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Abstract. We point out that the equivalent-photon approximation (EPA) for processes with
massive spin-1 particles in the final state would have validity in a more restricted kinematic
domain than for processes where it is commonly applied, viz., those with spin-1/2 or spin-0
particles in the final state. We obtain the criterion for the validity of EPA for the two-photon
production of a pair of charged, massive, point-like spin-1 particles ¥'%, each of mass M and
with a standard magnetic moment (x = 1). Ina process in which one of the photons is real and
the other virtual with four-momentum g, the condition for the validity of Epa is |¢*| < M?,in
addition to the usual condition |g*| < W2, W being the ¥'* V'~ invariant mass. In a process
in which both photons are virtual (with four-momenta g and ¢'), our condition is
|9?| "2 |W* < 16 M®, in addition to |¢?| < M2, |¢'3| <« M?and |¢?| < W2, |¢'%| < W2, Even
when these extra conditions permitting the use of EPA are not fulfilled, convenient approximate
expressions may still be obtained assuming merely |¢?| < W? and |g'%| < W2,

We also discuss how the extra conditions are altered when the vector bosons are
incorporated in a spontaneously broken gauge theory. Examples of W boson production
in Weinberg-Salam model are considered for which the condition |a®||q*|W* < 16 M8 is
shown to be removed.
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1. Introduction

The equivalent-photon approximation (EPA), or the Williams-Weizsicker method
(Bohr 1913, 1915; Fermi 1924; Williams 1933, 1934, 1935; Weizsicker 1934) has for long
been a useful theoretical tool (Kessler 1975; Budnev 1975) in studying reactions
involving virtual photons, where the virtual photons can be assumed to be almost real.
In such a case, the method enables one to relate the cross-section for a given photon-
mediated process to that for a simpler process involving only real photons, and thus
provides a convenient method of calculation. Epa has assumed even greater importance
in recent times when e"e” colliding beams have been used to study “two-photon”
reactions (Brodsky et al 1970; Terazawa 1973).
The epa method is applied to processes of the type

AB— Ay*B - AX, (n
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where A is a charged particle, B is any particle, and X is a multi-particle state. If the
virtual photon y* can be treated as almost real, EPA consists in deducing the cross-
section for the process AB — AX by calculating just the cross-section for yB — X for a
real photon y having only transverse polarization, and with a spectrum which depends
only on the nature of the particle A. A general derivation of epa (Kessler 1975; Budnev
1975) depends on the fact that an amplitude containing the propagator of a virtual
photon of four-momentum ¢ is proportional to 1/g% and hence the region ¢> ~ 0
dominates. Hence terms proportional to ¢* in the cross-section for yB — X can be
dropped. Moreover, the amplitude involving a longitudinally polarized virtual photon
is proportional to Q =./—¢* due to gauge invariance, and is expected to be
suppressed for Q* ~ 0.

In a practical application of the EPA method, one must know how small Q2 has to be
for the approximation to be applicable, and a general criterion is usually expressed (see,
for example, Kessler 1975 and Carimalo et al 1979) as Q2/W? < 1, W being the invariant
mass of the final state X produced by the photon subprocess. However, this criterion
involves certain implicit assumptions about the general behaviour of the virtual-photon
amplitude for 9* < W2. For example, if another mass scale M is present in the problem,
it is assumed that the longitudinal-photon cross-section, which gets a factor Q2/W?
from the photon polarization vectors, does not have, in addition, powers of W2/M?,
which could be large for small M. In the latter case, the lon gitudinal terms could not, in
general, be dropped. It is, moreover, assumed that the transverse cross-section does not
contain terms with powers of Q2/M? which, for W M cannot be neglected even if
Q < W, unless 0?/M? < 17,

In this paper, we show that the criterion Q/W? < 1 is not sufficient for the validity of
EpA when massive spin-1 particles are produced in the process (1) considered above, i.e.,
if any particle in X is a massive vector particle. The reason is that amplitudes with
external massive spin-1 particles have in them powers of 1/M, M being the mass of the
vector particle, and if M is smaller than W, some of the Q*/W* terms in the longitudinal
cross-section would get multiplied by possibly large factors of the type (W?/M?)", and
Epa would not be valid. Moreover, powers of 02/M? would enter even the transverse
cross-section and cannot be neglected.

Powers of 1/M might enter an amplitude involving massive vector particles in
various ways: (i) In the presence of electromagnetic couplings with a “non-standard”
magnetic moment (x # 1) (Lee and Yang 1962) for the vector fields, the (p.0y/M?)
(P* —~M?)~* term in the massive vector propagator would contribute factors of 1/M?
(see, for example, the result for the cross-section for yq — Wq in Mikaelian et al 1979).
These terms drop out in three diagrams when x = 1 (Vainshtein and Khriplovich 1971).
(i) Even in the case of x = 1 (massive Yang-Mills fields, for example), or of the
amplitude in question involving only couplings of the vector field to fermions, 1/M
enters the amplitude for the zero-helicity mode of the spin-1 particle via the
polarization vector.

It may happen that these factors of (W?/M?)" arising due to the presence of massive

1‘l‘Tor a general formulation of the underlying assumptions for dropping the longitudinal contribution, see
er@alq et al (1?79). If the criterion of “isotropy” of Carimalo et al can be shown to be satisfied, the
longitudinal contributions can be dropped even in the presence of a small mass scale M. We shall see that this

is not the case in specific examples. The Q?/M?* terms in the transverse contribution cannot be dropped for
small M, in any case.
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vector fields get altered due to more detailed dynamics, for example if form factors are
present, or if the massive vector fields are gauge fields in a spontaneously broken gauge
theory which has a smooth M — 0 limit. Even in such cases, though a type of EPA can
still be used, it will be quite different from the usual Epa. This could lead, for W >M, to
results different from naive expectations based on Epa (for example, for W »>m, m,in
electroweak gauge theories, or for W > m, in broken colour gauge theories, m, being the
gluon mass).

We have formalized the above arguments for the process (1) by considering a general
analysis of the contributions of the + 1 and 0 photon helicities, and then specializing to
two processes, (i) when A is a fermion, B is a real photon, and X consists of a pair of
charged vector particles V" V'~ i.e., the process

(i) Ay — Ay*y > AVIV7,

and (ii) when A, B are fermions, and X consists of B and a pair of charged vector
particles ¥* V™ ie., the process

(i) AB— Ay*By* — ABV*V".

In the latter case, we would be discussing the validity of the so-called double equivalent-
photon approximation (DEPA), where an effective real-photon spectrum is used for each
of the two virtual photons.

