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Abstract. This paper investigates the effects of the spatial variation of the
cosmological constant Λ on the spacetime geometry within and outside a 
massive object. It is seen that the variation of Λ with the radial coordinate 
introduces non-trivial changes leading to spacetime closing on itself
around a massive object. It may also be possible to generate interior 
solutions that lead to flat rotation curves of galaxies.  
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1.  Introduction 
 
The so called cosmological constant Λ has played numerous roles in the frame-work of 
general relativity. Introduced by Einstein (1917) in his field equations  
 

(1) 
 
the part played by the Λ-term was to provide a repulsive counter to the gravitational 
attraction in a static universe. In de Sitter’s model (1917), Λ led to an expanding
universe. Subsequently the discovery by Hubble (1929) that the universe is expanding 
and the realization that the models developed by Friedman (1922, 1924) describe the 
expanding universe without recourse to the Λ-term led Einstein to discard that term 
from his field equations.  

In recent times the Λ-term has interested theoreticians and observers for various 
reasons. The nontrivial role of the vacuum in the early universe generates a Λ-term  
that leads to the inflationary phase. Observationally this term provides an additional 
parameter to accommodate conflicting data on the values of the Hubble constant, the 
deceleration parameter, the density parameter and the age of the universe (Gunn & 
Tinsley 1975; Wampler & Burke 1987).  

Assuming that Λ owes its origin to vacuum interactions, as suggested in particular  
by Sakharov (1988) it follows that it would in general be a function of space and time 
coordinates, rather than be a strict constant. In a homogeneous universe Λ will be at 
most time dependent. Such a model was considered recently by Peebles & Ratra 
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(1988). The aim of this attempt was to reconcile low dynamical estimates of mass 
density (Ω ≅ 0.2) with the k  0 flat model required by inflation. While this approach 
can generate Λ that varies both with space and time, as mentioned above, only time- 
variation of Λ was considered by the authors in the cosmological context.  

In considering the nature of local massive objects, however, the space dependence of 
Λ cannot be ignored. In a quasi-static situation where the cosmological time scale is 
too large, it may in fact be a good approximation to ignore the time dependence of Λ 
and highlight its space-dependence. Could a spatial variation of Λ produce any 
appreciable observable effect on the morphology of galaxies? In particular can the flat 
rotation curves be related to the existence of Λ? Does a variable Λ help us understand 
the physical behaviour of super massive objects located in the nuclei of galaxies?  

In this paper we undertake a preliminary study of these problems by exploring the 
solutions of (1)for a spherically symmetric situation in which a single massive object is 
the source of gravity. For reasons outlined earlier, we shall discuss static solutions 
only.  
 
 

2.  The field equations 
 
The field Equations (1) imply (through the usual Bianchi identities) that
 
 (2) 
 
In the normal interpretation, both sides of this equation vanish separately. However, 
in the present scenario there is a dynamic interaction between matter and the vacuum 
so that in general Λ;k 

≠ 0. Thus there is non-conservation of Ti
k. In modern particle 

physics this effect is produced through the non-trivial behaviour of vacuum in a 
quantum field theory and usually a scalar field is invoked for this purpose. This 
situation is analogous to the C-field cosmology of Hoyle & Narlikar (1963) where 
apparent non-conservation of matter and energy was due to the existence of a 
cosmological creation field C. Needless to add that as in that framework here also, 
there is an overall conservation of matter and energy as implied by Einstein's field 
equations. (At the time the C-field theory was proposed, particle physics had not 
matured to the present day levels and nonconservation of baryons was considered 
anathema.) It is also worth recalling that it was in the steady state cosmological 
context that McCrea (1951) had first highlighted the possible dynamical role of a 
nontrivial vacuum.  

There is one respect, however, in which the present analysis is different from the C- 
field cosmology. In the latter, the effect of the non-conservation of ordinary matter 
manifested itself only at the instant of creation of a particle. Therefore, the particle 
moved in a geodesic with the C-field no longer affecting its motion. In the present case 
the gradient of Λ always affects the motion of matter, as given by the right hand 
side of (2).  

Thus in principle, the Λ-force would enable an observer to measure his motion 
relative to vacuum. To the extent that there exists a cosmological rest frame, this 
vacuum has a special status as in standard cosmology. In principle this vacuum would 
have fluctuations in time as well as in space. While in general one should include both 
types of fluctuations, we are concerning ourselves with situations in which the time 
scales (associated with galaxies and cosmology) are long enough to render the 
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temporal fluctuations unimportant. Similarly, the spatial fluctuations are important 
only over the scale determined by the matter distribution i.e., over the galactic scale or 
on the scale of a super massive object. 

