
 10.1101/gr.2524704Access the most recent version at doi:
 2004 14: 1756-1766Genome Res.

 
Biju Issac and Gajendra Pal Singh Raghava
 
After Combining With Sequence Similarity Approaches
EGPred: Prediction of Eukaryotic Genes Using Ab Initio Methods
 
 

Material
Supplemental  http://genome.cshlp.org/content/suppl/2004/09/01/14.9.1756.DC1.html

References

 http://genome.cshlp.org/content/14/9/1756.full.html#related-urls
Article cited in: 
 

 http://genome.cshlp.org/content/14/9/1756.full.html#ref-list-1
This article cites 29 articles, 19 of which can be accessed free at:

service
Email alerting

 click heretop right corner of the article or
Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
 go to: Genome ResearchTo subscribe to 

Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on April 28, 2011 - Published by genome.cshlp.orgDownloaded from 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291538286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://genome.cshlp.org/lookup/doi/10.1101/gr.2524704
http://genome.cshlp.org/content/suppl/2004/09/01/14.9.1756.DC1.html
http://genome.cshlp.org/content/14/9/1756.full.html#ref-list-1
http://genome.cshlp.org/content/14/9/1756.full.html#related-urls
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;14/9/1756&return_type=article&return_url=http://genome.cshlp.org/content/14/9/1756.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com


EGPred: Prediction of Eukaryotic Genes Using Ab
Initio Methods After Combining With Sequence
Similarity Approaches
Biju Issac and Gajendra Pal Singh Raghava1

Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India

EGPred is a Web-based server that combines ab initio methods and similarity searches to predict genes, particularly
exon regions, with high accuracy. The EGPred program proceeds in the following steps: (1) an initial BLASTX search
of genomic sequence against the RefSeq database is used to identify protein hits with an E-value <1; (2) a second
BLASTX search of genomic sequence against the hits from the previous run with relaxed parameters (E-values <10)
helps to retrieve all probable coding exon regions; (3) a BLASTN search of genomic sequence against the intron
database is then used to detect probable intron regions; (4) the probable intron and exon regions are compared to
filter/remove wrong exons; (5) the NNSPLICE program is then used to reassign splicing signal site positions in the
remaining probable coding exons; and (6) finally ab initio predictions are combined with exons derived from the
fifth step based on the relative strength of start/stop and splice signal sites as obtained from ab initio and similarity
search. The combination method increases the exon level performance of five different ab initio programs by
4%–10% when evaluated on the HMR195 data set. Similar improvement is observed when ab initio programs are
evaluated on the Burset/Guigo data set. Finally, EGPred is demonstrated on an ∼95-Mbp fragment of human
chromosome 13. The list of predicted genes from this analysis are available in the supplementary material. The
EGPred program is computationally intensive due to multiple BLAST runs during each analysis. The EGPred server is
available at http://www.imtech.res.in/raghava/egpred/.

[Supplemental material is available online at www.genome.org and http://www.imtech.res.in/raghava/egpred/supl/.]

Gene identification programs can be classified into two catego-
ries: ab initio methods and similarity-based methods (Mathè et
al. 2002). Ab initio methods derive multiple and dissimilar gene
structural information based on compositional properties of ex-
ons, introns, and other gene features to predict gene locations
(Fickett 1996). Similarity-based methods use localized alignment
of query sequences to known genes, proteins, complementary
DNA (cDNA), or expressed sequence tags (ESTs; Gish and States
1993).

Numerous ab initio gene prediction methods have been de-
veloped (Zhang 2002). Seven ab initio methods were evaluated
on a nonhomologous mammalian data set by Rogic et al. (2001).
They reported that among the evaluated programs, Genscan
(http://genes.mit.edu/GENSCAN.html; Burge and Karlin 1997)
and HMMgene (http://www.cbs.dtu.dk/services/HMMgene/;
Krogh 1997) were able to predict the precise locations of 70%–
80% of the coding exons with low false positives (Rogic et al.
2001). The success of these programs is believed to be dependent
on the probability that the underlying gene models are correct
and the training samples are not biased (Zhang 2002). The in-
ability of these programs to predict complete gene structure for
each gene sequence has motivated researchers to investigate the
benefits of combining predictions from two or more programs
(Murakami and Takagi 1998; Rogic et al. 2002). Four different
programs were used to develop five different combination meth-
ods for combining output from two or more programs in the
GeneScope client server (Murakami and Takagi 1998). However,

even the best of the five methods, the OR method does not
achieve the sensitivity achieved by Genscan (Murakami and
Takagi 1998). Pavlovic et al. (2002) developed a Bayesian network
framework that learns the dependencies between predictions ob-
tained from several programs or experts. The framework then
uses a Combination of experts method for predicting the genes.
The combination method uses hidden Markov models that de-
fine the captured correlation to effectively combine predictions
from different programs. The method has been applied for analy-
sis of the Adh region of Drosophila. The approach is benchmarked
against standard combination methods (based on the OR & AND
approach). However, the approach does not achieve a uniform
increase in all of the components of accuracy, particularly at the
exon level (Pavlovic et al. 2002). A combination of the predic-
tions from Genscan and HMMgene based on their probability
score was used to develop three combination methods: (1) the
exon union-intersection (EUI) method; (2) the exon union-
intersection with reading frame consistency (EUI-Frame)
method; and (3) the gene intersection (GI) method. These meth-
ods have been implemented as a Web server, GeneComber, for
prediction of genes using Genscan and HMMgene output (http://
bioinformatics.ubc.ca/genecomber/). These methods increase
the accuracy of exon prediction by 5%–10% (Rogic et al. 2002).
However, more improvement is needed for these programs to be
reliable in each single instance.

The similarity search programs, such as BLASTX and Sim4,
are very effective in improving the accuracy of gene prediction
(Gish and States 1993; Florea et al. 1998). Similarities with three
different types of sequences—proteins, cDNA/ESTs transcripts,
and genomic DNA—can provide information about exon/intron
locations (Mathé et al. 2002). Similarity searches using programs
such as BLASTX detect similarities between genomic DNA and
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database sequences. These programs indicate only the approxi-
mate locations of many coding exons. Moreover, they do not
identify every exon and do not accurately delineate exon bound-
aries (Gish and States 1993). Similarity can often be misleading,
as sometimes conservation in regions may be in only some part
of coding exons, or the similarity may extend to the introns
and/or the UTR regions of genes. However, a previous study sug-
gests that more than 50% of newly sequenced vertebrate genes
have similar sequences in the sequence databases (Claverie
1997). Most genes in the newly sequenced genomes are anno-
tated based on similarity to known sequences (Lander et al. 2001;
Waterston et al. 2002).