For both processes, we assume only point-like electromagnetic couplings for the V' %,
and take k = 1, for simplicity. The case of k % 1 would be more involved in terms of
algebraic expressions, but could otherwise be discussed in the same way. Of course, we
also have in mind possible applications to spontaneously broken gauge theories, where
k = 1.Infact,in order to study the effect of additional non-electromagnetic interaction,
we consider as concrete examples the processes exy —exW W™ and eze;
—ege ;WTW™ in the SU(2) x U(1) Weinberg-Salam model.

For simplicity in discussing our results, we assume (M, Q) < (W, k ;), where k ,1s the
transverse momentum of either of the produced vector particles in the two-photon
centre-of-mass (c.m.) frame.

Our results can be summarized as follows. EPA can be applied to process (i) only if
0? < M?, in addition to the usual condition Q* < W2. pEPA can be applied to process
(i) only if Q?*Q'? <« M®/W* (in addition to Q%> < M?, Q> <« M? and Q? < W2
Q'? < W*)which is a stringent condition for W > M. The restriction on Q2 or Q' may
be imposed in an experiment by “tagging”, or detecting the final A or B within a
restricted scattering angle.

In these cases, if one does a full calculation without using EPA or DEPA, integrates over
all azimuthal angles, and only drops terms of the type Q*/W?, Q'2/W? or their higher
powers, while retaining terms with merely Q*/M 2, Q'2/M? and their higher powers, a
simplified expression for the cross-section can be obtained. This expression does not
have the advantage of enabling one to calculate the cross-section for the full process
from the cross-section for the real-photon subprocess. Nevertheless, it does lead to a
more tractable phase-space integration, and can be used provided azimuthal corre-
lations are not required.

The examples of ey — exW W™ andegze; — ez e W™ W™ in the Weinberg-Salam
model illustrate how in a gauge theory the above results get modified. In particular, if
the Higgs boson mass myis small compared to W in the latter reaction, the condition for
the applicability of DEPA is merely Q% < m%, Q'? < m}, assuming that m is of the same
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order as m%, and if an integration over the full range of Q% or Q'? is carried out, the
well-known logarithm In (E/m) in the equivalent photon spectrum (Williams op. cit.;
Weizsdcker op. cit.), '

—=, ©)

—v)2
al+(1—x? E
T X m

where x is the ratio of the photon energy to the electron energy E, and m is the electron
mass, gets modified to In (m;/m). This could invalidate calculations using EpA for
W »>my,. Also, as the non-leading terms could be significant, a detailed calculation
would be necessary.

It should be pointed out that all our discussion is with regard to the a priori validity of
various approximations. Numerical comparison of the approximations with the exact
results lies outside the scope of the present paper. A comparison with DEPA of our
approximation scheme, which neglects Q%/W?2, Q'2/W?, but not Q2/M?, Q'*/M?, for the
process eze; — eze ;W W™ can be found elsewhere (Jayaraman et al 1985).

The organization of the paper is as follows. In §2 we present the analysis of the
processes AB - Ay*B — AX and AB — Ay*By* - ABX using helicity representations

- for the virtual-photon polarization vectors, and indicate how the usual pa is obtained

for 02, 0> < W*. In § 3, we discuss the two processes (i) and (ii) for vector production
mentioned above, and obtain the criteria for the validity of Epa in each case. In §4 we
present results for exy - exW* W™ and ege - eze ;W W™ in the Weinberg-Salam
model. In the last section (5), we comment on implications of our work for other

interactions and processes. Appendices A, B and C list some complete expressions
corresponding to the approximate forms used in the text.

2. Helicity formalism

In this section we relate the square of the matrix element for the process
AB - Ay*B - AX, 3)

involving one virtual photon to the helicity amplitudes for A — Ay* and y*B — X, and
for the process

AB — Ay* By* - ABX, )

involving two virtual photons to the helicity amplitudes for 4 — Ay*, B — By* and
y*y* - X. We essentially use the formalism of Kessler (1970), specifically in the form
employed for process (4) Carimalo et al, (op. cit)). It is essential to go through some

details in order to make our notation clear and to facilitate the understanding of the
procedure of the subsequent sections. |

. () AB—> Ay*B— AX The matrix element for the process can be written as

M= a,Cy ( __g,uv/q2), (5)

where a, is the amplitude for 4 — Ay} and ¢, is the amplitude for y*B - X, g being the
virtual photon four-momentum. In the y* B c.m. frame, we define the direction of qtobe
the z axis, and the plane of the momenta of y*and X, to be the xz plane, where X, is a
particle chosen from X. One can then write the following representations for photon



Equivalent-photon method for vector particles 25

polarization vectors with + 1 and 0 helicities:

f

1
i_z"(os 1> $l, O)a

e \/_
1 ‘
8‘6 = ;é'(,qla ‘0: Oa ‘10) (6)

Here Q = ./ —¢?, and the notation for four-vectors is V* = (Vo V', V2, V%), These ¢
satisfy the closure relations

2(=1)rehet =g* —g*q"/q @
Using (7) to write g*” in (5) in terms of polarization vectors, and using gauge invariance
(a.9" = c,q° = 0), we get

M= —(1/g*) Y (=) a,ghc,ent. - ®

(—1)"c,&n* is the helicity amplitude c,, for y*B — X. If one were to define the helicity
amplitude a,, for 4 — Ay* with respect to the same z axis, but an xz plane chosen to be
the plane of q and the momentum of A, this would be related to the helicity amplitude
a, & in the old frame by a rotation about the z axis through the azimuthal angle ¢, of
X, relative to the new xz plane (4y* plane). Hence,

am = a,ehexp (—ime,). )

am, of course, does not depend on ¢,.
Equation (8) can now be written in terms of a, and c,, as

M = —(1/g) Y tntm exp (+imepy), (10)
where the complete ¢, dependence of M appears explicitly. Consequently,
2LIM[? = (1/g%) ¥, ApsnCrmexp [i(m —m)p, ], (11)
m,n
where
Amp = Zanag*,  Cps= Zcuca*, (12)

and where X on the left hand side of (11) and in (12) stands for summation over spin
states of the external particles. If desired, appropriate polarizations could be projected
out, instead of summing over them. ,

We shall restrict ourselves, for simplicity, to the case when ¢, is not measured, in
which case we can average over ¢, in (11) to get

(TIMP) = (1/g%) S, AnnCom S (13)

Using 4, + =A_-_ and C, , = C__ following from parity in;fariance, we get
q4<Z‘M|2>=2A¥+C+++A00Coo~ (14)

The usual next step in obtaining EpA is to note that because of gauge invariance, the
zero-helicity amplitude ¢, is down for small Q by a factor Q/g, = 2QW/[W? — Q2
 —M}] (where M ;is the mass of B)relative to ¢, , the factor Q/q0 coming only from the
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differences in &, and ¢, . Hence if Q% < W2, ¢, is expected to be small compared toc,,
and can be neglected. We shall examine this argument critically a little later. Meanwhile,
we go on with the procedure for obtaining Epa.