Finally, the extra force introduced by the gradient of Λ in (2) needs to be estimated in 
the laboratory context. A crude approximation may be made as follows.  

It is clear that Λ decreases in magnitude as we move across the Galaxy. Taking the
central value as given by the Zone I of Section 3 we get Λ ~ 3MN /RN

3  where MN is the 
nuclear mass and RN the nuclear size. Assuming that Λ falls to the cosmological value 
over the galactic radius (as per the rotation curve) RG, the gradient is ~ 3MN /RN

3 RG. 
Restoring G, c this becomes 3GMN/C2RN

3 
RG .  

Now, the Ti
k in the left hand side of (2) is (8πG/c4)ρuiuk in the smooth fluid 

approximation. In the locally flat reference frame in which the fluid is at rest this term 
gives simply 8πGρa/c4 where a is the measured acceleration. The Equation (2) now 
gives  

 
 

Thus in principle, the acceleration depends on density ρ, in violation of the weak 
principle of equivalence. For MN ~ 109

 

Μ , RN= 1 pc, RG= 30 kpc and ρ ~ 1 g cm–3,
we get a ~ 10–16 cm s–2 ~ 10–19 g where g is the acceleration due to gravity. This 
effect; though small, is still an overestimate since, from Fig. 1, the gradient of Λ is
expected to be steeper than estimated above near the nuclear region and flatter at the 
distances where we are located. At present this effect is below the limits set by 
 

 
Figure 1. Behaviour of the physical parameters λ, ν and Λ. The generic behaviour of these
parameters in the solutions of Section 3 is shown by these curves.  
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experiments detecting the so called fifth force. However, a more detailed theory can 
estimate the effect more precisely.  

The Equation (2) uses a smooth fluid approximation of the type commonly used in 
the equations of standard cosmology. In the Friedman models the uniform density 
assumption is only justified on a large enough scale, say 10–100 Mpc, in view of the 
discrete structure of matter. Superimposed on this are the random motions of galaxies 
in clusters moving under their N-body interaction. Likewise here we will treat ρ as an 
average density of interstellar medium over scales of ~ 10–2 pc. Superimposed on this 
average motion one has to include motions of discrete objects like stars. Since here we  
are concerned more with rotation of hydrogen clouds, we will stick to the smooth fluid 
approximation in what follows.  

Thus, to estimate the acceleration of the interstellar medium (ISM) we note that if 
the right hand side of (2) were zero (i.e., if there were no Λ-force) then in the Newtonian 
approximation one would arrive at an acceleration of the ISM of the order of 
10–8 cm s–2 at a distance of ~ 10 kpc from the Galactic centre. In an equilibrium 
situation with the Λ-force, the smooth fluid approximation would introduce small 
perturbations of the above situation and not significantly alter the Newtonian 
acceleration. Because of its ρ–1 dependence on density the Λ-force will have even less 
effect on the dynamics of the more dense objects like stars. We will therefore ignore 
motions of such objects in our analysis.  

In the spherically symmetric and static case we will take the line element in the 
Schwarzschild coordinates:  
 

(3) 
 
with ν and λ as functions of r only. We take c= 1, G = 1 so that k = 8π. The Ti

k

 

is given 
by  
 

(4) 
 
Thus, the only non-zero component of Ti

k is To
o = ρ = density of matter. As implied 

earlier, we also have Λ = Λ(r).  
The ( 1

1) and (o
o ) components of the field equations take the form 

 
(5) 

 
 

(6) 
 
The primes, as usual, denote derivatives with respect to r. 

The conservation law (2) leads to an extra equation 
 

Λ′ = 4π ρv′. (7) 
 

There are, however, four unknowns, λ , ν, ρ and Λ to be determined and thus we need an 
extra equation besides (5)–(7). Normally, this should be provided by the underlying 
dynamic interaction between matter and the Λ-term (as in the C-field case cited 
earlier).  

Rather than speculate about this interaction on theoretical ground we will adopt a 
heuristic approach. We will postulate an extra condition that seems indicated by the 
observations of local massive objects. Two of the possible ways in which this can be 
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done are described in the following sections. We do not claim any uniqueness about
our somewhat ad-hoc assumptions. Rather it is to be seen as indicative of the possible 
new inputs that a variable Λ can bring to the relativistic descriptions of massive 
objects.  
 
