedral, with four Zn–O bonds in

the narrow range 1.924 (3)–1.943 (3) Å; the next nearest O atom is

over 3.2 Å away. The CY dianions in 2 are both in their starting cis

isomeric forms with C8/O3/O4 equatorial and C1/O1/O2 axial for

the first molecule [C1–C2–C7–H7 5 172u] and C9/O5/O6

equatorial and C16/O7/O8 axial for the second [C16–C15–C10–

H10 5 175u]. The structure of 2 again comprises a two-

dimensional coordination polymer, with the Zn polyhedra bridged

by the CY dianions (Fig. 4). Again, the pendant organic groups lie

between the inorganic layers.

Phase 3 is isomorphous13 with Co(C8H8O4)
8 and contains one

Zn2+ cation and one CY dianion in the asymmetric unit. The

coordination of Zn1 is significantly distorted tetrahedral, with Zn–

O distances ranging from 1.914 (2) to 1.968 (2) Å and O–Zn–O

angles from 99.10 (11) to 129.25 (12)u. In 3, the CY dianion has

isomerized to its trans form and both carboxylate moieties take up

equatorial orientations with respect to the ring. The H3–C3–C4–

H4 and C1–C3–C4–C2 torsion angles are 177 and 56.3 (4)u,
respectively. As described earlier, 3 adopts a two-dimensional

structure consisting of arrays of ZnO4 tetrahedra bridged into an

infinite sheet by way of the CY moieties. As seen in 1 and 2, the

pendant organic groups interact by van der Waals forces.

In order to obtain greater insight into the relative importance of

kinetic versus thermodynamic factors during the syntheses of 1, 2

and 3, calculations of their relative total energies were carried out

using first principle calculations, with the aim of understanding the

influence of water and the ligand conformation (cis or trans) on the

energetics of the different structures. The second goal was to

identify the driving forces that lead to the formation of one

structure rather than another as the reaction conditions are

changed. In the absence of validated force fields for hybrid

materials, plane wave based density functional theory (DFT) has

proved to be efficient in addressing the energetics and structures of

hybrid compounds.14 Calculations were performed with

CASTEP,15 where a PBE exchange correlation function was used

within the GGA approximation, with a kinetic energy cut-off of

Fig. 2 Polyhedral plot of 1 with ZnO4 tetrahedra shown in yellow,

C atoms grey, coordinated O pink, non-coordinated water O red.

Fig. 3 View of the atomic connectivity in 2. Note how the Zn centres are

bridged by three carboxylates (C atoms C9, C8b and C16c). Symmetry

codes: (a) 1 2 x, y 2 1/2, K 2 z; (b) x, K 2 y, z 2 1/2; (c) x, K 2 y; z + 1/2.

Fig. 4 Polyhedral plot of the structure of 2. Colours as Fig. 2 with the

Zn1O5 polyhedron coloured green.

Fig. 5 Comparison of experimental and DFT-relaxed cis structure, 2.

Hydrogen atoms have been omitted for clarity. Blue framework

corresponds to the experimental cis structure, where the zinc atoms are

highlighted in red. Relaxed structure shown in green where zinc atoms are

shown in pink.
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340 eV. In each case, the energies were minimized by geometry

optimization at constant volume (to minimise calculation artifacts

due to imprecise sampling of dispersion forces) starting from the

experimental structures and using the observed lattice parameters

and symmetry. The energy-minimized structures are in very good

agreement with the experimental ones, confirming the finding of

recent work14 that showed equally good agreement for a different

family of hybrid materials (see Fig. 5).

The energies of the three hybrid structures normalized per zinc

atom are as follows (with the corresponding densities in

parentheses): 1 25786.923 eV (1.80 g cm23); 2 24845.277 eV

(1.74 g cm23); 3 24845.417 eV (1.85 g cm23). Taking into account

the energy of two water molecules (2940.522 eV), the cis-

dihydrate, 1, is more stable than the cis-anhydrous phase, 2, by

y1.12 eV, or 108 kJ mol21. Since the water is lost into solution

under hydrothermal conditions, rather than into the gas phase, the

internal energy change, DE, for the reaction:

ZnC8H8O4?2H2O (s) A ZnC8H8O4 (s) + 2H2O (1)

is approximately +27 kJ mol21 (the heat of vaporization of two

water molecules is 81.2 kJ mol21). The calculations therefore show

that the dehydration reaction is endothermic, indicating that the

cis-dihydrate phase, 1, should be more stable at lower tempera-

tures, as observed. The formation of the anhydrous phase at the

higher reaction temperatures can be rationalized in terms of the

increase in configurational entropy associated with the release of

water into solution in this reaction. In the light of these results, and

given that dehydration reactions in a wide range of chemical

systems occur on raising the temperature, it seems clear that the

syntheses of 1 and 2 proceed under thermodynamic rather than

kinetic control.

Turning now to the relative energies of the anhydrous cis- and

trans-polymorphs, 2 and 3, we find that 3 is more stable by 0.14 eV,

i.e. approximately 13.5 kJ mol21. This finding is consistent with its

more dense structure (y6%) and indicates that its formation is

again thermodynamically driven. The other factor that is

important here is that the cis- parent acid transforms under the

higher temperature reaction conditions and with longer reaction

times to the more stable trans-acid. In previous work, the cis-

products have only been found at lower temperatures.7,8 In the

present work, we were fortunate on just one occasion to obtain

crystals of the anhydrous cis-polymorph, 2. Clearly, however, the

kinetics do play a role in that there is a delicate balance at higher

temperatures between the rate of isomerization of the acid and the

rate of formation of the hybrid products.

The most striking finding from the present work is that our

reactions appear to proceed primarily under local thermodynamic

control. This might seem unusual by comparison with the

aluminosilicate zeolite world, where hydrothermal reactions

normally proceed under kinetic control, but it is consistent with

our recent high throughput study of phase formation in cobalt

succinates5 and the observations of Attfield et al. on metal

diphosphonates.14 It remains to be seen whether such control is a

general feature of hybrid material synthesis, or varies from one

system to the next, depending on the rates of the metal–ligand

exchange reactions.
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