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Abstract. Within the framework of the continuum elastic theory of biaxial nematic liquid
crystals, ,ve have addressed ourselves to the structure, stability and energetics of some sin-

gular and non-singular topological defects, and certain director configurations. We find that

certain non-singular hybrid disclinations could be energetically favourable relative to certain

half-strength disclinations. The interaction between singular hybrids depends strongly on the

biaxial elastic anisotropy. We suggest possible defect structures that can exist in spherical
droplets of biaxial nematics. Further we find structural instabilities, in confined geometries,
arising due to the inherent biaxiality of the system.

1. Introduction

In 1970, Freiser iii theoretically predicted the possibility of a biaxial nematic (BN) phase.
Following this, Toulouse [2] used topological methods to show that there are four stable line

defects, viz. three distinct disdinations of half-integral strength and a disclination of odd-

integral strength. He speculated that such
a

phase with many defects may have a polymer-
type structure and "topological rigidity" observable in elastic and flow properties. Immediately
thereafter, Yu and Saupe [3] discovered a biaxial nematic liquid crystalline state in a lyotropic
system. It is only recently that some of these theoretical predictions about defects in BN have

been experimentally verified by De'Neve et al. [4]. There has also been theoretical interest

in the phase ordering kinetics of BN films [5] and statistical-mechanical properties of defects

in this system [6]. Continuum theories to describe the elastic and hydrodynamic behaviour

of BN [7-io] have also been developed. Many unusual and interesting elastic instabilities

are possible in this system and they can be described effectively ~N.ithin the framework of the

continuum theory.
In this paper, we have worked out the structure and energetics of certain singular and non-

singular disdinations. In the escaped configuration, the energy of a certain hybrid disdination

can become comparable to that of some disclinations of half strength. The nature of the

interaction between wedge and hybrid disdinations is found to depend not only on the sign
and strength of the defects, but also on the inherent elastic anisotropy due to biaxiality. We

have also studied structures of defects associated with a spherical drop with one of the di-

rectors normal to the surface. We find that a transformation of a tetrahedral arrangement
of four disdination lines of half strength emanating from the centre of the drop to that of a
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boojum is possible as drop size increases. Incidentally, the transformation of certain defects

into non-singular structures through an escape into the "third dimension", the interaction of

disclinations leading to energetically stable states, and the conversion of line defects associ-

ated with droplets into boojums can be all viewed as examples of elastic instabilities. Further

we consider instabilities in a director configuration between two parallel plates with different

boundary conditions. Some of these instabilities are typical of biaxiality. Lastly we study field

induced instabilities in a uniformly aligned state and find that there are structural transitions

which are inherently due to the biaxial symmetry.

2. Elasticity of Biaxial Nematics

The most symmetric BN has orthorhombic symmetry. It can be described by a mutually
orthonormal triad of directors la, b,c), each of which is a two-fold axis of symmetry, whose

orientations vary smoothly and slowly in space. The elasticity of such a BN is described by
IS elastic constants twelve of these correspond to director distortions in the bulk [7-io].
The elastic free energy density, as given in [7], is

F
=

Fo +
~ [(Kaa(a Vb c)~ + Kab(a Pa b)~ + Kac la Pa c)~)

a,b,c
~

+Cab(a Pa) (b Vb) + ko,aV la Pa aV a) ii)

where the summation is over a cyclic permutation of the three directors and indices. Here Kaa,
Kbb and Kcc are twist elastic constants associated with twist of the orthonormal triad about

the directors a, b and
c respectively. The elastic constants Kbc and Kcb are associated with

bend and splay deformations in 16, c) with a
undistorted. Similarly, Kab, Kba [or Kca, Kac]

correspond to splay or bend in la, b) [or (c, a)] with
c [or b] undistorted. Cab, Cbc and Cca

are coupling constants. The last three terms involving ko,a, ko,b and ko,c are surface terms.

As in the case of uniaxial nematics, in BN, we can have an equivalent "one-constant" ap-

proximation whereby elastic anisotropy concerned with twist, bend and splay distortions are

neglected. In this approximation, these distortions in 16, c), (c,a) and la, b) fields involve

three constants Ka, I(b and Kc respectively. These three elastic constants are given by

Ka
"

Kaa "Kbc"Kcb

Kb
"

Kbb
"

Kca
"

Kac

l~c
"

Kcc
"

Kab
"

Kba.

Generally, the twist elastic constants could be expected to be half as small as the curvature

constants. In the same spirit as that of the "one-constant" approximation, we do not consider

such details in the '~three-constants" approximation. In Appendix we have argued in favour of

this "three-constants" approximation on the basis of an elasticity theory of BN incorporating
Ericksen's ii ii idea of variable degree of orientation. This simple formulation gives insight into

the elasticity of BN. There we have brought out the dependences of the various constants on the

order parameters and, the connection between the coupling constants and elastic anisotropy.
This gives a proper extension to continuum theory allowing a more complete description of

defects. It also gives a framework within which approximations on the relative magnitudes of

the elastic constants can be given a physical basis.

