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Abstract

The nontrivial structure of the neutrino mass matrix, suggested by the recent Super-Kamiokande

results and data from other neutrino experiments, can be reproduced in R-parity-violating super-

symmetric theories. This requires sets of products of R-parity-violating trilinear couplings to take

appropriately chosen values. It is shown that the existing constraints on these couplings are satisfied

by these choices.

PACS number(s): 12.60.J, 11.30.Fs, 14.60.Pq

The recent data from the Super-Kamiokande (SK) collaboration provides strong evidence in support
of neutrino oscillations as an explanation of the atmospheric anomaly [1]. The observed solar neutrino
deficit [2] and the LSND accelerator experiment [3] are also indicative of neutrino oscillations. Put
together, all these evidences indicate a nontrivial structure of the neutrino mass matrix. In this paper
we show that this mass matrix can be reproduced in the R-parity violating (6R) Minimal Supersymmetric
Standard Model [4] and requires sets of products of the couplings to take up appropriate values which
are consistent with existing constraints.

‘R-parity’ in supersymmetry refers to a discrete symmetry which follows from the conservation of
lepton-number (L) and baryon-number (B). It is defined as R = (−1)(3B+L+2S), where S is the intrinsic
spin of the field. R is +1 for all standard model particles and −1 for all super-particles. However, B- and
L- conservation are not ensured by gauge invariance and hence there is a priori no reason to set these
couplings to zero.

The most general 6R superpotential is given by,

W6R =
1

2
λijkLiLjE

c
k + λ′

ijkLiQjD
c
k +

1

2
λ′′

ijkU c
i Dc

jD
c
k + µiLiHu, (1)

where i, j, k = 1, 2, 3 are quark and lepton generation indices; Li and Qi are SU(2)-doublet lepton and
quark superfields respectively; Ec

i , U c
i , Dc

i are SU(2)-singlet charged lepton, up- and down-type quark
superfields respectively; Hu is the Higgs superfield responsible for the generation of up-type quark masses;
λijk and λ′

ijk are L-violating while λ′′
ijk are B-violating Yukawa couplings. λijk is antisymmetric under

the interchange of the first two generation indices, while λ′′
ijk is antisymmetric under the interchange

of the last two. Thus there could be 27 λ′, 9 each of λ and λ′′ couplings and 3 µi parameters. We
assume that the generation indices correspond to the flavour basis of fermions. We note at this point
that proton stability severely restricts the upper limits on the products of B- and L-violating couplings
[5]. Therefore our requirement of ‘not-too-small’ L-violating couplings for the present analysis implies
that the B-violating couplings are either zero or vanishingly small. In any case, the λ′′

ijk couplings are
not of any relevance to the present work.

Stringent constraints on individual L-violating couplings have been placed from the consideration of
neutrinoless double beta decay, νe-Majorana mass, charged-current universality, e − µ − τ universality,
νµ deep-inelastic scattering, atomic parity violation, τ decays, D and K decays, Z decays, etc. Product
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couplings (two at a time), on the other hand, have been constrained by considering µ − e conversion,
µ → eγ, b → sγ, B decays into two charged leptons, KL − KS and Bq − B̄q (q = d, s) mass differences,
etc. (For a collection of all these limits, see [6]).

In this work, we are concerned with the generation of neutrino masses and mixings. One of the
neutrino states can develop a non-zero tree-level mass from the last term of eq. (1). This obtains if µα

and the vacuum expectation values 〈Lα〉, where α = 0, .., 3, considered as two four component vectors,
are not aligned [7]. Here, L0 ≡ Hd (the Higgs responsible for the mass generation of down-type quarks
and charged leptons) and µ0 ≡ µ (note, µHdHu appears in the R-parity-conserving superpotential). This
procedure cannot generate the other terms of the mass matrix. Here we are interested in reproducing the
complete mass matrix as masses and mixings of neutrinos are both essential ingredients of our analysis.
So we concentrate on the alternative way in which Majorana masses are generated at 1-loop order via
self-energy diagrams involving λ or λ′ couplings (we will discuss this in detail in the following paragraphs).
The complete mass matrix can be generated by considering different leptonic flavour indices attached to
λ or λ′. For the sake of simplicity, we choose the µi terms in (1) to be zero. Although this amounts
to a slight loss of generality, dropping these terms helps to examine in isolation the rôle of the trilinear
couplings, the focus of our analysis, in reproducing the recent neutrino data. Moreover, the numerical
impact of the tree-level contribution induced by the µi terms could be tuned to be very small by arranging
a perfect or a close alignment between µα and 〈Lα〉 at some high scale. The misalignment that might
creep in through renormalisation group running is suppressed by loop factors [8, 9]. As a result, it is
possible to arrange that the other contribution, namely, the one induced by trilinear L-violating terms,
dominates. Hence for the order of magnitude estimate of the values that we assign on the product of
trilinear couplings, dropping the µi parameters is not unjustified. We are also not interested in see-saw
type contributions to neutrino masses, which involve heavy right-handed neutrinos.