 

1.  A triple-zone solution 
 
Before proceeding with a mathematical model, we outline the physical scenario.
Corresponding to a massive galaxy with a nuclear core situated in a tenuous 
intergalactic space we consider here a massive spherical object of finite extent with a 
dense core. Within the core itself we ignore spatial variations of physical quantities and 
take a uniform distribution to represent the actual one over the compact size of the 
core. Outside the core the spatial variations become important and quantities decrease 
outwards until the boundary of the object is reached. Beyond lies the cosmological 
spacetime. Our mathematical model reflects this scenario. 

In this solution we have three zones, the first and the innermost one representing the 
core, the second (in the form of a shell) representing the envelope of the massive object 
and the third (outer) part describing matter-free space. The specific properties of the 
three zones are described below.  
 
 

Zone I (0< r < r1) 
 
This is a miniature section of the Einstein universe with a constant value of Λ( = A).
The solution is given by  
 

(8)  

(9) 
 

(10) 
 

(11) 
 
If this part were to describe the inner regions of a galaxy, then the Keplerian circular 
velocity of a gas cloud in this zone would increase in proportion to r.  
 

Zone II (r1    
r < r2) 

 
Following the galaxy model, if we wish the rotation curve to be flat, we should have 
ρ ∝ 1/r2 approximately. Taking this as the guiding point we assume that beyond r = r1 
the density should drop off as above while maintaining a continuity at r = r1 , with the 
value in Zone I. The Solution in this region is therefore described by the equations 
 

(12) 
 

(13) 
 

⋝ 
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(14) 
 

(15) 

 
(16) 

 

The unknown function in these equations is x(r) which is to be determined by 
eliminating ν and λ between the Equations (13), (14) and (16).  
 
 

Zone III (r    r2) 
 
This is like the empty de Sitter universe outside a massive object. The solution is
described by:  
 

(17) 
(18) 

(19) 
 

(20) 

 
The constants C and D are to be determined by the continuity of Α, ν and Λ at r = r2, 
between zones II and III. D  is related to the gravitational mass of the object and C to 
the square of Hubble’s constant.  

The solution to the entire problem therefore essentially involves determining the 
function x(r) in Zone II. This function satisfies a nonlinear differential equation of 
second order:  
 

 
(21) 

 
This equation cannot be integrated analytically, but its numerical solutions for

various values of its parameters are easy to obtain. The equations are integrated with  
r1 = 1 and r2 = n. The unit of length L can be fixed suitably afterwards. By substituting 
the values of c and G and expressing distances in L parsecs, density in g cm–3 and mass  
in solar mass units, we can convert the typical numerical solution to its astrophysical 
counterpart. Thus,  
 

 (22) 
 

The gravitational mass of the object is given by 
 

(23) 
 

The effective Hubble constant Ho = 100 ho km s–l Mpc–1 is given by 
 

(24) 

⋜ 
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The chosen unit of L  parsecs is arbitrary and can be scaled up or down to get more 
realistic values. From (24) and (23) we get  
 

(25) 
 

Thus for ho=1, M= 1012 M  we need to pick a solution that satisfies DC1/2  5 
× 10–11. By adjusting the parameters A and r2/r1 we have generated a number of 
different numerical solutions. The general behaviour of λ, ν and Λ is shown in Fig. 1. It 
is clear that Λ varies by a very small amount on the galactic scale in such solutions. 
Nevertheless the presence of Λ is necessary because these solutions are totally different 
in character from the Λ = 0 case.  

It is clear that for A  1, one can obtain models of relevance to galactic masses, by 
adjusting A and the ratio r2/r1. However, when A increases to an appreciable fraction 
of unity we cannot have arbitrarily large r2/r1. For example, for A=0.5 we have 
r2/r1 < 2.5. In this case B ≅ 0.13 C ≅ 0.17 and D ≅ 1.49. The reason why such cases 
cannot be extended to large values of r2/r1 is because the nonlinear differential 
equation satisfied by x becomes singular through the vanishing of e–λ

 

. This latter 
situation describes, massive objects with strong gravitational fields which make 
spacetime close onto itself. The Λ-term seems to play a more significant role in such 
cases, compared to when A  1. The above conclusions are based on the assumption 
about ρ(r) as given by (12). Within the present framework this is an empirical 
statement. However, Equation (7) indicates qualitatively that the rate of change of Λ is 
proportional to the magnitude of ρ. For a density range similar to that considered 
here, we expect the qualitative behaviour of Λ to be the same as obtained here.  