In spite of this "three-constants" approximation, elastic anisotropy due to inherent biaxiality
is still preserved. To reduce this simplified theory to that of uniaxial nematics (say,

c goes over

to the uniaxial director n) with "one-constant" approximation, we have to take Kc
=

0 and
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Ka
=

Kb. Further, it should be noted that the coupling constants are not really peculiar to

BN. It can be shown [7] that the Frank elastic constants of a uniaxial nematic are related to

the elastic constants of BN in the following manner, assuming c goes over to n:

XII
"

Kac, K22
"

Kaa, K33
"

Kca, K24
"

2K0,c + Kaa
"

2K0,c + Kac Cab,
Kaa

"
Kbb, Kca

"
Kcb, l~ac

"
Kbc, K0,a

"
K0,b,

Kcc
"

Cca
"

Cbc
"

K0
a

"
K0,b

"
0.

Here Kii, K22: K33, K24 are the splay, twist, bend and saddle-splay Frank elastic constants.

From this it can be seen that Cab
"

(fill K22).
Throughout this study we work in the "three-constants" approximation and also ignore the

coupling constants Cab, Cbc and Cca. The model considered in Appendix supports these two

assumptions. We ignore all surface contributions including the ones similar to that which

appears naturally in the standard Frank free energy density for a general non-planar distor-

tion. We consider only the bulk contributions to the energy in all the problems that we have

discussed. It should also be pointed out that the equations and solutions will certainly be

different when one works in a different approximation or with the complete free energy density
but we hope that the "three-constants" approximation is as instructive as the "one-constant"

approximation in uniaxial nematics. We emphasize that this theory explores the effects of

elastic anisotropy due to inherent biaxiality.

3. Non-Singular Defect Structures

In uniaxial nematics, we know that a non-singular line disclination of integral strength can

exist. In BN also. non-singular disdinations are permitted [12]. They are of two types.
The first type is a wedge or twist disdination of

even
integral strength, as in uniaxial nematics

and, the second is a hybrid disdination with both wedge and twist components of total

even integral strength.
The Volterra process for creating a hybrid disclination explicitly incorporates the orthorhom-

bic symmetry of the a, b; c director fields. Here the plane of cut is limited by a line L parallel

to any one of the directors, say b, and perpendicular to the other two, viz. c
and a. The two

faces of the cut are relatively rotated through an integral multiple of ~~, say, ~2~si about

L. These faces are further rotated about a or c, through an integral multiple of ~~, that is,

~2~s2. The empty space is filled up with uniform material or overlapping regions are removed

and the system is allowed to relax. This Volterra process describes a hybrid disdination by

a pair of numbers (si, s2) ~N.here si represents the strength of tht wedge component and s2

represents the strength of the twist component. We have given an example of a wedge defect of

strength si in (a, c) but with a cyclic permutation of a, b and
c we can describe such a defect

in (a, b) and (b, c) fields, too. It is important to note that si and s2 can be either integral or

half-integral numbers. When s2 "
0, we get a pure wedge disdination and when si =

0, we

get a pure twist disclination- It can be shown that the singularity in the case of disclinations

of total strength jsi + s2)
"

2 can be removed by the escape into the third dimension of a

director [12]. Here we work out the energetics of the hybrid disclinations, (2, 0) and ii, i). In

the case of (2, 0),
we consider a line defect in (a, b) with c

undistorted.

Using (er, e~, ez)
as the unit basis vectors of a cylindrical coordinate system jr, #, z),

we

describe the orthonormal triad of directors (a, b, c) by

a =
sin ~b sin 9er + cos ~be~ + sin ~b cos 9ez

b
= cos ~b

sin 9er sin ~be~ + cos ~b cos 9ez

c =
cos9er sin 9ez.
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Here 9 is the angle that
c

makes with the radial direction and
~b

describes the angle of rotation

of (a,b) about c- With this parametrization, c is always in the jr, z) plane which suits the

description of the removal of singularity in ii, i) and (2, 0), by turning c
through [ and

~

respectively in the jr, z) plane. For ifi
=

~b(#) and 9
=

9(r), the free energy density is given by

~
(Ka cos2

~b + Kb sin2
~b) d9 ~ (Ka sin2

~b + Kb cos2
~fi) ~ ~

K~ d~b
~j

~

2 dr
~

2r2 ~°~ ~
2r2 d# ~~~

(2)
Without any loss of generality, we consider a particular situation where the director described

by
c goes over to the uniaxial nematic director n in the absence of biaxiality. In the weak-

biaxiality limit, Ka ct Kb, the free energy density (2) reduces to

The equations of equilibrium obtained by the minimization of the total energy are

j
=

° 141

Ka d d9 sin 9 cos 9 K~ cos 9 d~
I dr

~
dr

~ ~~~ ~~~
r2

~
r2 d#

~' ~~~

It may be noted that the permitted solution (~
=

#, 9
=

-~/2) describes a singular wedge
disdination of strength (2, 0) while (~b =

#, 9
=

0) ~N.hich describes a singular hybrid disclination

ii, i) all radial in c
and a uniform twist of (a, b) about c

does not satisfy the equations of

equilibrium. However~ botfi these disdinations, with a three-dimensional escape of c, described