Majorana mass terms for the left-handed neutrinos can be generated through quark-squark loop
diagrams (Fig. 1(a)) which involve the λ′ couplings in the following way:

mνii′
≈

3

8π2
λ′

ijkλ′
i′kj

mdj
∆m2

k(d)

mq̃
2

. (2)

These mass terms can also be generated through lepton-slepton loop diagrams (Fig. 1(b)) which are
related to the λ couplings as:

mνii′
≈

1

8π2
λijkλi′kj

mej
∆m2

k(l)

ml̃
2

. (3)

In eqs. (2) and (3), ∆m2(f) represents the left-right sfermion mixing term which we assume can be
parametrized as ∆m2(f) ≈ mfm̃, where m̃ is the average squark mass mq̃ and the average slepton mass
ml̃ in eqs. (2) and (3) respectively.

Strictly speaking, in eq. (2) some quark mixing angles ought to appear. This is because the 6R-
interactions are written in the flavour basis while the states propagating in the loop diagrams are the
mass eigenstates. If the entire Cabibbo-Kobayashi-Maskawa mixing is attributed to the down-type quark
sector then the replacement mdj

→ Σl|Vlj |
2mdl

is needed. On the contrary, if the entire quark mixing
is in the up-type sector then no changes are necessary. It also needs to be remarked that at the two
vertices d-type quarks of opposite chiralities appear. The mixing of quarks in the right-handed sector
cannot be probed via the Standard Model interactions and the choice which yields the factor mentioned
earlier corresponds to taking identical mixing for both chiralities. In order not to complicate matters
unnecessarilly, we have ignored this small difference in the flavour and mass bases in the following.

The mass matrices generated in this way correspond to the flavour-basis of fermions. The expressions
above resemble the see-saw m2

D/M formula to some extent but there are several differences. mD is the
neutrino Dirac mass – in GUT motivated models related to the up-type quark mass – whereas here we
have charged lepton or down-type quark masses in the numerator. More importantly, the smallness of the
neutrino masses in this picture is due not just to mass ratios but also to the sizes of the 6R interactions.

We consider mixing of the three neutrinos as:




νe

νµ

ντ



 = U





ν1

ν2

ν3



 (4)
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where νe, νµ and ντ are the flavour states and ν1, ν2 and ν3 are mass eigenstates with masses mν1
, mν2

and mν3
respectively, which we choose to satisfy the hierarchical mass structure mν1

< mν2
< mν3

. The
mixing matrix U is taken to be real and can be parametrised in terms of three mixing angles θ12, θ23 and
θ13 as

U =





c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13



 (5)

where c and s stand for cosine and sine respectively of the mixing angles.
As is well known, neutrino oscillations depend on two factors: (a) the flavour eigenstates and mass

eigenstates do not coincide, and (b) the mass eigenstates are not degenerate. The experimental indications
of neutrino oscillations can be used to restrict the possible ranges of the mixing angles and neutrino
mass splittings, ∆m2. For example, it has been shown [10] that the recent SK data, along with the
CHOOZ [11] and the pre-SK solar neutrino results, can be accommodated in a three neutrino oscillation
model at 99% CL, with sin2 θ12 = 0.4, sin2 θ23 = 0.5, sin2 θ13 = 0.2, ∆m2

32 = m2
ν3

−m2
ν2

= 8× 10−4 eV2,

∆m2
21 = m2

ν2
− m2

ν1
= 1 × 10−4 eV2. Another group [12] claimed a good overall fit to the atmospheric