The recent trend in computational gene prediction is to
combine similarity information with ab initio methods (Mathè et
al. 2002; Ashurst and Collins 2003). Usually, ab initio gene pre-
diction and similarity searches are run independently with the
output from these two approaches being manually integrated for
gene annotation. Many attempts to automate the integration
have been made. Procrustes improves detection of exon bound-
aries based on close protein homolog for that gene using a
‘spliced alignment’ program (Gelfand et al. 1996). Similarly,
GeneWise combines an HMM model for gene prediction with
protein-profile HMM (Birney and Durbin 2000). GeneWise re-
quires close homologues to identify complete genes (Guigo et al.
2000). A new version of the program, called GenomeWise, uses
cDNA and ESTs to define spliced gene structure. GenomeWise
and GeneWise are used extensively in the Ensembl genome an-
notation pipeline (Birney et al. 2004). Like most alignment meth-
ods, these programs are computationally intensive and require a
preliminary scan with BLASTX or other search programs to iden-
tify the candidate regions. The TwinScan program finds genes in
high-throughput genomic (HTG) sequences containing an un-
known number of genes by exploiting the similarity between
genomes of closely related organisms (Korf et al. 2001). A highly
integrative approach is used in the EuGèneHom program that
combines predictions from the gene predictor NetGene2 and the
splice sites program SplicePredictor (Foissac et al. 2003). It inte-
grates output of TBLASTX analysis on multiple homologous se-
quences from closely related organisms, start codon and splice
site prediction, and a coding/noncoding probabilistic model to
improve gene prediction quality. However, the program is cur-
rently tuned to only plant sequences (specifically angiosperms).
Another method, the Combiner program, describes three differ-
ent scoring strategies for combining evidence available from typi-
cal annotation pipelines including ab initio gene finders, protein
sequence alignments, EST and cDNA alignments, and splice site
predictions (Allen et al. 2004). The advantage of this program lies
in its ability to integrate evidence from more than two gene
finders and other extraneous sources.

The program GenomeScan (http://genes.mit.edu/
genomescan.html) was developed for predicting genes; it is an
extension of Genscan and incorporates similarity with a protein
detected by BLASTX (Yeh et al. 2001). The method first derives
information from BLASTX into a set of probabilistic statements
which are then used to increase the likelihood of parses from
Genscan that are consistent with similarity information, and
reduces the likelihood of those parses that have no similarity.
GenomeScan is able to predict coding regions missed by both
Genscan and BLASTX when used alone (Mathè et al. 2002). The
integration of similarity information within the GenomeScan
model significantly improves the accuracy of gene prediction (in-
crease in exon sensitivity by 10%; see Results) over Genscan,
from which it is derived. Initial comparisons by the authors of
GenomeScan against GeneWise and Procrustes favor Genome-
Scan, mainly because the latter methods truncate the predicted
exons close to the end of the aligned regions, irrespective of

location of splice sites or initiation/termination signals (Yeh et al.
2001). In the present study we made an attempt to further im-
prove the accuracy of gene prediction, using a new similarity
search strategy. The quality of BLASTX predictions was improved
in two steps. We performed a BLASTN search of genomic DNA
against an intron database in order to filter spurious exons ob-
tained from a BLASTX search against the RefSeq database. The
NNSPLICE server was used to scan genomic DNA at terminal
regions of probable coding exons to assign the correct splice sites.
Exons predicted using an ab initio and similarity-based approach
were then combined based on the relative score (see Methods) of
gene structural signals. We computed the performance of our
approach and of the existing gene prediction methods on two
independent data sets. A Web-based server, EGPred, was devel-
oped that implements the approach described above. The results
of the evaluation are available as Supplemental material.

METHODS

Data Sets Used for Evaluation
Two different gene sequence data sets were used in this study for
evaluating different programs, including our EGPred. The first
data set is the HMR195 sequence data set developed by Rogic et
al. (2001), which contains a total of 195 human (103), mouse
(82), and rat (10) sequences. The HMR195 data set contains 948
exons altogether in 43 single-exon genes and 152 multi-exon
genes. The second data set is the Burset/Guigo, which contains
570 multi-exon vertebrate genes containing a total of 2649 cod-
ing exons, developed by Burset and Guigo (1996). Both of the
data sets contain sequences that have one-gene-per-sequence.

Databases for Similarity Searches
In this study we used the RefSeq (Pruitt and Maglott 2001) pro-
tein databases for the BLASTX searches. Initially the SWISS-PROT
database (Boeckmann et al. 2003) was also considered but was
not taken for extensive analysis, because a truly representative
protein database was required for this study (see Supplemental
material). The RefSeq database provides a comprehensive, inte-
grated, nonredundant set of sequences, including genomic DNA,
transcript (RNA), and protein products, for major research organ-
isms. The RefSeq protein database includes only representative
sequences from the following organisms: Drosophila melanogaster,
Danio rerio, Homo sapiens, Mus musculus, Rattus norvegicus, and
Sachharomyces cerevisiae. All of the RefSeq proteins were obtained
from ftp://ftp.ncbi.nih.gov/refseq/. To remove any unfair advan-
tage to similarity-based methods over ab initio methods, all of
the RefSeq protein sequences that are coded by HMR195 data set
sequences were removed from the two databases (see Supplemen-
tal material).

The intron database (Sakharkar et al. 2002) was obtained for
detecting potential intron regions that are then used for remov-
ing wrongly predicted exons. The intron database contains in-
tron sequences derived from experimentally validated eukaryotic
protein coding genes recovered from GenBank eukaryotic en-
tries. Intron sequences that were included in the HMR195 data
set genes were removed from the intron database to prevent un-
fair advantage to the similarity methods over ab initio methods
during the comparison.

First BLASTX
Query genomic DNA sequence is searched against the RefSeq
sequence database using the BLASTX program (Altschul et al.
1997). Initially, the expectation value (E-value) is kept at 1 to
derive all probable strong and weak hits. The word length 2 is
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chosen to make an extensive search, and the ‘�I’ option is used
to derive GI numbers of probable BLASTX hits from the database.
Predictions are obtained only for the forward strand (+). Default
parameters are selected for other options during the BLASTX
search (e.g., BLOSUM62). GI numbers extracted from the
BLASTX report are saved in a file for use in the second BLASTX
analysis.

Second BLASTX
All proteins identified in the first BLASTX are extracted. A second
BLASTX search of the genomic sequence against these limited
protein sequences with relaxed parameters (E-value <10) is used
to retrieve all probable coding exon regions without masking
low-complexity regions. The ‘�l’ option is used to provide the
BLASTX program the list file containing the GI numbers of all
hits from the initial search. Similar to the first run for BLASTX,
predictions are obtained for the forward (+) strand only.

Detection of Exons From BLASTX Output
To derive probable coding exons from the BLASTX report, we
used the following steps: (1) all high-scoring segment pairs
(HSPs) without any inframe stop codons or four consecutive gaps
are considered exons; (2) HSPs that have an inframe stop codon
are split at the stop codon, and the longest segment is considered
the exon; (3) HSPs with four consecutive gaps are split at the gap,
and the longest segment is considered the exon; (4) multiple
overlapping BLASTX hits are pruned in a preprocessing step to
keep only the strongest hit (lowest E-value).