by ~fi =
# and 9

=
9(r)

are solutions provided

~l l~ll
~

~ II
~~~~ ~~~~ ~

[
~~~~ ~ ~~~

To solve this equation, we consider the sample to be confined in a tube of radius ro with c

aligned along the tube axis at r =
0-

3.1. (2, 0) DISCLINATION LINE. In this case the boundary conditions are
9

=
at r =

0

and 9
=

-[ at r = ro, that is, c is parallel to the tube axis both at r =
0 and r = ro and

these two states get connected by a smooth bend of
c through

~.
The

a
and b directors are in

a s =
2 disclination configuration. Then it can be shown that

(S)2 ~ K j

~ ~ ~~~~~~
(~)2 + ~

~
~~~

r Kc r

If
c is identified as the uniaxial director n, K~ < Ka. Then the energy per unit length is

~ ~~~ ~

fi l + fi~~
~~

~ fi ~~ li
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Fig, i. Removal of singularity in a hybrid disclination ~vith si = s2 =
by an escape of the

c

director through x/2. The nail representation shows a director going out of the plane of the paper.

3.2. II, I) HYBRID DISCLINATION LINE. In this case, the boundary conditions are 9
=

[
at r =

0 and 9
=

0 at r = ro, that is, c is homeotropically aligned on the cylinder while
a and

b describe a twist about c
through 2~ as we go round the axis. In this case we get

° ~ ~rctan

~)~°~i?)
+

sinh~ii j~
~~

~"
~~~~~~~~+~ + Sinh~~i i~ )) +

j
jgj

The energy per unit length (again with K~ < Ka) is

fi
f vfi(i +

fi)
~ ~~~~

2
~ ~

fi~~ fi
~

fi~~
~~~~

K,, K~ K~

The geometry of the removal of the singularity in the case of (i, i) hybrid disclination is shown

in Figure i. We get the known result, that is, E
=

2~Ka [13] for a (1, 0) defect in uniaxial

nematics if we set K~
=

0 This is exactly the volume contribution to the energy per unit

length.
In this context, we point out that for 0 < ) < 0.9, the energy per unit length of an escaped

hybrid disclination (i, 1), 2~Ka < Eh < 2-312~Ka We know that the energy of a singular
wedge disclination of strength s =

) in (a;c)
or

(b,c) fields is Ew
=

)~Kaln£ + E~ore-

E,~en ~N.ithout considering Ecore, relatively, the hybrid is energetically favourable~when the

ratio of the sample size, R, to the core radius, rc, that is, ~ > 10~. This condition is easily
realized in usual samples. It should be noted that a half stringth disclination in la, b) is the

most favourable energetically since it does not involve distortion of the corresponding uniaxial

director with which one
would associate the largest elastic constant. Our analvsis implies that
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a non-singular hybrid disclination would probably be preferred to a half strength disclination

in la, c) or
(b,c) fields. It may be noted that even s =

~i disclinations in la, c) or
(b,c)

can also be favoured relative to the latter since energy can be lowered if
c escapes into the

third dimension. However, this will continue to be singular. In the case of la, c) or 16, c)
disclinations cases, the core will be in the isotropic phase for ~), and in the uniaxial phase for

~i disclinations-

4. Singular Hybrid Disclinations

In this section we shall study the effect of inherent biaxiality on the structure and energy of

singular hybrid disclinations and their mutual interactions. For the quantitative analysis of
a

single defect or a pair of defects, we describe the orthonormal triad of directors by

a =
sin 9 sin #e~ sin 9 cos #e

y
+ cos 9ez

b
= cos 9 sin #ex + cos 9 cos #ey + sin 9ez

c =
cos#e~+sin#ey

where (e~, ey, en are the orthonormal basis vectors of a Cartesian coordinate system ix, y, z),
and 9

=
9(x, y) and #

=
#(x, y ). Here # is the angle that

c
makes with the x axis and 9 describes

the twist of la, b) about c. The director c lies in the ix, y) plane. This parametrization is

convenient to describe the geometry of hybrid disdinations. ive shall denote by [c,b, al a

singular hybrid disclination of strength (si, s2) with
c in the x y plane and the other two

directors twisting about c. Similarly, [b, a, cl describes a singular hybrid disclination with b in

the x y plane and la, c) twisting about b, The free energy density of [c, b, al is

Kc
~ ~

jKb sin~ 9 + Ka cos~ 9)
~ ~~

"
i'i~~°~ ~ i~~°~ ~

2
'i~~~~ ~ i~~~~ i' i~~~

The equations of equilibrium (for [c, b, al) are

KcV~9 (Kb Ka) sin 9 cos 9(V#)~
=

0 (12)

(Kb sin~ 9 + Ka cos~ 9)V~# + 2(Kb Ka) sin 9 cos 9(V9) (Vi)
=

0- (13)

To describe [b,a,c] the following transformations will have to be made: Kc ~ Kb,
Kb ~ Ka, Ka ~ Kc. Firstly, we will describe single defects and then consider the inter-

action of a pair of hybrid disclinations.

4.I. SINGLE HYBRID DISCLINATIONS. For a single defect, we can take 9
=

9(a) and

#
=

#(a) where a is the azimuthal angle in cylindrical coordinate system. Then, from (ii),
the free energy density is

~ ~~
~ ~

~ ~~ ~ ~

~~~~

where

g(9)
=

Kb sin~ 9 + Ka cos~ 9. (IS)
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Table I- The values of jJ (in units of10~~ dynes) for the various defect states.