SK data for θ12 = 37.6o, θ23 = 26.5o, θ13 = 10.3o, ∆m2
32 = 0.4 eV2, ∆m2

21 = 0.0003 eV2, including the
LSND and solar neutrino results in their analysis. A similar solution is also offered in ref. [13]. It needs
to be mentioned that questions about the result in ref. [12] have been raised in ref. [10] partly because
matter effects were ignored in the analysis of ref. [12]. Further, the data from the Homestake experiment
were also ignored in ref. [12]. We have examined the requirements for the values of 6R couplings from
both these fits [10, 12] and found that those implied by the results in ref. [10] are more stringent than
the other one. A similar effort, but restricted to only some individual 6R couplings and not products, has
been presented in [14] using the results of [12]. We agree with the results of ref. [14] in the appropriate
limits. An analysis containing only λ-type couplings along with a neutrino mass hierarchy inverted with
respect to ours has been presented in ref. [15].

Once the mixing matrix for the neutrinos and the mass splittings are fixed, the structure of the
neutrino mass matrix is determined. Choosing any one of the neutrino masses completely specifies this
matrix. Of course, one must bear in mind that there are some experimental limits which must be
respected. The (11) component of the Majorana mass matrix in the flavour basis is constrained to be
less than 0.46 eV from neutrinoless double beta decay experiments [16]. The masses of νµ and ντ are
constrained to be mνµ

≤ 0.17 MeV [17] and mντ
≤ 18.2 MeV [17].

Here we have performed our analysis for mν1
= 0, 0.01, and 0.1 eV taking ml̃ = mq̃ = 100 GeV. In

Table 1 we present the values which the products of λ′-type couplings must assume in order to reproduce
the neutrino mass matrix. Note that each element of the mass matrix can be generated by several different
product couplings. It should be borne in mind that the presented values are not upper bounds. The
complete mass matrix must be reproduced in order to obtain the correct mass eigenvalues and eigenstates
and for each element of the mass matrix any one of the corresponding product couplings listed in Table
1 must achieve the corresponding listed value. It is noteworthy that in several of the cases presented
in Table 1 there are strong existing constraints from other processes on the relevant product couplings
forbidding the required value. It may be mentioned that in case the sparticle masses and mixings are
determined from some model (e.g. supergravity) then the specific values of the product couplings that
we have presented will be replaced by ranges dependent on the model parameters (e.g. µ, tanβ etc.).
Further, in obtaining the results presented in Table 1 we have used as input a set of mass-splittings and
mixing angles which accommodates the data at 99% CL [10]. This is not a best-fit set and, indeed, at
99% CL for each of the parameters there will be an allowed range1. These will, in turn, lead to allowed
ranges for the product couplings rather than the specific values listed in Table 1.

Table 2 is a similar list but for products of the λ-type couplings. For ease of presentation, in this
Table we have not followed an oft-used convention in which for λijk the antisymmetry in i and j is utilised
to always choose i < j. Note that due to the antisymmetry, this Table has fewer entries than the previous
one.

1Such a range is unavailable in the published literature. Nevertheless, the given mass differences and mixing angles

enable us to examine our primary concern in this paper, i.e. whether the 6R Yukawa couplings, with assigned values allowed

otherwise, are indeed capable of reproducing the observed indication of neutrino masses and mixings.
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A somewhat similar analysis, in a two-generation νµ − ντ oscillation scenario, has been performed in
ref. [18]. Assuming ∆m2

νµντ
≃ m2

ντ
, it has been shown that λ′

233 (also, λ′
333) ∼ 10−5 and λ233 (also, λ232)

∼ 10−4 are relevant for explaining the atmospheric neutrino oscillation anomaly. Our analysis is based
on three-generation neutrino oscillation and we do not consider the effects of µi terms. On account of
mainly these two differences, the values of the 6R product couplings that we have found are a little larger
in comparison with those of ref. [18].