If ¢y terms can be dropped, only transverse photon helicities contribute, and
consequently, neglecting Q?/W?2in C, +» We can relate the cross-section for process (3)
to that for yB — X, where 7 is a real photon with only transverse polarizations.
Depending on the nature of the particle 4, A, , will give an appropriate equivalent
spectrum of photons. For example, for a charged lepton with charge e and with mass
neglected,

A, (lepton) = ;ze—i[QZ E%;ﬁ], (15)

where x = (g0 +|q)/(po +p,) in the YB c.m. frame, p being the incident lepton
momentum. This leads to the well-known equivalent photon spectrum for leptons
(Williams op. cit., Weizsicker op. cit.).

Coming to the assumption of ¢, being negligible compared to ¢, for 0 < W, we note
that if another mass scale (say M) is involved, we should be careful. For example, if cy
contains terms like W/M which in the zero helicity amplitude would get multiplied by
Q/W, we would have terms like Q/M, which cannot be neglected for small M. This

type of terms. In such a case not only can C,, not be dropped in (14), but also all terms
proportionalto Q?inC, , cannot be dropped, since some of them could have M?in the
denominator. Thus, one cannot connect the cross-section to that for a real photon, and
EPA cannot be applied.

(i) AB— Ay* By* 5 ABX The procedure for writing the matrix element in terms of
helicity amplitudes in this case closely follows the procedure described for process (3).
We now write the matrix element for the process as

M = a*(~g,5/a%) ¢ (~g,. /g, (16)

where a,, is the amplitude for 4 — Ay¥(q), b, is the amplitude for B — By* (¢),and ¢°*is
the amplitude for Y(@*y*(q)* — X. We now 20 to the y*y* c.m. frame, and choose qas

the z axis. With y*x, plane chosen to be the xz plane, the polarization vectors ¢ and ¢
for the two photons with momenta g and g’ respectively are

1 -
8‘-11_-1 = _8'§1 = -—_——(Oa 1: +1, 0)9 (17)

7
o= (al. 0,0, g0} & = (g, 0.0, —g1)
lQ s My Vs Y0) G lQ, s My Uy (1)}

with Q = "‘qz’ Q, =/ _qlz-

As before, using gauge invariance, the closure relation (7), and a similar one for g, we
can write M as

M =1/(a?4%) ¥, (a.et) (=1 enxe, )] (boep). (18)

The helicity amplitude for V*¥P* > X 1S Cpy = (— ¥ coeen™ (~ 1)

n
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Inanalogy with the procedure of subsection (i), we write the helicity amplitudes for a,
and b, in frames with the xz planes defined as the 74 and 9B momentum planes
respectively, as

am = a e CXp ( - imd)l)’ bn = bveﬁv €Xp [Zn(¢1 - ¢)]s (19)

where ¢, is as defined before, and ¢ is the azimuthal angle of the momentum of B in the
original frames. Equation (18) can now be written as

M = 1/(g%q’? Y GpCmnb, exp (ing) exp [i(m —n)¢p,]. (20)

As before, all the ¢ and ¢, dependence of M is explicit in (20).
We can now write for £ M |, where X stands for summation over spin of the external
particles,

LIMPP=(1/g%q) ¥ AmmCmm,nﬁBnﬁeXP{i[(m*ﬁ)¢+(n—ﬁ)(¢—¢1)]} (21)

mJinn
where
Amﬁt = Eama;%, Bnﬁ = Zb"b%:,
Comiy it = ECopCir. (22)

If azimuthal correlations are not required, we can average over ¢ and ¢, to get
(Carimalo et af op. cit.; Kessler 1970)

<Z’MIZ> = (1/6144’4)[A++ Cii 14 +C, +,--+C__ 4, +C__ __)B,,
+A++(C++,oo+C~~,oo)Boo+Aoo(Coo,++ +Coo,--)B+ .
+A406Co00,00B00], (23

where we have used 4, , = A_-_,B.. =B__ and Crmnt = Co .

As before, to get DEPA, one usually drops all C’s involving zero helicities for small
Q/W, Q'/Wusing gauge invariance, and neglects terms of order Q/W, Q'/Wor higher
eveninCys i, 44 +Cyy __+C. —++ +Co_ __. (Z|M|*> would then be related
to the squared matrix element for vy = X with real, transversely polarized photons. The
equivalent photon spectrum for A, B could be obtained from A, , and B, ..

As we remarked in the case of process (3), if massive spin-1 particles are being
produced, Coo 44, C. +,00 and Coyy o0 could have terms proportional to
(Q*/W?) (WM, and then these could not be dropped. We cannot drop terms
proportional to Q/M in the transverse polarization contribution either, and DEpa fails.

3. Production of charged massive vectors

We discuss here the application of the formalism of §2 to the processes

Ay > Ay*y > AV Y- (24)
and
AB — Ay*By* - ABV* V-, (25)

where 4, B are charged fermions, and V* V'~ are charged massive spin-1 particles with
mass M and x = 1. We assume that besides electrodynamics no other interactions are
present. We also assume that ¥+ I/~ state has a large invariant mass (as compared to Q2
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 of the photons), hence, processes with intermediate states indicated in (24) and (25) are
the dominant ones for ¥* ¥~ production.
(i) Ay —» Ay*y - AV V™ Asin §2 (i), we can write the matrix element for this process
as

M= _a“cﬂ/qz, (26)

where now ¢, the amplitude for y%y, — ¥ ¥ corresponding to the diagrams in figure
1, is given by the following expression, with the Lorentz indices for the vector field
displayed explicitly:

i = ——eZ[ Vi@ DV 4 k){‘g”ﬂq-—k)"(q—k)’/Mz}

(¢ —k)?* —M*
, —g" +(g =Ky (g =k)/M*
+ V#ﬁa(q’ I") vczr(q s k){ (q _k:)z _M2
- (2guﬁguv _gavgﬁu '—gaugﬂv)] . (27)

Here g, ¢’ are the momenta of y¥ and y, respectively, k, k' are the momenta of V" and
V.