(Sl,52) Ka~KblKc

i:i:1 6:5:1

Defect State

All [c, b, al [c, a, b] 16, c, al 16, a, cl la, c, b] la, b, cl

(0.5, 0) 0.25 1-S 1.25 1-S 0.25 1.25 0.25

(0, 0.5) 0.25 0.25 0.25 1.25 1.25 1.5 1-5

ii, o) i-o 6.o s-o 6.o i-o s-o i-o

lo, i) 1.0 1.0 1.0 5.0 5.0 6.0 6.0

(0.5, 0.5) 0-5 1.612 1-612 1.832 1.832 2.042 2.042

(0-5, 1) 1.25 2.367 2.367 5.604 5.604 6.555 6.555

(1, 1) 2.0 6.447 6.447 7.328 7.328 8,167 8,167

11, 0-5) 1.25 5-621 5.621 3.315 3.315 3.497 3.497

(1, 1-S) 3.25 7.713 7.713 13.644 13.644 15.705 15.705

(1.5, 1) 3.25 13,176 13.176 9.953 9.953 10.702 10.702

On integrating once the equations of equilibrium, (12) and (13),
we get

g(9))
=

const.
=

k (16)

Kc I£l~ +
-

COnSt.
-

fl. ii?)

Using this, the free energy density (14) is

F
=

~
(18)

and the energy per unit length excluding that of the core is

E
=

~fl in
~

jig)
rc

where R and rc are respectively the outer and inner limits of integration in the radial direction.

We give in Table I the values of jJ (in units of10~~ dynes) calculated numerically for various

structures for certain elastic anisotropies. Incidentally values of jJ are not dependent on the

sign of si and s2. We have also considered for pedagogic reasons, the case Ka
=

Kb
"

Kc
where we get analytical solutions. The differential equations ~N.ith the appropriate boundary
conditions I-c- at a =

0, #
=

0, 9
=

0, and at a =
2~, #

=
2~si, 9

=
2~s2, have been solved

using the shooting method incorporatiqg Runge-Kutta-Fehlberg method. We have shown the

9 and # profiles in Figures 2a and 2b and it is apparent that the nonlinear profiles are distinct

from the linear profiles usually expected for pure wedge and twist disclinations in uniaxial

nematics in the "one-constant" approximation.



590 JOURNAL DE PHYSIQUE II N°4

or .
l



N°4 ELASTIC INSTABILITIES IN BIAXIAL NEMATICS 591

4.2. INTERACTION BETWEEN HYBRID DISCLINATIONS. We can use scaling arguments [14]
to find the energy of interaction between singular hybrids. We note that if #(x, y) and 9(x, y)

are solutions, then #(), )) and 9((, )) are also solutions of (12) and (13). Consider two

hybrid disclinations (si, s2) and (s3, s4) located at ((, 0) and (-), 0) respectively. Near if, 0)
the director pattern reduces to that of the hybrid (si, s2) and near

(-), 0) to that of (s3, s4).
At distances large compared to d we have the configuration of a (si + s3,s2 + s4) hybrid

disclination.

To compute the force between the two defects, we consider the change in energy when the

disclinations which are originally at a separation d are moved to a separation id. The functions

#' ix, y)
=

ii (, )) and 9' (x~ y)
=

9( (, )) describe the same two defects separated by a distance

id. The elastic energy density associated with 11', 9') is given by

F«,e,
=

J~~F~,e. (20)

However a given area in the solution 11', 9') is dilated by a factor J~, of course, by taking
J > i. Hence the total energy is the same as that of 11, 9) solution. The scaling process does

not change the energy per unit length but increases the size of the cores and pushes out the

boundary. But we want the energy of the configuration where the defects move apart but the

cores and boundary remain unaltered in size. Then we can show [14] that the energy per unit

length required to separate two defects is

E=Ei+E2-E12 (21)

where El and E2 are the elastic energies per unit length of the individual (si, s2) and (s3, s4)
defects obtained for the volume between the boundary of its core radius, e, to if. E12 is the

energy per unit length of the (si + s3, s2 + s4) defect from an outer cutoff R to JR-

In view of jig), the energy to separate t,vo defects is

E
"

~(fll + fl2 fl12) ifl~ (~~)

,vhere jJi and jJ2 are values of jJ for the individual (si, s2) and (s3, s4) defects while jJ12 is that

of the (si + s3, s2 + s4) defect. If E > 0, we can say that the defects attract while for E < 0

they will repel and when E
=

0, they do not interact. From the values of jJ given in Table I,

,ve have come to the following conclusions.