At this point, a discussion of the results of Tables 1 and 2 are in order. We observe that as mν1

increases, the magnitudes of the λ′
ijkλ′

ikj type products increase, whereas λ′
ijkλ′

i′kj(i 6= i′) type products
behave oppositely. The same is true for the products of the λ couplings as well. This fact is easily
comprehensible in a two generation scenario. Notice that the values of the product couplings which we
find get diluted with increased scalar masses as m̃/100 GeV, where m̃ is the mass of the relevant scalar.
Here we list the dependences of the existing bounds for some of the individual couplings (see, ref. [6])
on the squark or slepton masses: λ′

111 ∼ (mũL,d̃R
/100 GeV)2, λ′

11k(k 6=1) ∼ (md̃kR
/100 GeV), λ′

1j1(j 6=1) ∼

(mq̃jL
/100 GeV), λ′

1jj ∼ (md̃j
/100 GeV)1/2, λ′

21k ∼ (md̃kR
/100 GeV), λ′

231 ∼ (mν̃τL
/100 GeV), λ133 ∼

(mτ̃/100 GeV)1/2 and all other λijk ∼ (mẽkR
/100 GeV). For λ′

132, λ′
22k, λ′

23k(k 6=1), λ′
31k and λ′

33k the

dependences are more complicated. For λ′
i12λ

′
i21-, and λ′

i13λ
′
i31-combinations, on the other hand, it is not

necessary to take products of individual couplings. These are constrained from tree level ∆S = 2 and
∆B = 2 processes respectively. The bounds are λ′

i12λ
′
i21∼<1×10−9 (mν̃L

/100 GeV)2 and λ′
i13λ

′
i31∼<8×10−8

(mν̃L
/100 GeV)2 [6]. As listed in the Tables, the product couplings relevant for our studies of the neutrino

mass matrix are bounded from their contributions to other physical processes. It would not be out of
place to stress here that the processes from which these bounds are obtained involve exchanged scalars
which are not the same and their masses are generally uncorrelated. Notice that we have followed the
usual practice of comparing the magnitudes of product couplings from different processes assuming a
benchmark value of 100 GeV for whichever scalar is involved. Needless to say, such a comparison should
be made in a guarded way since these scalars could be highly non-degenerate. As an example, if one
considers R-parity breaking in gauge-mediated supersymmetry breaking models [19], where squarks are
much heavier than sleptons on account of the former’s strong coupling dependence in comparison with
the latter’s weak, all bounds which depend on squark masses become significantly weaker as one cannot
admit a squark mass as low as 100 GeV in the phenomenological description of such models.

We make a remark in passing that a heavier neutrino state can in principle decay radiatively into a
lighter state via graphs involving trilinear L-violating couplings. Such decays are cosmologically trouble-
some [20]. However, on account of the low mass (order eV) of even the heaviest state and the smallness
of the couplings, the decay proceeds at an extremely slow rate so that it does not take place within the
present lifetime of the universe (order 1018 s). Finally, we point out that although quite a few non-zero
L-violating couplings are required to be present simultaneously to reproduce the complete mass matrix in
our analysis, they do not, with the kind of numbers they need to assume, trigger any forbidden or highly
suppressed process at an unwanted rate. It has to be mentioned that if one attempts to realise R-parity
as an extension of the conventional flavour problem in supersymmetry in the context of an abelian [21] or
a non-abelian [22] flavour group, many non-zero 6R-couplings naturally appear together with appropriate
suppressions dictated by the flavour symmetry.

In conclusion, we have shown that in supersymmetry it is possible to reproduce the neutrino mass
matrix, as determined by the latest experimental data, through loop diagrams which involve products of
6R trilinear couplings provided sets of these products take on specific values. All the existing constraints
on these parameters are satisfied. Indeed, this might not be the only source of neutrino mass generation
of which there is a wide latitude of possibilities existing in the literature. Still our mechanism is an
‘existence proof’ in support of the observed data. Our effort to relate the smallness of neutrino masses
to the smallness of the 6R Yukawa couplings might provide an indication of their common ancestral link
rooted to some underlying flavour theory.

SR acknowledges support from the Council of Scientific and Industrial Research, India. AR has been
supported in part by the Council of Scientific and Industrial Research and the Department of Science
and Technology, India.
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Table 1: Values (not bounds) of the λ′-type product couplings for different possible ν1 masses. In deriving
our numbers, we have used the results of ref. [10]. The products marked with ‘*’ are obtained by multiplying
the upper bounds on the individual couplings.