Vuaa(qa I‘) = (2q - k)a g,ua' + (2k - Q)# Yoo — (q + k)a' gua (28)
represents the y, V7 V' vertex, and the ¥ propagator for momentum p is written as
{=g7+pp/M*} [p* - M*] 7",

In order to obtain the counterpart of (14) for this process, we will directly calculate

C i for unpolarized real photon, ¥ and V', rather than ¢, for various helicities of
these particles. Thus, the required C, is

Conm = (—1)™*Pel e C e, (29)
with

Cu# = Cﬁcye (—9")(—Gax + kaka'/Mz) ( —gpg + klﬂkb'/Mz)’ (30)
and where the polarization sums for the real photon, ¥* and ¥~ have been put in.
From Lorentz and gauge invariance considerations, C,, can be written as

2 2'
q r 1
Cur = —=Wiguw —Wa (g + kg7 k ky)— Wi (g + 7 k) ——=k, ki)
Doy 4K qk. . .,
+ W4(kuk“’+k“k#"—'ﬂ“k“k#’ q k’ k k ’), (31)
vu>m%vcm v-(m N3] VZIK) VKD
vulq) v,(q ‘ \Z—).:,g %%q)

Figure 1. The Feynman diagrams for y, (q)+7 (¢} — V& (k) + Vj (K') for virtual or real
photons.



Equivalent-photon method for vector particles 29

where Wy, W,, W; and W, are invariant functions of q*> k-q,k'qand q-¢ (with k- q
+k'-q—q'q = ¢*). Terms proportional to 4, 9, have been dropped in writing (31). In
terms of W,
Civ=[Wi+Wo+W;+ (g-9)W,]
Coo= — ;. (32)
The explicit forms of W;, obtained after a lot of tedious algebra, are given in Appendix

A. Here, for the sake of simplicity, we only give the W, in the limit Q> M) < (k-g,k - q,
q-q'), (with Q*/M? not neglected) which suffices for our present purposes.

Wi = 24 /IMY) (2 + 1/y* + 2y +2/y +2)
W, ~ e*{[14 ~4(¢*/M?) + L(g*/M?)?] + 2(4 — g*/M?) 2 +y+1/y]}
Ws ~ e*{[14 —4(g%/M?) + $(g*/M?)? + 2(4 =@’ /MA)[1/y* +y + 1/y]} (33)
Wiq-q)~ 0,
where y = (2q-k —q?%)/(2q k' —q?).

Notice that if we neglect g/M? and put ¢ exactly zero, W,=0,and Cy, =0, as
expected from gauge invariance. If, however, Q> and M2 are comparable we have to
retain W, . Thus, even though Q*/W? (with W2 = 42+ 24 ¢') has been neglected, the
zero-helicity photon contribution cannot be dropped unless Q*/M? <1t Also,inC, .,
we cannot retain just the real-photon terms by dropping Q?, unless 0*/M? < 1. Thus,
we can apply Epa only if Q%/W? as well as Q?/M? can be neglected.

To complete the calculation we need A4, , and A4,,, which can be obtained using the
helicity representations (6) and the expression

2a,af = e Z[a@y,up)] [AEN, u(p)]*
= e*[puBy + Pubw — (Q%/2)g ], (34)

where p, p are the momenta of incoming and outgoing fermion A, with p—p=gq We
obtain (Carimalo et al op. cit.)

Ay, = [3(Q% +4m?) (sinh?® a + 2) — 12m?]

. Ao = ¢ [H(Q? +4m?)sinh? «] (35)
where
sinh?q = 4(15%) Bt (36)
x? Po +D:

In the limit of the fermion mass m — 0, we get, on substituting from (35), (36) and (32)
into (14), with W, given by (3),

M) = é;[i%—.ﬁ{8(y+%+ 1)2 +4+4(Q¥/M?)

+(Q2/M2)2}+2(l§2—{> (Q2/M2){(y+31;+ 1)2 —-1}]. (37)

TIt is thus clear, a posteriori, that the criterion of ‘isotropy’ of Carimalo et al (1979) is not satisfied unless,
possibly, if Q% (and Q'?) satisfies the additional conditions we have discussed.
" Our definition of sinh?« differs from that of Carimalo et al (1979) but is identical to it for m = 0.
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This is the complete expression which should be used to calculate the cross-section if
Q?/M? is not small, rather than the expression which is obtained using Epa, viz,

2
QIM|? >EPA=';'67'1—1——(3]:C;£{8(}7+%+1) +4}. (38)

We note that integration of (38) over Q* would give a logarithmic term, whereas (37)
would give other terms as well.

(ii) AB — Ay*By* — ABV* V™ The matrix element for this process can be written in
terms of the matrix elements a, for 4 — Ay¥, b, for B— By* and c,, for yfy}

- VY
ey M = a*b’c,./(g*q"?). (39)

Here g, ¢’ are the momenta of the virtual photons at the 4 and B vertices, respectively.
¢,y 1s obtained again from the diagrams in figure 1, and with Lorentz indices o and j for
V'* and V7, the corresponding ¢% is again given by (27).
Using the helicity representations (17), we calculate C,z n7 Of (22) directly, using

polarization sums for ¥* and ¥V~

Cm'ﬁ,nﬁ: (*1)m+m+n+ﬁ8#:e%sﬁts%cyy’,w’, (40)
where

Cuwow = Ch il (= Gaw + kakir /M?) (— g pp + kK /M), (41)

Unlike in the case of y*y — ¥ V™, we have not attempted to write C v,y in terms of the
most general Lorentz and gauge invariant tensors. For our problem it is simpler to stick
to the specific form for C,,,,, which can be written as

21

C;Lu’,vv’ = Z T im’,vv'u/;', (42)
i=1

i

where Thyw (i = 1,2, ..., 21)are tensors constructed out of k and k' (9-9y.4y,9vcan
be dropped due to current conservation at A and B vertices, and 4y> 4v» 4y, gy can be
written in terms of the other momenta using energy-momentum conservation g + ¢’
= k +k’,and the resulting g, ¢’ can be dropped),and W, (i = 1,2, . . . , 21) are invariant
functions of 2,42, 4" ¢, q "k, q k' (withq-k+q-k' —q-q = g?). W;, whose calculation
is simple in principle, but a time-consuming exercise in algebraic manipulation, and T*,
are listed in Appendix B. ‘ '

We now present the expressions for the Cpmas occurring in (23), obtained by
substituting (42) in (40):

Covps =Coe - =Wy W; —3kI[(W + W, —2W,,)
+ Wiy + Wip —2W,3) 4+ 2(Wia + Wys ~Wis — Wis)]
+3k7[Wis + Wig +2(Ws0 + Way)], (43)
| NI =C_—,++ = m*‘Wz_‘!k%[z(Wd»"i‘W/s"M"'M)
+ (Ws + Wo —2Wy0) + (Wy, + Wy, —2W45)]
+4kT[Wis + Wio +2(Wyo + Way)], (44)