The interaction between pure wedge (or pure twist) disclinations can be deduced from Ta-

ble I. It is the same as that in uniaxial nematics.

A pure wedge and a pure twist do not interact in the case of Ka:KbiKc
=

i:i:i. However,

for Ka:Kb:Kc
=

6:5:1, such a pair of defects attract if they are in the state [c, b, al, [b, c, al or

la, c, b] and repel if they are in [c,a, b], 16, a, cl or la, b, cl state. These results are independent
of the sign of the defects. Figure 3 depicts schematically a pure wedge disclination and a pure

twist disclination and, the bound state they can form a hybrid disclination with both wedge
and twist components.

In the case of the interaction between a pure wedge disclination and a hybrid disclination,

we find attraction if the wedge components are of the opposite sign. But if these components

are of the same sign, the answer is not so straightforward. From Table I, it can be seen that

for the case of (),0) and (), )), there is repulsion in all cases except for the state 16, c, al.
Whereas in the interaction between (), 0) and (), i), it is always repulsion. But in the case of

the defects 11, 0) and (), i), they repel in all states except 16, c, al and la, c, b]-
Within the range of our investigation, the interaction between pure twist and hybrid discli-

nations seem to depend entirely on the sign of the twist components with opposite signs
they attract and with the same sign they repel.
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a

~~~ /~
~-~~-~~~

b b~t~ ~~~ ~§~ ~~~

-~~-~~~
~

b (11)
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)~(
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/ 1 ~
/ j

c

~

(ifi)

Fig. 3. ii) A pure wedge disclination which combines with a pure twist disclination shown in iii)
to give the hybrid si = s2 =

1 depicted in (iii). The nail representation shows a director going out of

the plane of the paper.

Finally, hybrids which have the same sign for both wedge and twist components repel. If

the respective components are of opposite sign, then they attract. When only one of the

components are of opposite sign, then they may attract or repel. For example, in the case of

(), )) and (-), )), for Ka:KbiKc
=

i:i:i there is no interaction. But with Ka:KbiKc
=

6:5:1,
the defects attract each other when they are in the state [c, b, al or [c, a, b]; and in the other

states they repel. For (), )) and (), -)), there is no interaction for Ka:KbiKc
=

i:i:i; while

for Ka:KbiKc
=

6:5:1 there is attraction in the states 16, a, cl and [a, b, cl, and repulsion in the

other states.

From what has been said it is clear that the interaction between hybrids are determined not

only by the sign and strength of the defects but also by the elastic anisotropy. In view of these

results we make the following remarks. The Schlieren texture of hybrid disclinations will be

no different from that of disdinations in uniaxial nematics but the underlying structure can

manifest itself in peculiar ways. For example, two two-brush defects of the same strength in the

wedge component may even attract since they could be hybrids ~N.ith opposite strengths in the

twist component. Under crossed polarizers, a pure twist disclination as described above would

be invisible when the polarization of light is either parallel or perpendicular to the uniform

director. But at an angle a contrast would show up.
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5, Defects in Droplets

We now consider drops of BN with c normal to the surface at the boundary of the drop.
Topological constraints [15] require the (a,b) configuration to have surface singularities of

combined strength, s =
2. If

c is in a radial configuration, then there will be (a, b) disclination

lines satisfying the above requirement. An equivalent problem has been discussed by Lubensky
and Prost [16]. Flom their analysis we can conclude that four la, b) disclination lines of

strength +) arranged in a tetrahedral configuration is of the least energy. Without considering

core energies, the total energy is due to splay in c
and distortions associated with the four

disclinations. In the weak biaxiality limit, Ka
=

Kb
"

K, Etotai t 4~KR + ~KcRln(£).
With Kc

=
0, that is, in the uniaxial limit we get the bulk energy of a radial hedgehog. ~

For the same boundary condition, there is another possible structure called the boojum [17]
In this case, there are no singular defect lines in the (a,b) field but there is a singularity in

the director fields at a point on the surface of the drop. We describe the orthonormal triad in

spherical polar coordinates:

a =
sin fl'

cos
o'er + cos

fl'
cos

a'ee + sin a'e~

b
=

sin fl' sin o'er
cos

fl' sin a'ee + cos
a'e~

c = cos
fl'er sin jJ'ee

where we assume jJ'
=

jJ'(9) and o'
=

a'(#). Here, jJ' describes the angle c, makes with the

radial direction, and a' is the twist of (a, b) about c. The origin of the coordinate system is at

the point singularity of the boojum. This problem cannot be solved exactly even in the weak

biaxiality limit. However, in the one-constant limit, viz. Ka
=

Kb
"

Kc
=

K, it is solvable.

The free energy density is

~
/2