Significance of Exons
To compute the significance of probable exons assigned above,
we derive four different exon parameters—the length of exon,
sequence identity/similarity, score and E-value of the HSP. The
sequence identity/similarity are recalculated if any exon is a sub-
region derived from an HSP.

BLASTN Search Against Introns
A BLASTN search of genomic sequences against the intron data-
base is run to identify potential intron regions in the query se-
quence. A low E-value, <10�50, and a very stringent word length,
15, are used to obtain more reliable intron hits to query se-
quence. Regions of low complexity are masked during BLASTN
searches. After the search, only introns above 60 bp in length
(average minimum intron length) are considered for our method.

Filtering of Exons
All of the probable exons and introns obtained from similarity
searches were compared in order to identify overlapping exon
and intron predictions. Different thresholds were studied for fil-
tering exons using introns. Based on the data, all exons having
40% or more overlapping length with introns were removed
from the list of probable exons (data not shown). Boundaries of
exons were reassigned if (1) only their terminal ends have over-
lapping introns, and (2) the overlap covers only 5% to 40% of
exon length. Overlapping introns of below 5% of particular exon
length are not considered, because exon-intron/intron-exon
boundaries are correctly defined by similarity methods.

Reassigning the Splice Site and Start/Stop
Signal Positions
In this step, an attempt is made to detect the positions of start/
stop codon and splice sites (e.g., intron–exon and exon–intron).
We used the Web-based NNSPLICE program (Reese et al. 1997)
for detecting the splice sites in a region +/� 50 bp upstream and
downstream of probable exon ends (http://www.fruitfly.org/

seq_tools/splice.html). NNSPLICE employs separate feedforward
neural networks with one layer of hidden units to recognize ac-
ceptor and donor sites (Reese et al. 1997). Positions other than
the original site and having more probability of being a splice site
depending on the score from the neural network are assigned as
the correct splice site for that category (i.e., acceptor/donor). In
cases of no score from the network, the original positions are
assumed to be the correct sites. For start and stop signals, the
positions of HSPs that are near the N- or C-terminals when
aligned along the length of database protein sequence are used as
a template to predict the positions of these signals. After reas-
signing the splice sites, a filtration of exons from the similarity
method is done to remove candidate exons that are less than
30% in length of the aligned region of database protein sequence.

Predictions Using Ab Initio Programs
In this study, we used the programs Genscan (Burge and Karlin
1997), HMMgene (Krogh 1997), and the EUI, EUI-Frame, and GI
methods (Rogic et al. 2002). We also compared the performance
of the EGPred method with GenomeScan, which also incorpo-
rates similarity search information (Yeh et al. 2001). All programs
were used for prediction with the default parameters as suggested
by their developers. In the case of GenomeScan, we used the Web
server for prediction. Predictions using GenomeScan are ob-
tained by providing each gene from the data set, the set of pro-
tein hits that are obtained for that gene from BLASTX search
against the RefSeq database used above. This provides all meth-
ods with the same pool from which to derive information about
gene structure.

Combination of Ab Initio
and Similarity-Based Predictions
The exons predicted from an ab initio method and a similarity
search approach are divided into five groups. The first group
contains all exons that are predicted exactly the same by both
approaches and are considered true exons. The second group
contains exons from both methods where only the 5� end
matches. The positions from ab initio predictions are replaced
with positions from similarity predictions at the 3� end on the
following conditions: (1) the ab initio method predicts the exon
as a ‘last exon’ type, and the similarity method predicts an over-
lapping ‘internal exon’ with donor site. The identity of exon
from the similarity-based method should be above 90% to data-
base sequence, and the score of NNSPLICE prediction should be
above 0.5 to allow the replacement of 3� end; (2) the ab initio
method predicts a ‘single exon’ type, and the similarity method
predicts an ‘initial exon’ type with donor site. The 3� end is re-
placed if the identity of the similarity-derived exon is more than
95% to database sequence and the score of donor site from
NNSPLICE is above 0.9; (3) The ab initio method predicts an
‘initial exon’ type, and the similarity method predicts a ‘single
exon’ type with very high significance of E-value below 10�200;
(4) both the ab initio and similarity-based methods predict an
‘internal exon’ type, and the NNSPLICE predicts a donor site with
score above 0.5. The third group contains exons from both meth-
ods where only the 3� end matches. The position of the 5� end
from ab initio predictions is replaced on the following condi-
tions: (1) both the ab initio and similarity-based methods predict
an ‘initial exon’ type and very high significance of E-value below
10�50; (2) both the approaches predict a ‘single exon’ type, and
the exon from the similarity method has a very high significance
of E-value <10�200; (3) both the approaches predict an ‘internal
exon’ type, and NNSPLICE predicts an acceptor site with a score
above 0.5; (4) the ab initio method predicts an ‘internal exon’
type, and the similarity method predicts an ‘initial exon’ type
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with identity above 90% with database sequence; (5) the ab initio
method predicts a ‘single exon’ type, and the similarity-based
method predicts an ‘internal exon’ type with high significance of
E-value <10�100, and NNSPLICE predicts an acceptor site with a
score above 0.5. The fourth group contains exons from both
methods that overlap each other with both ends being dissimilar.
The positions of 5� ends of such exons are replaced with positions
from the similarity-based method on the following conditions:
(1) the ab initio method predicts an ‘initial exon’, and the simi-
larity approach predicts a ‘single exon’ type with more than 90%
identity; (2) the ab initio method predicts a ‘single exon’ type
and the similarity approach predicts an ‘internal exon’ with high
significance of E-value <10–50, and NNSPLICE predicts an accep-
tor site with a score above 0.5; (3) both approaches predict an
‘internal exon’ type, and NNSPLICE predicts an acceptor site
with a score above 0.5. The positions at 3� ends of overlapping
exons are replaced with positions from the similarity approach
on the following conditions: (1) both approaches predict an ‘in-
ternal exon’ type, and NNSPLICE predicts a donor site with a
score above 0.5; (2) both approaches predict an ‘initial exon’,
with NNSPLICE predicting a donor site with a score above 0.5.
The fifth group contains exons predicted only by the similarity
method (E-value <10�50) or by the ab initio program (probability
>0.5) alone are considered true exons. For the EUI, EUI-Frame,
and GI methods, the probability score is not considered, as they
are combination methods.

Rules for Combination of Exons From Both Approaches
In this study, the rules were derived based on accuracy achieved
on predictions from the HMR195 data set. The boundaries of
predicted exons from ab initio methods were modified based on
occurrence of conflicting evidence from the similarity search
against protein sequences or intron sequences and evidence of
different positions for splice sites predicted by the NNSPLICE
program. The modification is affected only when additional evi-
dence from the BLAST or NNSPLICE programs are above a cutoff
threshold. Cutoffs for percent identity (PID) and expectation
value (E-value) in cases of BLAST-predicted exons or introns and
the cutoff for scores in cases of splice sites from NNSPLICE were
derived from the HMR195 data set. The cutoffs are dependent on
types, exons—initial, internal, terminal, and single exons—that
are predicted by both similarity-based and ab initio methods.