1
Citv00=C__00= ~W,+3kI(W,, + W, -ZWM)"’qu{[(Ws'f'%*‘?—MO)
— 3k (Wig + Wy —2Wsyq -2%1)]"(2)}‘1!2
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+[(W8+W —2Wyo) —3k2 (M8+Wx9+2W20+2%1)]k2
+[(Ws —W9)+2k%(Wxs — Wio)]2kok g4 }‘l“‘a (45)

Coo,++ =Coo,-- = =Wy +3k: (W + W, — 2W10)+ S AL(Wi1 + W, +2W,,)

“%kz(Wla+W19"2Wzo“2Wz1)]k2|‘I|2
+ (W + Wy, —2W;3) —3k2 (Wl8+W19+2W20+2W21)k a5
—[(Wy, —Wy,) + 5k2 r(Wig— (46)

(q-q') 2q-q

Co0,00 = e (W1+W3)+Wz+q 7 [(Ws +W14+Ws+W15)(k 19)* —k240q5)

+ (W + Wis + Wo + W, 1) ( k%l‘]|2 +k2q0q0)
+{(W, + Wy, —Ws — Wis) (@0 —q0)
—(We + Wi — W, —W,,) (go+90)} kOkqul]
1
“W{[(Ws +Wo +2Wio)g® + (Wyy + Wiz +2W;5)q'2 k3 |q

+ [(Ws + Wy —2Wi0)g%q + (Wi + W, *2M3)qlzqg]kf
+ [(Wé - Wg)qquo — (W= W12)Q'2‘10]2 lq |k0kz}

1
+q2q/2 {Wis(ko l‘l| —k.q,)? (kol‘II —k.q5)°
+"V19(kol‘1|+k2610)2(ko'QI+kz% 2
+2(W20+I'i/21)(k(2,|q|2—k22q0) k2|q|2 kzq )} 47)

In the above expressions, the components of k, g, g’ can be written in a covariant form
using

k0=

» la] = [(q-9)* —a*q*]7*/W,
(29 k—4%) 29"k —q%) —¢’°q?
K2 = o il SV (48)
Though these could be evaluated exactly using the expressions for W, given in

Appendix B, we have, for simplicity, used the approximation (Q?, 0’2, M?) < (q q,qk,
q-k'), but we do not neglect Q2/M?, Q'*/M?. The result is:

1 +q? 2+ g% +2¢%q?
'C++’++ =C._ __ =~ e4{4(y2+;2-+1) (q qu )+(q q ;/14 14
2,2 2+ 12 4 14
SAL Lk )
oSy, 1 1 a*q”
Civ-—=C__ .. ~e*{4ly +y—2 +16 y+y +24+4M8 (50)

: q* 1 2 g 1 7
ciomeeom el o ot
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2 2 2 14
q 1 q 1 q
Canve oo == (Gl (5 +1) =1 | (502 i
| (52

2,42 A2 Al 2.2 1
a4\ @9)  @49) 1Y d7%q 1 ¢
Conoo s € (M“){4M“ T \My) e

2 2 1 1
+M+—(y2+;3-18)}. (53)

2M? 4

As before, y = (29 k —g%)/(2g -k’ —g?). It can be seen from the above that the zero-
helicity contribution can be dropped only if Q*/M* <1, Q'>°/M?* <1 and also
(q-9)*Q*Q*/AM® < 1.' The last inequality, which may be written as
0%Q'* < 16M®/W* is much more stringent than the other two, since 2M/W < 1. Thus,
DEPA cannot be used unless these conditions are satisfied. The range of Q? and Q'? for
which DEepa is valid shrinks as W increases. In fact, for sufficiently large W, only the first
term in Co, 0o Need be kept and the other terms in Cyg o9, as well as the other helicity
combinations can be dropped.

Using A+ +, Ago Of (35), (36) and similar expressions for B +, Byg, and substituting
in (23) one can write the final expression for (X|M|*) in the approximation (Q?, Q'?,
M?* <(q-q, q-k, q-k’). We do not give the expression here, since it is somewhat
lengthy. It is clear that it would reduce to pEPA only if Q?/M? < 1, Q'*/M? < 1 and if
Q0% < 16M8/W*,

Under what conditions can we use the single epa for this process? That is, what is the
condition on Q'? so that we/can neglect longitudinal polarizations for the Q' photon,
and also drop all terms proportional to Q'2, and use (37) together with an appropriate
B +?For that, we should be able to drop all terms proportional to 4’ in (49)—(53), and

the condition for this is not just 0’2« M?, as one would have naively thought, but also
020" < 16M&/W*,

4. W-pair production in the Weinberg-Salam model

We have seen in §3 that in the case of vector-pair production EPA or DEPA cannot be
used unless the Q? of the photon or photons is restricted. We have, of course,
considered electrodynamics as the theory in that section. Strong interactions, or at high
energy, weak boson effects could modify the picture. At high energies, a unified
electroweak theory requires us to include the effect of gauge bosons other than the
photon, or possible heavy leptons. In fact, the inverse powers of M which occur in the
case of W-pair production, for example, would be removed in a gauge theory by the
inclusion of other neutral gauge bosons, Higgs bosons, and other leptons. Taking the
specific case of W™W™ production in e*e™ »e*e”W*W™ in the Weinberg-Salam
(WS) model (Salam 1968; Weinberg 1967) the leading diagrams contributing at high
energies (and large W* W~ invariant mass) would be the “two-photon” diagrams where
a Z exchange is also included (figure 2a), as well as the diagrams like those in figure 2b

*1t is thus clear, a posteriori, that the criterion of ‘isotropy’ of Carimalo et al (1979) is not satisfied unless,
possibly, if 0? (and Q'?) satisfies the additional conditions we have discussed.
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er(P) WAkl WK e*(p) € TR WK wHK o) WK welK) wed 1K) = (K)

3 15)\1\//{‘( B

Figure 2. The Feynman diagrams for ™ (p) + e* (p')— e~ (@) +e* (p)+ Wi (k) +Ws () in
the WS model, relevant for large W* W™ invariant mass.

involving neutrinos. When all these are taken into account, it is expected that there will
be no inverse powers of M (“mass singularities”), as the theory is renormalizable.

We verify below that this is the case in a specific example where diagrams of figure 2b
do not contribute. Our processes are e5y — esW* W~ and e xe; = ege;, WrW ™, where
Rand Lrefer to right-handed and left-handed polarizations for the leptons. In the limit
of zero electron mass (in which limit we calculate), W+ do not couple to e and e ;,and
we can drop diagrams of figure 2b. Calculating the unpolarized processes would be
much more complicated, and though more relevant phenomenologically, it is not
essential for our present purposes.