It would, of course, be more realistic to consider disc-type systems rather than
spherical ones, since the former are more realistic representations of galaxies in which 
flat rotation curves are observed. Axially symmetric solutions are more difficult in 
general relativity and an effort in their direction is justified only after we have  
convinced ourselves that a variable Λ can lead to significantly different solutions. This 
and the solution of the following section both suggest that such an effort in the future 
will be worthwhile.  
 
 

4.  A numerical solution, fitted to the exponential decay of density 
 
The mathematical model described in Section 3 is by no means unique. It is given as an 
indication of what is possible under the assumption of a variable Λ. The somewhat 
artificial division of the solution into Zones II and III can be obviated by choosing an 
exponentially decreasing density outside the nuclear region. Thus instead of a sharp 
boundary the object ‘tapers off’ into an asymptotical low density background. We 
describe such a scenario by another mathematical model given below.  

In order to solve the Equations (5), (6), (7), plus the “fourth” equation given by the 
definition of the function ρ(r), we have to eliminate v'. After some manipulation we 
finally arrive at the equation for Λ'  
 

(26) 
 
where the function F(r) is equal to: r–∫r0

 
r’2(2A(r´)+Λ(r'))dr' and where the function

A(r) = 4π ρ(r). 

≃ 

<<

<<
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Equation (26) has to be solved numerically for a specified A (r). The function A(r) can 
be defined either by some analytical formula, or by some interpolable table of figures. 
We have assumed, in our numerical procedure, the function A(r) to have the form: 
 

 
 

(27) 
 

A typical example of A(r) is shown in Fig. 2, together with an example of the
representation of our Section 3 above. At the origin, the two functions coincide.  

The numerical integration of (26) runs obviously into some practical difficulty
around the value r = rc defined by  
 

(28) 
 

Then Λ' apparently becomes infinite; however this is compensated by the following 
fact. Let us put r – rc = ε; then to the first order in ε, one has:  
 

(29) 
 

Hence: 
 
 

(30) 

 

The term in brackets being very small when Λ = Λc = 1/rc , one can avoid the
singularity by the use of suitable cutoffs in the steps of r  as one crosses the “barrier”. 
The stability of the results fully justifies confidence in the steps used. It is easy to show
that the value r = rc lies in a restricted range of values, depending on the behaviour 
of A(r).  

Fig. 3 illustrates the generic behaviour of Λ(r). Starting with the value Λ = A at r =0, 
it reaches a very flat minimum at Λ = Λc and r = rc. The fact that the minimum is flat is 
linked with the stability of the solution when one changes the interval of integration. 
After its flat minimum Λ(r) increases slowly, and reaches a limit at large values of r, as 
seen in the figure.  
 

 
Figure 2.  Behaviour of the reduced density 4πρ/Α. The curve labelled III corresponds to the
definition of Section 3. One has here r

1 = 0.5 and r2 
= 1.5. The curve labelled IV corresponds to

the definitions of Section 4. One has there r1  = 0.5, B = 0, C = 1.  

2
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Figure 3. Typical Behaviour of Λ(r). The curve of the figure corresponds to the variation of
density described on curve IV, Fig. 2.
 
 
 

The above situation was encountered in Section 3 also and can be interpreted as
massive local objects that close the spacetime onto itself. As mentioned there the effect 
arises from the Λ' equation, i.e., from the spatial variation of Λ.  
 
 

5. Conclusion 
 
These calculations indicate the broad behaviour of the local Λ-variation in gravitating 
objects. By and large the variation of Λ is governed by the density of matter. As shown 
in Section 3, the variation in Λ is very small for matter distribution of galactic interest. 
The effect may be somewhat more drastic in locations of high density. For example, 
increasing A to a value close to 0.5 makes it difficult to have a large value for the ratio 
r2/r1. The solution becomes ‘singular’ as r2/r1 approaches values in the range 2.5–3. 
This would imply space closing in on itself to make ev < 0. A similar effect arises in the 
exponential decay from of ρ. It therefore seems a characteristic effect of variable -Λ on 
the spacetime geometry.  

In a cosmological solution, we have to recognize that several such massive objects 
exist and so the cosmological value of Λ would be the net effect of ‘summing’ the 
asymptotic values from individual massive objects. Since a relativistic many body 
problem is intractable, one may assume a linearized approximation for this purpose. In 
that case the cosmological Λ may be a function of the total number of such masses.  
 

Further work is needed to see whether the cosmological value of A can be related to 
the microwave background temperature ~3K as done by Sakharov. Also it is 
necessary to show that the model is stable. That is, with expansion or collapse, a  
variable A should introduce counteractive terms.  
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