Accuracy Measures
The accuracy measures for evaluating the different methods used
in this study were previously reported by Burset and Guigo
(1996) and Rogic et al. (2001). We used the excellent script de-
veloped by Rogic et al. (2001) for computing accuracy measures
that is available at their Web site. However, modifications were
made in the script to perform averaging over all sequences in the
data set instead of averaging only over those sequences for which
predictions were obtained. This prevents overestimation of spe-
cific accuracy measures. All of the predictive accuracy measures
at the nucleotide and exon levels were calculated as given below.

Nucleotide-Level Accuracy
We define TP (true positives) as the number of coding nucleo-
tides predicted as coding; TN (true negatives) as the number of
noncoding nucleotides predicted as noncoding, FP (false posi-
tives) as the number of noncoding nucleotides predicted as cod-
ing, and FN (false negatives) as the number of coding nucleotides
predicted as noncoding. Accordingly,

Sen�sensitivity� =
TP

TP + FN
and Spe�specificity� =

TP
TP + FP

These are widely used measures of accuracy for gene predic-
tion programs. Two measures that capture both specificity and
sensitivity are the CC (correlation coefficient) and AC (approxi-
mate correlation). However, AC has the advantage over CC, be-
cause the latter is not defined in cases where the subject sequence
lacks either coding regions or noncoding regions. AC is defined
by Burset and Guigo (1996) as:

AC = ��1
4 � TP

TP + FN
+

TP
TP + FP

+
TN

TN + FP
+

TN
TN + FN�� − 0.5� * 2

Exon-Level Accuracy
Exon-level sensitivity (ESEN) is defined as the proportion of ac-
tual exons that are accurately predicted as exon. Exon-level speci-
ficity (ESPE) is defined as the proportion of predicted exons that
are accurately predicted. The average of exon-level accuracy
(EAVG) is defined as the average of exon-level sensitivity and
exon-level specificity. Usually this is used as a reliable measure of
a program’s exon-level accuracy. To get a better estimate of pre-
diction accuracy of the analyzed programs, we also computed the
number of CRs (correct exons), WEs (wrong exons), MEs (missed
exons), PCs (partially correct exons) and OLs (overlapping ex-
ons), where CRs represent those predicted exons that are cor-
rectly predicted, WEs are the noncoding regions predicted as ex-
ons, MEs are the exons predicted as noncoding regions, PCs are
those predicted exons that have at least one end of exon correctly
predicted, and OLs are predicted exons that overlap actual exons.

Application to the Human Chromosome 13
The region of human chromosome 13 sequence of ∼95 Mbp in
length (from 17,918,001 to 114,093,021 bp) that was sequenced
and analyzed recently (Dunham et al. 2004) was obtained from
http://www.sanger.ac.uk/HGP/Chr13/. The annotation available
in the public domain for the segment of human chromosome 13
analyzed was obtained from http://vega.sanger.ac.uk/Homo_
sapiens/exportview.

Because EGPred is critically dependent on its component
program for accurate prediction, it is necessary to use programs
that can predict multiple genes in long DNA sequences. There-
fore, genes were predicted in chromosome 13 using EGPred
methods that use the Genscan and HMMgene programs in com-
bination with a similarity-based approach, as these ab initio pro-
grams are capable of predicting more than one-gene-per-
sequence. EGPred by default predicts genes only in the forward
strand. Therefore, the chromosome sequence is re-analyzed for
the reverse strand by reverse-complementing the entire genomic
DNA before analysis using EGPred. Because the EGPred method
predicts genes only in the forward strand, the entire sequence
was reverse-complemented and then used for prediction on the
reverse strand. The predictions for the reverse strand are com-
puted from the last base towards the first base, whereas predic-
tions for the forward strand imply that positions of exons are
computed from the first base towards the last base. The annota-
tion available in the public domain was compared against the
predictions from EGPred.

RESULTS

Gene Prediction Using Similarity Search

HMR195 Data Set
The performance of similarity search methods using BLASTX,
second BLASTX, incorporation of intron information, and splice
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site information from the NNSPLICE program is shown in Table
1. The second BLASTX search of query sequence against the hits
from the previous BLASTX on the HMR195 data set increases the
number of correctly (CR) predicted exons from 36 to 75, and the
number of partially correct (PC) exons increases from 277 to 317.
This also reduces the number of wrongly predicted (WE) exons
from 1920 to 962. On the other hand, the second BLASTX re-
duces the number of overlapping (OL) exons from 643 to 453,
and increases the number of missed (ME) exons from 98 to 117.
There is significant improvement in sensitivity (ESEN, from 0.04
to 0.18) and specificity (ESPE, 0.02 to 0.12) at the exon level.
Incorporation of intron information reduces WE from 962 to
380, whereas ME is increased from 117 to 124. Modifications of
the splice site positions using the NNSPLICE program signifi-
cantly increase the exon-level sensitivity (ESEN) from 0.18 to
0.58, and exon-level specificity (ESPE) from 0.13 to 0.56. Because
the derivation of rules for margining conflicting evidence from
more than one source is based entirely on the HMR195 data set,
there might be a probable bias in performance for the HMR195
data set. To study the effect of these rules on independent data
sets, the performance of EGPred was evaluated on the Burset/
Guigo data set.

Burset/Guigo Data Set
A similar trend was observed in the Burset/Guigo data set, where
the results achieved validate the consistency of rules derived on
the HMR195 data set to be generalized and therefore equally
effectively on independent data sets. Table 3 (below) suggests an
improvement of performance in the Burset/Guigo data set on
adding similarity search information, where the second BLASTX
increases the CRs from 123 to 168 and PCs from 746 to 1050. The
number of WEs is reduced from 5697 to 1867. However, OLs are
reduced from 1737 to 1070, and MEs increase from 246 to 380.
The average performance (EAVG) at the exon level increases from
0.03 to 0.05. On incorporating the intron information, WEs de-
crease from 1867 to 574 and MEs increase from 380 to 421. The
integration of splice site positions based on scores obtained from
the NNSPLICE program increases the EAVG from 0.06 to 0.66
(Table 1).