(i) exy > egW* W~ The diagrams relevant for large W* W~ invariant mass are given
infigure 3, involving photon and Z exchan ge. The “hard bremsstrahlung” diagrams are,
therefore, not considered. The matrix element for e~ (P)y+ (@)= e~ @W] (k) Wy (k)
using the diagrams in figure 3 is

M = —eu(p)y*(a+bysyu(p)cit /g2, (54)
where g, b are functions of g2, given by the WS theory to be
4s5in20,—1 ¢>
4sin’6, ¢*-m?’

a= -1+

1 q*

Y 2 2
4sin“ 0, q* —m2

(55)

where m, is the mass of the Z boson, 8 is the weak mixing angle, and 2 is given by
(27), with M replaced by m,,, the mass of W, Thus, the matrix element has been written in
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Figure 3. The Feynman diagrams for er(D)+7v(q) = ex(P) + Wi (k) + Wy (k') in the WS
model, relevant for large W* W™ invariant mass. .

the form of an effective photon exchange; however, there is a g*-dependent factor (55
arising from the y-Z mixing. In obtaining (54), the (9,9,/m2) (g> —m?2)™ ! term in the Z
propagator has been dropped, since for the electron mass m -0,

q,W"u = g aytyu = 0. . (56)

Ifin (54) we further put in the condition that the e” isright-handed, by introducing the

projection operator (1+475)/2 (in the limit m — 0), and using (a+ bys) (1 +ys)/2 =
(@a+b)1+y5)/2, we get

M= —e(a;b) 7L +ys)ulp)eh/q?, (57)

where a+b from (55) is . :
a+b=mi/(g* —m3). : (58)

We see now that we can use the results of § 3 for calculating C,.z from 2B A will
now be different in that it is only for right-handed helicities of the electron, and that it is

multiplied by a factor m%/(g2 —m2)? coming from (a + b)%. The modified A,z called
AR5, are obtained from *

g€ mk - Q? ) . o+
A G | PePr T Bubu = G+ rgt® el (59)
We find, neglecting m,
. md 1
. AR — Z 2_-
Iy Y €0
, 2 3 1—-x)? ‘
AR 22Tzl
2@ mr e e | el
4 .
R — 2 mz 2 1 —X
AOO e (Qz +m%)2 Q ( xz ): (62)

where x is as defined in (36). Equation (13), together with C ++=C__ leads to

2 4 1+ (1 ~x)? 2(1 -
e e L e L dow|  ®
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Substituting for C , , , C, from (32)and using W; (i = 1,2, 3, 4) from Appendix A (with
M = m,), we find that the expression obtained differs from that obtained in §3 merely
by a factor 1/2 and a factor m3/(Q*+m2)?, the former arising due to the fact that only
the +1 helicity is used for e ™, and the latter due toy —Z mixing. As before, for 02 < m Z
(and m2), (63) reduces to the corresponding EPA equation. However, when the range of
Q? includes values comparable to m? or higher, the factor m% /(0% + m2)? leads to an
important modification of the logarithm appearing in gpa. In EPA, the factor 1/Q2 on
integration gives In 02, which for the full kinematic range gives In (s/m?). In (63), the
leading term is now proportional to (1/Q%) (m%/(Q* + m2)?) which gives on integration

dg*  mi Q? m;
=] ,

R Ll Voo e 9

which is, for the full kinematic range, approximately In (m%/m?) for s > m2. Thus the

In (s/m?) of Epa is replaced by In (m3/m?) for s > m2. However, there is another term of
the form

1 Q*
Q* (Q*+m2)*”
which on integration gives

my

In(Q*+m)+ 2.
(Q Z) Q2 +m%

For s » mZ, this becomes the leading term giving In s/m3. It is clear that Epa does not
give a complete picture for large s, and one must be careful in extrapolating to higher
energies.

(i) exe/ > eze;W* W~ For large W* W~ invariant mass, the relevant diagrams are
those in figure 2a. The diagrams in figure 2b do not apply in the limit m — 0 for the
chosen longitudinal polarizations of e~ and e”. The matrix element for

ex(Pef (P) > ez (p)ef (D)W, (W5 (k')
is given by
(a+b) (@ +b)

e2
M= Z QZQ!Z

#PWu(1 +ys)uP)TE (1 + 5o (p')(c + 228),
(65)

where a, b are given in (55), a', b’ are obtained from a, b by replacing g by ¢’. We have
already incorporated the appropriate projection operators for egand e;. cif is given by
(27) (with M replaced by m,,). T8, which is given by

2n2 ap
eZQ Q g guv (66)

Eaﬂ 2 n2 27?
my (q+4q) —my

v

is obtained from the contribution of the s-channel Higgs diagram, by extracting the
appropriate factors already included in a+ b and @’ + b'. In (66), my is the mass of the
Higgs boson in the Weinberg-Salam model, which we will assume to be comparabile to,
or smaller than m,,. In obtaining (66) we have also made use of the relation

My =m,cosb,. (67)
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Asin §3, we Write s, wrin terms of C e,y (equation (41)), the latter being now given
by

Contr = (G ATR LT (= gt ko /m)
X (—gpp + kpkpp /m3). (68)
As before, C wy' v Can be written in terms of 78 and W as in (43), e)scept that now W, have
an additional contribution due to the presence of the Higgs diagram, and the extra
contributions to W, are listed in Appendix C. Here, we shall rnerelyzpresent t}’le resulfs of
a straightforward calculation of Cny, s in the limit (Q2, Q'2, m2, m 1) <(qq,qkq k).

We find that except for Cog 0, C » ,--and C- _ , 4, the other C,,, ,, are the same as
given in (50)-(52), with M replaced by my,. Cyo.00 is nOW

2.2 2 mi  m
q 1 1 my My H
Coo.00 = e4(~———im;){(y2+F)+(y+;>(2—;17w)+(5 -“mvzy‘i‘rmfv)}- (69)

Cis-_andC__ ., each get an extra term —e*g*q™/(4m8). . .
We see that the terms proportional to (- ¢')*/M*and g ¢'/M? occurring in C 00,00 in
the case of pure electromagnetism (equation (53)), have got cancelled by the Higgs
contribution, and are replaced by better-behaved terms, as anticipated. Now we can use
DEPA for 0%/m3,, Q"2 /m2, < 1 and the more stringent conditions obtained in §3 are not
needed. Moreover, the single Epa for either photon can be used provided the
corresponding Q* < m3, and m2/m2 is not large. ,
Using (60)-(62) for AR . and similar equations for BL, (obtained from 4R by
replacing Q by Q' and x by X'), we can write an expression for (Z|M|*},in the form

e* mé (I =x)2(1-x)2 -
M 2 I Z - C__ S
<ZI l > 4 (Ql +m§)2 (sz +m§)2 QZQ!Z[ x2x2
1 I —x)? 1 —x')?