~~~ ~~~ ~ /2 ~~°~~ ~~~~' °~~'~~~
~

2r2

n~
9

~°~~~
~~~ ~ ~~ ~

~~~~

The equations of equilibrium are

~

~~ ~ ~~~~

and with fl"
=

9 fl',

~~~ ~ ~~~~ ~ ~~ ~~~
~~

~
~~~~

This has a simple analytical solution: fl"
=

29 and a'
=

-#. This describes the standard

boojum configuration with c radiating out like a "fountain" from a point on the surface of the

drop. The la. b) directors are in a singular s =
2 disclination configuration with the singularity

at the point from where c emanates. The structure is depicted in Figures 4a and 4b. The total

volume energy of this structure is

E
=

B~KR. (26)

It may be noted that we do not have an analytical solution for the boojum in the case of uniaxial

nematics even in the "one-constant" approximation. With weak biaxial elastic anisotropy, we

can expect the energy of the boojum to be a few times ~KR- It is then possible that for

small droplets, with £
< 10~, the tetrahedral structure of defect lines could be the lower

energy state. But for lirger drops the boojum would be of lower energy for the same boundary
conditions. However, proper estimate of the radius at which such an instability occurs would

have to include the core energies and the elastic anisotropy- In this context it may be noted
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Fig. 4. Structure of a boojum: jai the c
director in the "fountain" configuration within the droplet.

The point singularity is at O. lb) The b director configuration around the point singularity~ at O~ on

the surface of the droplet. The a
director configuration will be orthogonal to b.

that according to Kurik et al- [18] a boojum can exist ~N.ith any kind of boundary condition.

Since surface anchoring is proportional to R~, anchoring could be weak for smaller drops and

the tetrahedral structure would develop only as the drop size increases (~).

6, Director Distortions Due to Rigid Anchoring

When the orthonormal triad of directors spontaneously undergo distortions due to anchoring

at the walls, the inherent biaxiality of BN will lead to a
coupling between the different field

distortions. This is apart from the effects of elastic anisotropy of the splay, bend and twist

constants of any pair of the orthonormal triad of directors, and the coupling constants. Here

both of them ha;e been neglected.
We consider a particular geometry which imposes twist in a. Let a be anchored homoge-

neously on two parallel plates. Let b be anchored homeotropically on the lower plate and

homogeneously on the upper plate. In the Cartesian coordinate system let

a = cos #e~ + sin #e
y

b
= cos 9 sin de~ + cos 9 cos #ey + sin 9ez

c =
sin 9 sin #e~ sin 9 cos #e

y
+ cos 9ez

Here # describes the angle made by
c

with the x-axis, and 6 describes the angle of rotation of

(b, c) about a. The free energy density in this case is

F
=

[Ka
~~) ~

+ f(9) ~~~)
]

(27)
2 dz dz

where

f(9)
=

(Kb sin~ 9 + Kc cos~ 9). (28)

jl) We thank O-D- Lavrentovich for bringing to our notice this aspect.
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The equations of equilibrium are

)lf19) ()1 =
0 129)

Ka$
=

(Kb Kc) sin 9cos9 ~(~) (30)
z z

~

These differential equations can be integrated once to get equations similar to (16) and ii?)
respectively. Hence; the 9 and # profiles will have the two general features shown in Figures 2a

and 2b. Firstly, the profiles will be nonlinear. Secondly, while variations in 9 are fast, the

variations in # are slow and vice-versa.

Elastic anisotropy due to inherent biaxiality can also cause instabilities in simpler geometries
such as a twisted nematic cell. We consider a pure twist of the (a, b) pair by proper anchoring.

A uniform twist is a solution of the equations of equilibrium. In uniaxial nematics; Leslie jig]
has shown that there could be an instability resulting in the director lifting out of the plane of

the plates. This happens at a relative twist of nearly ~
between the plates provided 2K22 > K33

This is unattainable in the laboratory. But, in a
BN, we find an instability which occurs at

a much lesser relative twist. Let us consider #
=

(qoz + ii and 9
=

91 where ii and 91 are

small perturbations. Then to a first approximation

~~i
=

J'91 (31)

where J'
=

#(Kb Kc ). When J' < 0 there is an instability which will lift the b director out

of the plane If the plates. This exactly follows Leslie's analysis but what is interesting is that

the threshold of relative t,vist gets lowered. In the general case, without the three-constants

approximation, the threshold for relative twist is

~ ~
~ j~

~~
j~~

(~~)
cc ca ba

7, Instabilities in the Presence of a
Magnetic Field

Freedericksz transitions in biaxial nematics have been studied by others [20, 21] in geometries

with strong anchoring of one of the directors and no anchoring of the other two- We consider

a sample with strong anchoring in all the directors and the free energy density includes both

elastic deformations and diamagnetic contributions described by

Fmag
"