Performance of Ab Initio Programs

HMR195 Data Set
The performance of the ab initio methods—Genscan, HMMgene,
EUI, EUI-Frame, and GI—on the HMR195 data set is shown in
Table 2. The performance of these methods after incorporating
similarity search information from the protein database and after
incorporating similarity information from protein and intron da-
tabases with splice site information is also shown in Table 2. The
ESEN for Genscan increases from 0.70 to 0.81, the ESPE increases
from 0.69 to 0.73, and the EAVG increases from 0.70 to 0.77 on
incorporating similarity information against the protein data-
base. Specificity at the exon level further increases from 0.73 to
0.74 when similarity information from intron and splice sites is
incorporated. The improvement is at both the nucleotide and
exon levels (Table 2). It was interesting to note that there were no
missing genes when similarity information is included, whereas
original Genscan missed three genes. Similarly, no genes were
missed by the ab initio methods on inclusion of similarity infor-
mation, unlike the original programs, where the numbers of
missed genes were five, three, three, and 15 for the HMMgene,
EUI, EUI-Frame, and GI methods respectively. On inclusion of
similarity information from proteins, the ESEN for HMMgene
increases from 0.74 to 0.80 and ESPE increases from 0.75 to 0.78.
ESPE further increases to 0.78 on including similarity informa-
tion from intron and splice site predictions. EAVG for HMMgene
also increases from 0.75 to 0.80 on incorporating complete in-
formation from similarity searches and NNSPLICE predictions. A
similar trend was observed for the EUI, EUI-Frame, and GI meth-
ods, where the performance of all methods improves signifi-
cantly at the exon as well as nucleotide levels (Table 2).

The performance of GenomeScan was also evaluated on the
HMR195 data set. It achieves ESEN of 0.78, ESPE of 0.71, and
EAVG of 0.74. The number of genes missed by GenomeScan is
one, demonstrating that the strategy adopted here is more effec-
tive than the strategy used by Yeh et al. (2001) in GenomeScan.

Burset/Guigo Data Set
The performance of the ab initio programs on the Burset/Guigo
data set is shown in Table 3. The performance of Genscan on

Table 1. BLASTX Performance on HMR195 and Burset/Guigo Data Set on Adding Similarity Information

Program
No.

genes

Nucleotide level Exon level

SEN SPE AC CC CR PC OL ME WE ESEN ESPE EAVG

HMR195 data set
BLASTX (1st cycle) 1 0.88 0.64 0.69 0.66 36 277 643 98 1920 0.04 0.02 0.03
BLASTX (2nd cycle) 0 0.91 0.72 0.76 0.75 75 317 453 117 962 0.18 0.12 0.15
BLASTX+NNSPLICE 0 0.91 0.73 0.77 0.76 569 226 52 116 961 0.59 0.40 0.49
BLASTX+INTRON 0 0.90 0.84 0.84 0.84 75 316 446 124 380 0.18 0.13 0.16
BLASTX+INTRON+NNSPLICE 0 0.91 0.89 0.87 0.87 565 221 34 132 192 0.58 0.56 0.57

Burset/Guigo data set
BLASTX (1st cycle) 0 0.92 0.61 0.67 0.66 123 746 1737 246 5697 0.04 0.02 0.03
BLASTX (2nd cycle) 0 0.90 0.75 0.77 0.76 168 1050 1070 380 1867 0.06 0.04 0.05
BLASTX+NNSPLICE 0 0.91 0.77 0.79 0.78 1677 515 106 376 1858 0.62 0.48 0.55
BLASTX+INTRON 4 0.89 0.86 0.85 0.84 168 1041 1030 421 584 0.06 0.06 0.06
BLASTX+INTRON+NNSPLICE 7 0.89 0.93 0.89 0.88 1698 433 46 472 258 0.64 0.67 0.66

Only the forward (+) strand exons from default output of programs tested were compared to GenBank annotated exons for each sequence. The
standard measures of predictive accuracy were averaged over all sequences in the data set: SEN, nucleotide level sensitivity; SPE, nucleotide level
specificity; AC, approximate correlation; CC, correlation coefficient; ESEN, exon level sensitivity; ESPE, exon level specificity; EAVG, (ESEN + ESPE)/2;
ME, number of missed real exons; WE, number of predicted wrong exons; CR, number of correctly predicted exons that are correct at both ends;
PC, number of predicted exons that are partially correct; OL, number of predicted exons overlapping actual exons; No. genes, number of genes
where no predictions were made by the programs.
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inclusion of similarity information from proteins improved sig-
nificantly, with ESEN increasing from 0.78 to 0.84, ESPE increas-
ing from 0.79 to 0.80, and EAVG increasing from 0.79 to 0.82.
The performance was further improved when information from
splice site and intron search was included: ESPE increased to 0.82
and EAVG increased to 0.83. A similar trend was observed for
HMMgene, where ESEN increased from 0.76 to 0.83, ESPE in-
creased from 0.77 to 0.83, and EAVG increased from 0.77 to 0.83
when similarity information from proteins was integrated. As
shown in Table 3, the performance of all methods improved sig-
nificantly, particularly at the exon level, when similarity infor-
mation was incorporated as described.

Our evaluation of GenomeScan on the Burset/Guigo data set
showed ESEN of 0.81, ESPE of 0.78, and EAVG of 0.80. The num-
ber of genes that are completely missed by the GenomeScan pro-
gram is 12. As shown in Tables 2 and 3, the performance of

Genscan using similarity information as described in our study is
more successful (predicting all of the genes) than that applied by
GenomeScan. The performance of EGPred was higher at both the
nucleotide and exon levels.

A Case Study: Gene Prediction in Human
Chromosome 13
The performance of modern gene-finding algorithms must be
tested on long DNA sequences in order to cope with the huge
amounts of genomic DNA information coming from sequencing
projects. It is important to evaluate the performance of newly
developed methods in realistic situations where DNA sequence
consists of multiple genes, unlike the one-gene-per-sequence
model. To demonstrate the capability of EGPred, we evaluated its
performance on the partial human chromosome 13 that was re-

Table 3. Performance of Ab Initio Programs on Burset/Guigo (1996) Data Set on Adding Similarity Information

Program
No.

genes

Nucleotide level Exon level

SEN SPE AC CC CR PC OL ME WE ESEN ESPE EAVG

GENSCAN 8 0.93 0.91 0.92 0.90 2156 264 26 203 188 0.78 0.79 0.79
GENSCAN+BLASTX 0 0.98 0.91 0.94 0.93 2299 230 28 100 305 0.84 0.80 0.82
GENSCAN+BLASTX+BLASTN 0 0.98 0.93 0.94 0.94 2301 222 22 112 250 0.84 0.82 0.83

HMMgene 38 0.87 0.88 0.91 0.86 2092 239 21 308 139 0.76 0.77 0.77
HMMgene+BLASTX 2 0.95 0.95 0.94 0.94 2256 248 21 135 144 0.83 0.83 0.83
HMMgene+BLASTX+BLASTN 2 0.95 0.96 0.95 0.94 2252 234 17 154 97 0.83 0.84 0.84

EUI 20 0.90 0.92 0.93 0.90 2214 176 12 250 98 0.80 0.84 0.82
EUI+BLASTX 0 0.96 0.96 0.95 0.95 2297 213 14 129 106 0.84 0.86 0.85
EUI+BLASTX+BLASTN 0 0.96 0.97 0.95 0.95 2294 205 12 142 79 0.84 0.87 0.85