+;2“)‘CTZ‘C++,++ +(x2x,2) C-_++ +(x2x,2) Ciy --

2(1 —x)2 (1 —x' 2(1=x) (1 =x)? 2(1—=x)
+ ( )ch’2 )C"‘ ot ( xzi’z COO’—"+WC++’OO

2(1 —x) 4(1-x) (1 —x)
T oot T —Conca |, 70

With Cppp ., listed earlier. In the same way as described in the
double logarithm obtained on integrating d(?
now be [In (m%/m*)]? rather than [In (s/m?)]?
single photon case, for large s the leading te
before, DEPA cannot be used for extrapolat

previous subsection, the
dQ*m3[(Q* +m2) (Q% +m2)] ™2 will
occurring in DEPA. Analogous to the

Tm is now (In s/m2)%, Hence, as mentioned
ions to large s and W2.

5. Conclusions and discussion

We have shown in the Previous sections that the
applicable in the case of massive vector
Q'%/W? < 1, but in addition Q*/M?, 02 /M2
of DEPA, we found that for '+ - productio

criterion for EPA and DEPA to be

production is not merely that 0% /W2,
have to be small compared to 1. In the case
n by a two-photon process, a more stringent
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condition, viz. 02Q'? < 16 M®/W* has to be satisfied in addition. However, if the vector
particles arise in a spontaneously broken gauge theory, the amplitudes would not be
badly behaved for large W, and this latter condition may not be needed. We have shown
this to be the case for W W™ production from longitudinally polarized e * e~ beams via
the two-photon type of process, in the Weinberg-Salam theory.

We have treated somewhat special interactions and processes in the main body of the.
paper, largely for the sake of simplicity. Nevertheless, we hope that the purpose of
highlighting the problems in applying EPA or DEPA to processes involving massive spin-1
particles has been served. We discuss below possible implications for other interactions
and processes.

If we did not assume x = 1 for the anomalous magnetic moment of the vector
particles in our general discussion, the amplitudes for ¥* ¥~ production would have
worse singularities for M — 0, and we would possibly find that more stringent
conditions are necessary for the applicability of Epa. In fact, even in the case of a process
involving a single vector particle, with k s 1 inverse powers of M occur (Mikaelian et al
1979). Thus, the cross-section for a process like ep — eWX calculated using EPA (Kamal
et al 1981), if extrapolated to W? > M?, for the full kinematic range of Q2, could be in
error. A numerical check by means of exact calculations would be useful.

As pointed out earlier, because the leading logarithm In (s/m?) of Epa gets replaced for
s » mj, by In (m2/m?) in Wproduction in the Weinberg-Salam model, Epa extrapolated
to large s(s > m2) cannot be trusted. For example, the use of DEPA to estimate cross-
sections for e"e™ — ee” W W™ in the TeV range, as in the work of Katuya (1983)
may need critical examination (Jayaraman et al 1985).

The method described in §3(i) for obtaining the cross-section for vector-pair
production when Q?/M? is not small, was earlier applied by us (Jayaraman et al 1982) in
the calculation of e¥e™ — e*e™ + 2 jets in the integer-charge quark model based on a
spontaneously broken colour gauge theory. In this theory, the gluons are charged and
massive. Being charged, they contribute to the process in the lowest order (%) via the
process e*e” — e*e"g*g~. In order to compare the model with the PETRA single-tag
experiments, this process was calculated using the single EPA, retaining all terms
involving q*/m7 or powers of g%/m2, where g is the momentum of the tagged photon.
The momentum of the untagged photon was put equal to zero, and the standard
equivalent spectrum was used for that photon. In terms of our present analysis it can
now be seen that this procedure was not complete (see the comment at the end of §3),
since the coloured Higgs bosons contributions were neglected, assuming the masses of
the Higgs bosons to be large. However, we have shown that if the Higgs bosons are
assumed light (my ~ m,), as noted in §4, the potentially large terms of the type
Q*Q"*W*/M8 occurring in Cy0,00 (equation (53)) are cancelled by the Higgs contri-
bution (Jayaraman 1983; Jayaraman et al 1983; Godbole et al 1984). The numerical
results are altered somewhat, but the main conclusions are unaltered. We may note here
that Cho et al (1983) have also calculated e*e™ — ete g g~ in the integer-charged

*1tis of interest to note that several calculations of Wproduction, either exact or using EPA, were done in
the 60’s or even earlier. However, since all these were on hadron targets, form factors ensured that Q? was
restricted to be effectively small. Nevertheless, the total cross-sections showed discrepancies between exact
and EPA calculations (see Williamson and Salzman 1963; Berman and Tsai 1963). These discrepancies, as well
as the sensitivity of the results to form factors, may well have arisen due to reasons discussed in this paper;
only a detailed study can tell. For later calculations using EPA, see also Kim and Tsai (1972, 1973), Kessler
(1975) and Renard (1979).
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quark model but haveignored the careful consideration of the EpA which is necessary as
pointed out in this paper.

A numerical check by means of exact calculation of the various conclusions of the
present paper is essential and would be interesting.

The comments on the validity of Epa made in this paper are likely to be valid also for
the production of particles with spin > 3. This would be an interesting theoretical
problem to investigate, though it may not be of great practical interest at the moment.
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Appendix A

The invariant functions W, (i = 1, 2, 3, 4) relevant to the reaction Y*(@)+ (@) = VT (k)
+ V7 (k') discussed in §3 are listed here.
4’ ¢ ! 1
Wi=e*dda—— 4+ L _ga2a2 _app
1 { Mz M4 q (q ) (qu . ]\.)2 + (2q/ . k,)z

2 k' 24 - k 2 20,2 2 2 __ 2
+8(q L +1) 8q°(q* —2M?)(¢* —4M?)

2k 2¢K M*(2q'-k)(2q - k)
+SqZ(q;-;Z‘MZ)(z;.k'+2q}'k)}-Wz_ws' (A

R B s

R | q*z"““lzidz)(zqak)?