~j ~j XalH'~)~ 133)

a,b.c

where xa, xb and xc are the principal diamagnetic susceptibilities along a, b and c
respectively

for the orthorhombic symmetry. In ihe undeformed state, we consider a, b and c to be along

the reference axes x, y and z respectively. Deformations in the orthonormal triad of directors

are described by Eulerian angles (9,#, ~b) [22] which are position dependent. The director

representation in terms of (9, #,i~) is sho~N.n in Figure 5- Let H be along y axis and director

distortions are assumed to vary in the z direction with strong anchoring at z =
0 and z =

d-

Just above the threshold field.
~N.e assume the deformations to be small and to be of the form

f
=

fm sin
~~ (34)
d
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z

c

"' 8
',

x

Fig. 5. The orientations of a, b and
c

along with the Eulerian angles, 0, # and ~b

where fm
=

9m (or #m or ~bm) is the maximum value of the function f
=

9 (or # or ~b). After

averaging over the sample thickness and collecting terms up to the quartic, the free energy
density is

where
2(

=

al "

Ti~&Jilc~

a2

"

~ i ~

i
"

~ i ~

2 "

~

cl "

(
-

2Ti
+

c2 ((4 - 3T2

~~ ~ ~~°
~~"~

with
Ti " ) , T2 " (~,

~i " ~ nd ~2
~"

The equa~ions of

nergy
ensity is ~
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~2where b
= ICI j~). In this form the free energy density is the Lifshitz expression and the

possible phase diagrams have been already studied [23]. However, this theory is only valid

when b > -fi. There are four possible states and their stability conditions are:

la) (=iJ=00r9=#=~b=0isstablewhenai >0anda2>0.

16) (
=

0, iJ # 0 or #
= ~b =

0, 9 # 0 is stable when a2 < 0, b2 > 0, c2 > 0, and jai ff)
> 0.

In this state, iJ~
=

-t.

(c) iJ
=

0, ( # 0 or 9
=

0, #,
~b

# 0 is stable when al < 0, bi > 0 and la? £)
> 0. (~

=
)-

id) ( # 0,iJ # 0 or 9 # 0, # # 0, ~b
# 0 is stable when bi > 0, b2 > 0, (aib2 a2b) < 0,

(a2bi aid) < 0, (bib2 b~ > 0- In this state, the deformations are described by

(2
=

_fi@ ~~~ ~y2
_il

(bib2-d (bib2-d2)

From what is known of the structural phase transitions allowed by the Lifshitz expression, we

can say that there are second order phase transitions from state la) to either state (b)
or state

(c). There can be a first order phase transition from (b) to (c). On the other hand, there could

be second order transitions from (b) to id) to (c).
Without loss of generality let us assume that c

describes the uniaxial director or the direction

of the long axis- Then the states described by (c) and (d) are unique to biaxial nematics.

8, Conclusion

Within the framework of a continuum elastic theory of BN, we have studied the effect of

biaxiality on the structure, instability and properties of singular and non-singular defects,
and instabilities in certain static director configurations. Flom the energetics of non-singular
defect structures, we find that certain non-singular hybrid disclinations could be energetically

more favourable relative to some singular half-strength disclinations. We have studied in

detail singular hybrid disclinations since they are allowed by BN symmetry and not by that

of uniaxial nematics. Elastic anisotropy due to inherent biaxiality is shown to have non-linear

effects on the structure of these defects. We have studied the interaction energies between pure
wedge, pure twist and hybrid disdinations. The nature of interaction depends not only on the

signs of the topological strength of these defects but also strongly on the elastic anisotropy.
In droplets of BN, for homeotropic boundary condition at the surface, we find that there can

be a transformation, as the drop size increases, from a tetrahedral arrangement of four half-

strength disclination lines to a boojum. Elastic anisotropy also produces nonlinear effects on

the structure of distortions involving the three directors simultaneously. In a twisted nematic

cell, we find that
an instability, similar to that found in uniaxial nematics, could occur at a

lower twist threshold. New instabilities in a confined system are possible in the presence of a

magnetic field. We find that the free energy density reduces to the Lifshitz expression whereby

a rich phase diagram for the structural transitions is possible.
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Appendix

Formulation of a Theory of Elasticity of BN

We follow the procedure of Ericksen developed for uniaxial nematics ii ii It must be remarked

that Govers and Vertogen [10] have used similar tensor order representation to formulate their

elastic theory of BN but without allowing a variable degree of orientation. We have incorpo-
rated this feature since this theory is more suited to describe defects. The orientational order

parameter tensor Qnp is symmetric and traceless and it is given in terms of the orthonormal

triad a, b,
c

Qap
"

S(coop bnp) + T(aaap bnbp) (37)
3

where S is the orientational order parameter of uniaxial nematics, T describes the biaxiality
and hap is the Kronecker delta. When S

=
T

=
0, we get the isotropic state. The combined

thermal and elastic free energy density in the absence of external fields may be written as

F
=

V IQ) + Fdist (38)

where V(Q) describes the homogeneous part of the free energy that describes isotropic-
uniaxial-biaxial phase transitions while Fdist is the free energy density due to director dis-

tortions and order parameter variations in space. V(Q)
can be taken in the form [24]