EUI�FRAME 27 0.88 0.92 0.92 0.88 2188 167 11 286 87 0.79 0.84 0.81
EUI�FRAME+BLASTX 1 0.96 0.96 0.95 0.95 2286 214 13 140 95 0.84 0.86 0.85
EUI�FRAME+BLASTX+BLASTN 1 0.95 0.97 95.00 0.90 2283 206 12 152 69 0.83 0.87 0.85

GI 43 0.84 0.90 0.91 0.85 2118 138 8 387 67 0.76 0.83 0.80
GI+BLASTX 2 0.95 0.97 0.95 0.95 2277 195 10 167 76 0.83 0.87 0.85
GI+BLASTX+BLASTN 2 0.94 0.97 0.94 0.94 2274 190 9 178 52 0.83 0.88 0.85

GENOMESCAN 12 0.95 0.89 0.92 0.90 2245 235 45 130 350 0.81 0.78 0.80

Table 2. Performance of Ab Initio Programs on HMR195 Data Set on Adding Similarity Information

Program
No.

genes

Nucleotide level Exon level

SEN SPE AC CC CR PC OL ME WE ESEN ESPE EAVG

GENSCAN 3 0.93 0.89 0.91 0.89 735 131 10 76 104 0.70 0.69 0.70
GENSCAN+BLASTX 0 0.98 0.89 0.92 0.92 799 110 11 36 176 0.81 0.73 0.77
GENSCAN+BLASTX+BLASTN 0 0.97 0.90 0.92 0.92 801 101 9 45 163 0.81 0.74 0.78

HMMgene 5 0.90 0.90 0.91 0.89 715 98 11 128 81 0.74 0.75 0.75
HMMgene+BLASTX 0 0.95 0.93 0.93 0.93 779 91 15 68 91 0.80 0.78 0.79
HMMgene+BLASTX+BLASTN 0 0.95 0.95 0.94 0.93 780 86 13 74 74 0.80 0.80 0.80

EUI 3 0.92 0.94 0.93 0.91 769 74 4 104 55 0.77 0.81 0.79
EUI+BLASTX 0 0.96 0.94 0.94 0.94 795 86 8 63 65 0.80 0.81 0.81
EUI+BLASTX+BLASTN 0 0.95 0.96 0.95 0.94 795 81 7 69 53 0.80 0.83 0.82

EUI�FRAME 3 0.92 0.94 0.93 0.91 762 70 5 115 46 0.77 0.82 0.79
EUI�FRAME+BLASTX 0 0.96 0.95 0.94 0.94 793 84 9 67 56 0.80 0.82 0.81
EUI�FRAME+BLASTX+BLASTN 0 0.95 0.96 0.95 0.94 793 79 8 73 48 0.80 0.83 0.82

GI 15 0.84 0.89 0.90 0.84 742 57 3 149 43 0.72 0.80 0.76
GI+BLASTX 0 0.95 0.95 0.94 0.94 796 78 7 71 56 0.80 0.83 0.82
GI+BLASTX+BLASTN 0 0.94 0.97 0.94 0.94 796 70 6 77 45 0.80 0.85 0.83

GENOMESCAN 1 0.96 0.87 0.91 0.90 781 115 16 45 213 0.78 0.71 0.74
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Table 4. Summary of Predictions on Human Chromosome 13 Using EGPred

Programs
(1*)

Genes

Exons

Total exons
predicted

(6*)

Exon per
gene
(7*)

Total exon
length

(8*)

Exons
predicted

by ab initio
approach only

(9*)

Exons
predicted by

similarity only
(10*)

Exons
predicted by

both approaches
(11*)

Number of
matches to

annotated exons
(12*)

Multi-exon
(2*)

Single-exon
(3*)

Partial
(4*)

Total genes
predicted

(5*)

Genscan (+) 1048 (45.2) 211 (9.1) 1058 (45.6) 2317 6712 2.89 1116630 bp
(1.16)

5320 0 1392 1212

HMMgene (+) 1975 (57.6) 119 (3.5) 1337 (38.9) 3431 8372 2.44 1134771 bp
(1.18)

7233 0 1139 939

Genscan (�) 1077 (47.3) 195 (8.6) 1007 (44.1) 2279 6831 2.99 975084 bp
(1.01)

5360 0 1471 1215

HMMgene (�) 2025 (57.9) 101 (2.9) 1368 (39.2) 3494 8206 2.35 994322 bp
(1.03)

7018 0 1188 1022

*Column number.
Predictions were made using similarity-based approach against RefSeq protein database and Intron database in combination with two different ab initio predictors—Genscan and HMMgene. The
figure in column headers indicates the number of that column. The figure in parentheses in columns 2–4 denotes percentage of total predicted genes, and figure in parentheses in column 8 denotes
percent of total analyzed nucleotide sequence of human chromosome 13. Columns 9–11 represent the number of exons that are predicted by only the ab initio approach, the similarity-based
approach, and by both the approaches, respectively. The last column shows the number of predicted exons from each category that are found to match to that provided by public domain. These
matches include the exact, partial, and overlapping exon matches.
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cently sequenced (Dunham et al. 2004). Human chromosome 13
is the largest acrocentric human chromosome, estimated to con-
tain 633 genes with a total of 4266 exons excluding those from
the pseudogenes (Dunham et al. 2004). An initial analysis was
performed as described in Methods. A total of 96,175,021 bp was
analyzed in a region from 17,918,001 to 114,093,021 bp to pre-
dict genes.

The genes were predicted using two different combinations
implemented in EGPred for the Genscan and HMMgene meth-
ods. Application of these two strategies on human chromosome
13 produced four sets of putative genes (two for each strand),
summarized in Table 4. A total of 2125 multi-exon genes, 406
single exon genes, and 2065 partial genes are predicted by the
Genscan-based EGPred strategy. The HMMgene-based EGPred
strategy produced 4000 multi-exon genes, 220 single-exon genes,
and 2705 partial genes. The average numbers of exons per gene
are also listed in Table 4. The total protein-coding region of the
predicted exons covers slightly over 1% in each direction for
both strategies out of the total chromosome segment analyzed
(Table 4). Of the 10,680 exons predicted by the Genscan-based
EGPred strategy, 2427 exons match those from the publicly avail-
able exon annotation data. Similarly, of the 14,251 exons pre-
dicted by the HMMgene-based EGPred strategy, only 1961 exons
match the publicly available exon annotation data. Interestingly,
all of the exons predicted by the similarity-based approach were
also predicted by the ab initio approach (Table 4).