Mass matrix Combinations mν1
= 0 eV mν1

= 0.01 eV mν1
= 0.1 eV Existing bounds

elements
λ′

111λ
′
111 9.7 10−4 1.6 10−3 1.1 10−2 1.2 10−7[6]∗

λ′
112λ

′
121 4.8 10−5 8.2 10−5 5.3 10−4 1 10−9[6]

M11 λ′
113λ

′
131 1.1 10−6 1.8 10−6 1.2 10−5 8 10−8[6]

λ′
122λ

′
122 2.4 10−6 4.1 10−6 2.7 10−5 4 10−4[6]∗

λ′
123λ

′
132 5.3 10−8 9.0 10−8 5.8 10−7 1.4 10−2[6, 23]∗

λ′
133λ

′
133 1.1 10−9 2.0 10−9 1.3 10−8 4.9 10−7[6]∗

λ′
111λ

′
211 1.1 10−3 7.3 10−4 1.4 10−4 5 10−8[6]

λ′
112λ

′
221 5.5 10−5 3.7 10−5 7.1 10−6 3.6 10−3[6]∗

λ′
113λ

′
231 1.2 10−6 7.9 10−7 1.5 10−7 4.4 10−3[6]∗

λ′
121λ

′
212 5.5 10−5 3.7 10−5 7.1 10−6 3.2 10−3[6]∗

M12 = M21 λ′
122λ

′
222 2.8 10−6 1.8 10−6 3.5 10−7 3.6 10−3[6]∗

λ′
123λ

′
232 6.0 10−8 4.0 10−8 7.7 10−9 1.4 10−2[6, 23]∗

λ′
131λ

′
213 1.2 10−6 7.9 10−7 1.5 10−7 3.2 10−3[6]∗

λ′
132λ

′
223 6.0 10−8 4.0 10−8 7.7 10−9 6.1 10−2[6]∗

λ′
133λ

′
233 1.3 10−9 8.6 10−10 1.7 10−10 2.5 10−4[6]∗

λ′
111λ

′
311 4.5 10−4 4.6 10−4 1.1 10−4 3.5 10−5[6]∗

λ′
112λ

′
321 2.2 10−5 2.3 10−5 5.4 10−6 7.2 10−3[6, 23]∗

λ′
113λ

′
331 4.9 10−7 5.0 10−7 1.2 10−7 9.6 10−3[6]∗

λ′
121λ

′
312 2.2 10−5 2.3 10−5 5.4 10−6 3.5 10−3[6]∗

M13 = M31 λ′
122λ

′
322 1.1 10−6 1.2 10−6 2.7 10−7 7.2 10−3[6, 23]∗

λ′
123λ

′
332 2.4 10−8 2.5 10−8 5.9 10−9 1.9 10−2[6, 23]∗

λ′
131λ

′
313 4.9 10−7 5.0 10−7 1.2 10−7 3.5 10−3[6]∗

λ′
132λ

′
323 2.4 10−8 2.5 10−8 5.9 10−9 1.4 10−1[6, 23]∗

λ′
133λ

′
333 5.3 10−10 5.4 10−10 1.3 10−10 3.4 10−4[6]∗

λ′
211λ

′
211 1.4 10−3 2.0 10−3 1.1 10−2 8.1 10−3[6]∗

λ′
212λ

′
221 7.0 10−5 1.0 10−4 5.4 10−4 1 10−9[6]

M22 λ′
213λ

′
231 1.5 10−6 2.2 10−6 1.2 10−5 8 10−8[6]