VIQ)
= )Trlo~) + )Trlo~) + (lTrlo~))~. 139)

On expanding we get

~~~~ °~~~ ~ ~~~~~ ~ ~~~~~ ~~~~

where

o(S)
=

aS~ + jbs~ + jcs~

fl(S)
=

2a
~

bS +
~

cS~

+~lS)
=

4C.

We generalize Ericksen's expression iii] to get Fdist, that is,

Fdist
=

)
0nQP~°aop~ +

)
0aQn~0aQP~ +

)
°nQP~°~QPn. 141)

We want to compare the elastic constants of a BN with these three constants and the two order

parameters S and T. Fdist can be written as

Fdist
"

FST + Fd (42)

where FST is due to order parameter variations and their coupling with the orthonormal triad

of directors. Fd contains contributions solely from gradients in the directors. The explicit
expressions for FST and Fd are:

FST
=

)(Li +
j

+
~ )(VS)~ + ((L2 + L3)(c VS)~

+ Li (VT)~ + (L2 + L3)((a VT)~ + lb VT)~]
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+ IVS~) llL2
~

)cV c + lL3
)

)c PC)]

+ IL? + L3) lib PSI16 VT) la VS)la' VT)]

+ TVS [L2 (c(a Pa c
b Vb c))

+ (L2 + L3) (bV b + b Vb aV a a
Pa)

+ L3 (-a(c
c

Pa) + b(c
c

Vb))

+ SVT [L2 (ala
c

~c) b(b
c

Vc))

+ L3lClb 'Vb C) Cla' Pa'C))I

+((VT~).[L2(aV.a+bV.b-a(a.b.Vb)-b(b.a.Va))
+ L3 la Pa + b Vb + b(a

a
Vb) + a(b b Pa) )] (43)

Fd
"

Li IS + T)~ (a Vb c)~ + Li IS T)~ (b Vc a)~

+ 4LiT~ [c Pa b]~

+ (4Li + 2L2 + 2L3)T~[(a Pa b)~ + (b Vb a)~]

+ lLi IS T)~ +
~~~ ) ~~~ IS T)~llla'Pa'C)~ + lC PC 'a)~l

+ lLi IS + T)~ +
~~~ ) ~~~ IS + T)~l lib Vb'C)~ + lC PC 'b)~l

+
~~~ ~ ~~~

(S~ 2T~) (a Pa) (b Vb)

(L2 L3)(ST 2T~)(b Vb) (c PC)

+ (L2 + L3)(ST + 2T~)(c Vc) (a Pa)

+
11 (~ Li )S~ + LIT~]V (c PC cV c)

+ (2LIST 2LiT~ + T~)V la Pa aV a)

+ (-2LIST 2LiT~ +
~~ T~)V lb Vb bV b)

+ L3T~ IV (b(a Pa

)~+
a(b Vb a))]

+ L~ST[V (b(c PC b) + c(b Vb c)

a(c Vc a) c(a Pa c))]. (44)

Hence, comparison of (44) with ii) implies that:

K~~
=

2Li(S+T)~

Kbb
"

2Li IS T)~

Kcc
=

8LiT~

Kab
"

Kba
#

2(4Li + 2L2 + 2L3)T~

Kac
=

Kca
=

2(Li +
~~~ j ~~~

)(S T)~

Kbc
=

Kcb
=

21Li +
~~~ ) ~~~ IS + T)~
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Cab
=

~~~ ( ~~~
(S~ 2T~)

Cbc
"

-(L2 + L3) (ST 2T~)

Cca
=

(L2 + L3) (ST + 2T~).

It can be seen that the "three-constants" approximation used to describe the elastic distortions

of BN is reasonably correct and in the limit of weak biaxiality, our further approximation to

work with just two constants is also justified. It should also be noted that the coupling constants

do come out to be proportional to the elastic anisotropy between the twist and curvature elastic

constants. It should be remembered that such an exercise in uniaxial nematics [25] gave similar

results, viz- the Flank twist constant, K22, is different from the bend, K33, and splay, Kii,

constants which are themselves equal in the second-order theory.
As

an exercise for this theory, we consider its implications in the structure of a disdination

in a, b director field. In cylindrical coordinate system

a =
cosoer+sinae~

b
=

-sinoer+cosoe~

c = ez.

We take o =
a(#), T

=
T(r), S

=
Sol So being a constant. Then the free energy reduces to

fl
~ ~t ~

dTj~ T~
daj~~ ' ~

2
~ ~

4
~ ~ ~

dr
~ ~~

r2
~

d#

+2(L2 L3)
~ ~~ ~~

+ 4Li ST ~°~/~ ~°
(45)

r dr d#
r~ d#

where K
=

Li +
@ ive have the equations of equilibrium:

~j ~ ~~~~

It can be seen that this reduces to the Ginzburg-Pitaevskii equation [2G] for the s =
i disdina-

tion where a =
const. The solution has the features: S

=
So, o =

const-, and jr
=

0, T
=

0),

jr
=

m,T
=

To
"

li).
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