However, this does not suggest that only the ab initio
method needs to be used for predictions. Many of the ab initio-
predicted exons are modified based on evidence from a similar-
ity-based approach. Moreover, the amount of known proteins is
presently limited, and the accuracy will increase further with the
increase in available data. The large number of predicted partial
genes in Table 4 from both strategies reflects the fragmentation
of genes in the sequenced chromosome segment. This fraction is
likely to decrease with greater availability of sequence data. Some
of the gene structures are likely to reflect the alternatively spliced
isoforms. However, the mechanisms underlying alternative splic-
ing are not well understood, and computational analysis of this
phenomenon will require more specialized tools than those re-
ported here.

Table 5 shows the comparison of EGPred predictions with
available public domain annotation of human chromosome 13.
Surprisingly, more than 70% of exons predicted by the EGPred
are not reported in the available annotation. Because a consid-
erable proportion of genes are estimated to be absent from the
current databases, many of the predicted genes may be poten-
tially novel protein coding genes. Results in Table 4 suggest that
all predictions from the similarity-based approaches are also pre-
dicted by the ab initio approaches. Because EGPred uses similar-
ity to protein sequences, a large fraction of these common pre-
dictions are likely to be protein coding genes. A direct one-to-one
comparison of predicted exons from both of the EGPred-based
strategies reveals that almost all exons predicted by one method

are also predicted by the other method (Table 6). A large number
of overlapping predictions points to the need to develop a more
accurate splice site prediction program.

The physical locations of all genes predicted by the EGPred
method along the human chromosome 13 DNA sequence for
both strands are available from http://www.imtech.res.in/
raghava/egpred/supl/HChr13/. Although EGPred is demon-
strated to be reliable for both short and long DNA sequences, the
success of the program is critically dependent on the accuracy of
underlying programs, and continued improvements in gene-
prediction algorithms should improve future EGPred results.

Web Server Description
A Web server, EGPred, was developed to predict the genes in
eukaryotic genomic DNA using the approach described in this
study, where similarity information was integrated with different
ab initio programs. The server allows users to paste or upload a
nucleotide sequence in FASTA format. Although by default the
server uses the parameters that show its best performance as in
the present study, it also allows the users to change the various
parameters. The parameters that users are allowed to change in-
clude the organism type for the Genscan program, the organism
type and probability score cut-off of predicted exons for the
HMMgene program, the E-value cut-off, the protein database
that is searched against, and matrices and word length used dur-
ing BLASTX searches. It is possible that large sequences may take
substantial time for gene prediction. Therefore, we allow users to
obtain results via e-mail.

EGPred presents the results in graphic format as a GIF image,
where it shows the genes predicted by different strategies along
the length of query sequence. Figure 1 shows graphical output
from EGPred for a mouse sequence (GenBank accession no.
X07625, Locus ID MMPROT1) on default parameters. Exons pre-
dicted by different methods are represented by different colors.
In addition to the graphic format, the server presents results in
the standard gene-finding format (GFF). The annotation shows

Table 6. Comparison of Predictions From the Two
EGPred Methods

Both ends
match

One end
matches

Overlap
match

No
match

Genscan vs. HMMgene
for (+) strand 1236 742 4734 0

Genscan vs. HMMgene
for (�) strand 1309 701 4821 0

HMMgene vs. Genscan
for (+) strand 1236 740 6396 0

HMMgene vs. Genscan
for (�) strand 1309 705 6192 0

Table 5. Comparison of Predictions on Human Chromosome 13 Using EGPred With Available Public
Domain Annotation

Total
predicted

exons

Available
annotated

exons
Both ends

match
One end
matches

Overlap
match

Novel
exons

Genscan (+) strand 6712 2800 996 198 18 5500
Genscan (�) strand 6831 2905 1086 187 42 5516
HMMgene (+) strand 8372 2800 674 244 21 7433
HMMgene (�) strand 8206 2905 724 239 59 7184
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the start of exon, stop of exon, and type of exon predicted. The
exon type can be any of the following: initial exon, internal
exon, terminal exon, and single exon. The exons are modeled
into gene structures based on the order of their physical occur-
rence along the sequence. The possible gene structures are single
exon genes, multi-exon genes, and partial genes. Partial genes do
not have complete gene structure.

DISCUSSION
One of the major challenges in the field of genome annotation is
to improve the accuracy of gene prediction. Although a num-
ber of methods have been developed to predict genes, their ac-
curacy is quite low at the exon level (Rogic et al. 2001; Zhang
2002). It has been shown that the performance of ab initio meth-
ods can be improved significantly if similarity search informa-
tion is incorporated (Yeh et al. 2001). In the present study, a
systematic attempt was made to improve the performance of dif-
ferent ab initio methods using sequence similarity information.
First, we evaluated the performance of sequence similarity ap-
proaches on independent data sets. Initially the performance of
similarity search approaches was tested on the SWISS-PROT and
RefSeq databases. The specificity of BLASTX was found to be bet-
ter on the RefSeq database (see Supplemental material). The rea-
son for this is that RefSeq is a representative database, unlike
SWISS-PROT, which is an all-inclusive, nonspecific database.
Many false hits are thus avoided by using the RefSeq database.
However, the results shown in Table 3 suggest that the present
RefSeq size may not be sufficient for all sequences, and additional
proteins from more organisms are required to make the database
complete.

As shown in Table 1, the performance of the initial BLASTX
was quite low but improved significantly when a second BLASTX
search against hits of the first BLASTX was performed. These
observations agree with results reported by Yeh et al. (2001). The
performance of our BLASTX approach is comparable to that ob-
tained by Guigo et al. (2000) on using default BLAST. In our
study, we introduce the concept of detecting introns by search-

ing query sequence against an intron data-
base (Sakharkar et al. 2002) using BLASTN.
These potential introns are compared with
probable exons obtained from a similarity
search in order to filter/remove wrongly
predicted exons. Surprisingly, the incorpo-
ration of intron information reduces the
WE significantly. Intron sequences are
thought to have little conservation among
them. However, it is also clear that coding
exon regions will have very negligible or no
similarity with intron sequences. This may
be due to a variety of factors including
codon bias, di-nucleotide frequency bias,
hexamer bias, etc. We attempted to use
these differences between coding exon and
intron regions to filter out spurious exons.
However, the results suggest that any ad-
vantage gained from intron information
will be highly dependent on related se-
quences being present in the intron data-
base.

We observed that the performance of
ab initio methods improved at the nucleo-
tide level but decreased at the exon level
when we incorporated exons obtained from
a similarity search (data not shown). This is
because exons from similarity search ap-

proaches do not predict correct exon-intron and intron-exon
boundaries. As shown in Table 1, the performance of similarity-
based methods (with protein and introns) improved significantly
(EAVG increases from 0.16 to 0.57) at the exon level when splice
sites were predicted using the NNSPLICE program (Reese et al.
1997). Thus in our strategy we used NNSPLICE and BLAST search
against a protein database and intron database.