W, = 34{8_‘3_2_(q2_4M2)(_~_1__+ 1
Ml (zqr . k)z (2q1 . kr)2

(g* —2M?) 2¢* 84>
+. — e = —— ——
@Ry W\ "M T 24) } A9
It may be mentioned that though W,, W; appear to be sin gularatg® = 0 because of ¢*

in thf: ;ienominatqr in (A.2) and (A.3), they are not really so, as an explicit expression
obtained on substituting for W, from (A.4) would show.
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Appendix B

We list here the expressions for 7° ;'m,’w, and W (i=1,2, ..., 21)relevant to the reaction
Y*(@)+y*(@) > V*(k)+ V (k) discussed in §3. We use T.= (g—k)*-M?* U=
(@—k)>—M? and y = T/U. The. tensors T, . are:

Tpltu',W’ = guvgu’V’a;T pzw’,W' =gugw, T i,z,w' =G Guv,

Tz;z’,vv’ = guvku'kv"}:g#'v'kukv’ Tlszy’,vv' = guwkyky +guv k;k(,,
Tzu’,vv‘ = guvku’k’v’ +gu'v’kuk:w Tl,u',vv' = guvk;t'kv"‘{“g;l'v’k;kw
T;Sm',vv' = g/i#'kvkv" T;gtu',vv’ = gyy’k; ky, T:u.?’,vv’ =Gup (kvk(;"i"‘ k:akv),
Thir = Gwkukye, Tifiw = guikickis, Thdow = gu (kK + Kk ,e),
T III:ZW' = guvkyk, + guvk, kv, Thiw = Guvkuk, + gk, Ky,
T};ﬁ',w’ = guv’ku’k; + gu'vky k(,, T;lu},vv’ = gyv’k;ﬂkv + g/l'vk;zkv's
TS = kykyk,ky, T}‘zr,w' = kykyk,ky,

T2y = kukyk ey + k ok, kyks,,

leilﬁl",w' = kﬂk;i'k;kv"}‘ kp’ L ';)'kv-

The invariant functions W, are:

2 ’2 2 12\2
W1=e4{_4_4(q +97%) @ +9°) __8()}%)

M? M*
1 1 2qzqr2 q2+q/2 2q4ql4 1
- i*ﬁ) w U ur )T

LR R Y g’ +49%)  4’q?
+<7,—2-+~Iﬁ)q2q2(16—— vz T ) ¢
1 z 4q%q? IN/1 1\ g*q*/1 1
4 (y+2+1) —1]- e+ )+29 (=)L,
31 S S5
1\ 8¢%q* (1 1\ 2g9*%¢* 1
16+8( y+= |- R I i
" y+y> M2 \TTT) T T 7O

49" (¢? —4M?)  4q? (g* —4M?) 2 , )
W, = 34{" M2 1 T2 “ME U2 _M4TU [‘12‘1 *(g? +4'%)

~A—— —~A—

_2M2(q4+q/4)+8M4(q2+q/2)__lzqquszZ:I},

W= etd L g, 8@ +d%) 24°+47%) +24%¢7 L@ +q?)] 16
°- T M2 M4 M6 U &
16U 1 o, 84797 —44* —4g*  20°q%(q*+q7)  q*q*
“W*Tﬁ[lé(qzwz“ e — it s
1 , 4g*+q'H? +24¢%¢* 4 202 +q%)  gqt
+7_,U—|:—16(q2+q 2)+ M2 q _ q ](\44 + M6 ,
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1 L, 4947 1 . 8q* +4q* + 16¢°q"*
Ws = 24{'1_,—2[16q 2 —-M‘Z—J+'Iﬁ[16q 2 + 32q2 - M2
L@+ gt 164°°
M* M5 |TMPTU |
, 8q2q12+4ql4 2q2ql4 1 1
W1o=e"'{[16q2—— Ve + e —fi—*——(]—i
2 ) 8q2q/2 +4q4 2q4q12
*ﬁ[‘éqz_ M M
4q% 4g° 1 ,
Wia = 34{W(q P AMY) + o (@8 =AM+ | 16067 +47)
Ma®+47 +244°q%  49°q*(@*+47) q¢*¢*
B M M M [
32 16 16U 1 4 2+ 232 22/2 +/2
Wm:e‘t{ﬁw « +F[_16(qz+q,z)+ (qu ? 2 q;\(f‘t q)

1 4(g*+q*)* +164°q* 29°q*(¢*+4'H)
1 2 2 -
+~—TU[ 6(g* +g'%) e + A ,

AP et 2
W18=F5F(q5q )’ W19=53F(q s q )s

11y 11\ 1 ,
WZO = 3284<—f+—[7) R W21 = 84{——32(F+’i]—2')+ﬁ[17(q2,q2).—64]},
where

16(q> +4'Y)  4(@*+q%*+84¢%q* 4¢°¢*@*+q?) q*¢*
2 2y _
F(q » g )“‘48"" M2 + M4 - M6 +M8'

Of the remaining, W5, W,, W,, W, s and W, ; are obtained by interchange of T'and U
from W,, Ws, Wy, W4 and W, respectively. W, ,, W, , and W, ; are obtained from Ws,
Ws and Wy respectively, by interchange of g and 4, which includes interchange of T'and
U,since T'=¢q>-2g-k=¢q*~2¢ k' and U = q* —2g-k' = ¢* -2q' k.

Appendix C

After the inclusion of the Higgs diagram shown in figure 2a the invariant functions W,

(i=1,2,...,21)occurring in the cross-section for y*y* — W* W~ (§4(i1)) are altered

as follows (with T = (g —k)> —m32, U = (g —k')* —mZ and y = T/U):

3*q* W* —aWmi + 12m?,

4my (WP -ml)p

2 2 2 1 2 2 __ 2

e L _pr@"+a" ~2my)
mw’ W _mH 2m%&.

W, - W+

2
2m3,



_——
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2,2 212
2 12 _ q q _ _1_ 2 _ 2 — 12 q q
+q°+q -~ (y+y)(4mw q9°—q +—~—-2mfv)

2.2

q q 2 2 2 l l

L er-ai(led)]
2,72 1 1 1 2,72

m—>W;+qiq- (?+~)(2q2+2q’2—-8mﬁ,—qqu ),

2,12 2,12
q°q 1 11 , 9°q
Wo— Wst m¥ W? —m# (7,+fj—)(2q2+2q2-8mﬁ,— m?, )’

2 72 2 +2 2,2 2 r2\2
qq 1 q°+q a9 \(U 1(g*+q"7)
2% - W, ‘+— -2+ _ _+1 ———e

2,2 2 1242 2
a2 a2y —am2 1 19 __qq(q'HJ)E 24 2 _gm2
2q* +q'*) —4mp+ m 2t tyle*+9% —dmi] .

W, is obtained from the altered W, by interchange of Tand U. All the remaining W, are
unaltered.

*
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