λ′
222λ

′
222 3.5 10−6 5.0 10−6 2.7 10−5 3.2 10−2[6]∗

λ′
223λ

′
232 7.6 10−8 1.1 10−7 5.8 10−7 6.5 10−2[6]∗

λ′
233λ

′
233 1.6 10−9 2.4 10−9 1.3 10−8 1.3 10−1[6]∗

λ′
211λ

′
311 9.9 10−4 8.0 10−4 1.7 10−4 9 10−3[6]∗

λ′
212λ

′
321 5.0 10−5 4.0 10−5 8.6 10−6 1.8 10−2[6, 23]∗

λ′
213λ

′
331 1.1 10−6 8.7 10−7 1.9 10−7 4.3 10−2[6]∗

λ′
221λ

′
312 5.0 10−5 4.0 10−5 8.6 10−6 1.8 10−2[6]∗

M23 = M32 λ′
222λ

′
322 2.5 10−6 2.0 10−6 4.3 10−7 2.2 10−1[6, 23]∗

λ′
223λ

′
332 5.4 10−8 4.3 10−8 9.3 10−9 8.6 10−2[6]∗

λ′
231λ

′
313 1.1 10−6 8.7 10−7 1.9 10−7 2.2 10−2[6]∗

λ′
232λ

′
323 5.4 10−8 4.3 10−8 9.3 10−9 1.3 10−1[6, 23]∗

λ′
233λ

′
333 1.2 10−9 9.4 10−10 2.0 10−10 1.7 10−1[6]∗

λ′
311λ

′
311 1.9 10−3 2.2 10−3 1.1 10−2 1 10−2[6]∗

λ′
312λ

′
321 9.3 10−5 1.1 10−4 5.4 10−4 1 10−9[6]

M33 λ′
313λ

′
331 2.0 10−6 2.4 10−6 1.2 10−5 8 10−8[6]

λ′
322λ

′
322 4.6 10−6 5.5 10−6 2.7 10−5 4 10−2[6]∗

λ′
323λ

′
332 1.0 10−7 1.2 10−7 5.8 10−7 6.1 10−2[6, 23]∗

λ′
333λ

′
333 2.2 10−9 2.6 10−9 1.3 10−8 2.3 10−1[6]∗
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Table 2: Values (not bounds) of the λ-type product couplings for different possible ν1 masses. In deriving our
numbers, we have used the results of ref. [10]. The products marked with ‘*’ are obtained by multiplying the
upper bounds on the individual couplings.

Mass matrix Combinations mν1
= 0 eV mν1

= 0.01 eV mν1
= 0.1 eV Existing bounds

elements
λ122λ122 6.6 10−6 1.1 10−5 7.2 10−5 2.5 10−3[6]∗

M11 λ123λ132 3.9 10−7 6.6 10−7 4.3 10−6 3 10−3[6]∗

λ133λ133 2.3 10−8 3.9 10−8 2.5 10−7 9 10−6[6]∗

λ121λ212 1.6 10−3 1.0 10−3 2.0 10−4 7 10−7[6]
M12 = M21 λ123λ232 4.4 10−7 2.9 10−7 5.7 10−8 3 10−3[6]∗

λ131λ213 9.3 10−5 6.2 10−5 1.2 10−5 3 10−3[6]∗

λ133λ233 2.6 10−8 1.7 10−8 3.4 10−9 1.8 10−4[6]∗

λ121λ312 6.4 10−4 6.6 10−4 1.6 10−4 3 10−3[6]∗

M13 = M31 λ122λ322 3.1 10−6 3.1 10−6 7.4 10−7 3 10−3[6]∗

λ131λ313 3.8 10−5 3.9 10−5 9.2 10−6 1.8 10−4[6]∗

λ132λ323 1.8 10−7 1.9 10−7 4.4 10−8 3.6 10−3[6]∗

λ211λ211 4.2 10−1 6.1 10−1 3.2 2.5 10−3[6]∗

M22 λ213λ231 1.2 10−4 1.7 10−4 9.1 10−4 3 10−3[6]∗

λ233λ233 3.3 10−8 4.8 10−8 2.6 10−7 3.6 10−3[6]∗

λ211λ311 3.0 10−1 2.4 10−1 5.2 10−2 3 10−3[6]∗

M23 = M32 λ212λ321 1.4 10−3 1.1 10−3 2.5 10−4 3 10−3[6]∗

λ231λ313 8.4 10−5 6.7 10−5 1.5 10−5 1.8 10−4[6]∗

λ232λ323 4.0 10−7 3.2 10−7 6.9 10−8 3.6 10−3[6]∗

λ311λ311 5.6 10−1 6.6 10−1 3.2 3.6 10−3[6]∗

M33 λ312λ321 2.7 10−3 3.2 10−3 1.5 10−2 3.6 10−3[6]∗

λ322λ322 1.3 10−5 1.5 10−5 7.3 10−5 3.6 10−3[6]∗
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Figure 1: The one loop diagrams contributing to Majorana mass terms for the left-handed neutrinos. Figures
1(a) and 1(b) involve λ′- and λ-type couplings respectively.
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