The accuracy values achieved by the original ab initio pro-
grams shown in Table 2 are lower than that reported by Rogic et
al. (2001). This is because we computed the average of accuracy
measures over all sequences in the data sets instead of over only
those sequences from which predictions are made by these indi-
vidual programs. For example, in the case of Genscan we com-
puted the performance for the HMR195 data set, on 195 where
Rogic et al. measured performance on 192 (195 � 3 missed
genes). Rogic et al. (2001) also accept that their accuracy mea-
sures may lead to overestimation of performance. These results
suggest that the increase in gene prediction performance is not
uniform for all programs. The accuracy on incorporation of simi-
larity information is dependent more on the accuracy achieved
by the ab initio programs themselves (Tables 2, 3). Overall the
accuracy of all ab initio programs improved significantly, par-
ticularly at the exon level, where performance increases from 4%
to 10%. It must be noted that there were no missed genes when
similarity information was integrated with these ab initio meth-
ods, whereas the original programs missed from three to 15 genes
in the HMR195 data set.

An important observation is that the rules derived for merg-
ing conflicting evidence are generalized for sequences with the
one-gene-per-sequence property. Our results from the Burset/
Guigo data set prove that the rules work effectively on sequences
independent of the HMR195 data set (Table 3). For deriving
maximum benefit for using the rules, an important require-
ment is that overlapping predictions from multiple sources
should be available. Experimentally proven sequences with
one-gene-per-sequence like those in the HMR195 and Burset/
Guigo data sets have protein sequences in the databases that
are similar to their protein products. Moreover, programs such

Figure 1 Graphical output from the EGPred server for a mouse gene (GenBank accession no.
X07625, Locus ID MMPROT1) on default parameters. The solid black line indicates the query
sequence. The predictions are represented as colored lines. The color code for each program is
indicated at the top of the image. Longer sequences are broken into segments of 1000 bp and
separated by a long red line. The length of query sequence is indicated at the top of the output
image.
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as NNSPLICE use available sequence information for training.
This would suggest an evident bias of performance of EGPred
toward sequences that have similar sequences available in the
database.

The reliability of EGPred for predicting genes in large DNA
sequences is also proved by the demonstration of two different
EGPred strategies on a region of ∼95 Mbp-long human chromo-
some 13. Initial results from the experiment suggest a much
greater number of genes than what is currently available in the
public domain. This difference may be due to a variety of reasons,
including the fact that the manual annotation is the product
of all curated predictions based on alignment to all publicly
available expressed sequences and application of gene-predic-
tion algorithms (Dunham et al. 2004). The manual annotation
is therefore a conservative estimate of the actual number of genes
that may be present in chromosome 13. Although the actual
expression of the EGPred-predicted genes would be proven
only through much experimental work, a fraction of these
predicted genes are supported by known protein sequence data
and therefore are more likely to be protein-coding genes. How-
ever, we emphasize that users should consider the predictions on
human chromosome 13 hypothetical until experimentally
proven.

The data shown in Tables 4 and 5 suggest that more than
half of the manually annotated exons are missed by the EGPred
method, whereas it predicts a large number of unannotated or
novel exons. Our initial survey of novel exons suggests a high
false-positive rate, integral mainly to the ab initio methods—
Genscan and HMMgene—used in EGPred. However, removal of
the number of genes proportional to the fraction of wrong exons
(WEs) obtained by these individual ab initio methods still re-
sults in a high number of unaccounted exons. Because the pre-
dictions in EGPred from ab initio methods are filtered based
on high confidence scores, it is more than likely that these novel
exons are protein-coding. One of the reasons that EGPred detects
only half of the manually annotated exons may be based on
the use of only protein sequence data for combination-based
predictions, whereas manual annotation uses evidence from
multiple sources including ESTs and cDNA apart from protein
sequences. This would suggest the need for integrating evidence
from these additional sources and other gene-prediction pro-
grams as well. The incorporation of recently published methods
such as the Combiner program (Allen et al. 2004) that integrate
multiple gene-prediction programs and evidence from cDNA,
ESTs, proteins, and splice site predictors may further improve
EGPred predictions. Combiner makes use of three different strat-
egies for effective combination of predictions from more than
one gene-prediction program. Two of the Combiner methods are
linear methods (LC1 and LC2) that use an equal or unequal vot-
ing function with a subsequent dynamic programming (DP) al-
gorithm to construct gene models from different inputs. The
third method, a decision tree-based nonlinear statistical com-
biner (SC) model, uses confidence scores for combinations of
predictions from more than two gene finders. Incorporating one
or more of these methods into the EGPred algorithm would pro-
vide a strategy for combining predictions from more than one
gene finder.

In conclusion, we can say that the strategy incorporated in
this study is very effective to improve the performance of gene-
prediction methods. Although we have demonstrated the use of
EGPred only for combinations of similarity-based approaches to
five different ab initio methods, EGPred can be extended to other
existing/new programs. The EGPred program is written in Perl. As
a service to the interested community, we developed a Web
server, EGPred (http://www.imtech.res.in/raghava/egpred/) for
predicting genes in nucleotide sequences.

Limitations
Information flow during transcription and translation events in
a cell is not static or determined by a simple, single method as the
predictions from gene-finding programs suggest. There are sev-
eral variants regarding how the information is passed from DNA
to RNA to protein. Some of the possible events include alterna-
tive splicing, use of nonconsensus splice sites, exon skipping
(where a possible second transcript from a gene does not include
one or more exons that are included in the first transcript from
the same gene), and nested genes (a gene that is present inside an
intron of another protein-coding gene). Similarity evidence from
a protein database could possibly provide valuable information
regarding alternative splice sites and use of nonconsensus splice
sites in a gene. One logical method to solve these problems
would be to keep the complete ‘global transcript’ information of
all protein hits from a database similarity search. From such in-
formation, it is possible to derive overlapping hits to probable
exon regions. The differences in the length and signal content of
overlapping exon regions from different transcripts would easily
provide information regarding complex events such as use of
alternate translation start sites (TSSs) and alternate splicing sites.
Use of nonconsensus splice sites is also easily identifiable with
the similarity-based approach against a protein database. Simi-
larly, nested genes could possibly be identified using a negative
evidence (intron) approach. Any such gene that will be com-
pletely masked by similarity to intron sequences can be consid-
ered a probable nested gene. Because protein-coding regions are
usually conserved, all exons from such a smaller nested gene
should show similarity to a single intron sequence (if available)
in a database. A similar strategy can also be used to identify
events such as exon skipping. Multiple transcripts obtained from
similarity searches against protein sequences could provide in-
formation regarding whether a particular exon is not being in-
cluded in one or more transcripts. Alternatively, complete mask-
ing of a probable exon (with strong supporting evidence) from a
protein similarity-based transcript by an intron sequence would
confirm the probability of the occurrence of an exon-skipping
event. We are presently continuing work on many of the topics
mentioned here to further improve the prediction through logi-
cal uses of multiple transcript information from the similarity
searches against protein and intron sequences, and also to im-
prove the information content of the output in this respect.
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