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Abstract. We study in detail the factors that influence the unification relations
among the coupling parameters of strong and electroweak interactions. We find
that the factor that decides the unification relations in a theory is the fermion con-
tent of the theory. The specific ‘observed’ group of strong and electroweak interactions
used and the specific unification group in which these interactions are embedded
are largely irrelevant. In particular, we find that the unification value of the electro-
weak mixing angle is the same for almost all models of interest. We also explicitly
illustrate that the canonical value 3/8 of the mixing angle is a characteristic result of
the currently popular sequential doublets scheme of fermions. Addition of extra fer-

mion singlets reduces the mixing angle to 1/4. We propose this sequential triplets
scheme of fermions as an interesting alternative to the current scheme.

Keywords. Grand unified models; neutral-currents; Weinberg-Salam model; left-
right symmetric model; electroweak mixing angle.

1. Intreduction

The SU(5) grand unification scheme (Georgi and Glashow 1974) is fast acquiring
the status of an orthodoxy. The scheme incorporates strong interactions described by
the unbroken colour group SU(3)¢, and the electromagnetic and weak (electroweak)
interactions described by the minimal group SU(2)r, X U(1) (Weinberg 1967; Salam
1968). On unification under SU(5) the three coupling constants g, g; and gy asso-
ciated with the gauge groups SU(3)c, SU(2)r, and U(1), respectively, get related to
each other. The weak mixing angle sin®f, defined to be €?/g7, and the ratio of the fine
structure constant to the strong coupling constant, e?/g¢, then get fixed at 3/8. This
unification value of sin%f and ef’*/gg -is expected to hold only at energies higher than
the mass of the heaviest vector-bosons in the theory, which may be called the unifi-
cation mass. Since in the SU(5) scheme baryon number is not conserved, and pro-
ton decay can occur in the first order of weak interactions, the unification mass has
to be rather large (~10'¢ GeV) to make the proton sufficiently stable. Using the
renormalisation group equation it has been shown that to obtain the correct value of
e2/g§ ~ 1/30 at low energies (= 10 GeV), the unification mass, i.e., energy at which
ezlgfs. rises to 3/8, must indeed be of the order of 10' GeV (Georgi ef al 1974). The
value of sin26 at 10 GeV then turns out to be ~ 0-20, in good agreement with the
experimental number. o
The above prediction for the mixing angle is the only experimentally accessible
result of the SU(5) grand unification scheme. The model, however, is taken seriously
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enough to calculate quantities like baryon excess in the universe (e.g., Yoshimura
1978) and to speculate about the possible reasons for the near equality of the unifica-
tion mass in SU(5) and the Planck mass (e.g., Zee 1979). Therefore, it should be of
interest to see how far the only experimentally testable consequence of SU(5), i.e.,

the predicted value of the weak mixing angle sinf, is unique to the SU(Y) scheme.
The question we ask is: Does this unification result depend on the specific choice of
the unifying gauge group?

The question of the correct observed gauge group (i.e., the group relevant at the
observed energies) for the strong and electroweak interactions is also by no means
settled. Though the standard model for the strong and electroweak interactions
based on the group SUB)cxSUR), X U(1) is quite plausible, alternative models
which explain the experimental results equally well, can also be comstructed. In
particular the integrally charged quark model for strong interactions (Rajasekaran
and Roy 1675; Pati and Salam 1976), and the left-right symmetric model for the
electroweak interactions (Bajaj and Rajasekaran 1979, and references cited therein)
may be mentioned. Does the unification result for sin?0 depend critically on the choice
of the observed group for strong and electroweak interactions?

In this paper (paper I) we try to answer these questions for the algebraic results
obtained on unification. The renormalization effects will depend on the size of the
unifying group and also on the observed group, but there is always sufficient freedom
to adjust these effects to any desirable level. We shall, however, postpone the dis-
cussion of the renormalization effects to a subsequent paper (Bajaj and Rajasekaran
1979b, referred to as paper II in the text).

By deriving the unification relations among the coupling constants in a general
manner ( § 2), we first show that these relations depend only on the set of fermions in
the theory and on their classification under the observed group. These algebraic rela-
tions among the coupling constants are found to be the same for a large class of
unification groups. Specifically, if the number of fermions in the theory is N, then
the unification relations are the same for a maximal unifying group SU(2N;), and
any simple or semi-simple unifying subgroup thereof.

The dependence of these relations on the observed group is analysed next (§ 3).
We find that for any electroweak group SU(2)z, X U(1) X G’ the weak mixing angle
defined as sin?f = ¢*/gf has the same unification value as for the minimal group
SU@)rx U(1), if the classification of fermions under SU(2)r, remains same in all
cases. This result is of special relevance for the left-right symmetric models based
on the group SU2)r, x SUR)r X U(1), for which we have earlier shown that the
neutral-current couplings have the same functional dependence on sin?f as in the
Weinberg-Salam (W-S) model (Bajaj and Rajasekaran 1979a). Therefore, we prove
in detail the equivalence of sin2d for SU(2)r X U(1) and SUQ2)r, x SU2)r x U()
and show that the generalisation of this result to SU(2);, X U(l) X G is straight-
forward. We also show that the unification value of sin?f (appropriately defined)
does not depend on whether the colour group SU(3)c is broken (integrally charged
quark model) or not (fractionally charged quark model).

We illustrate these results in two examples. We first take the standard scheme
according to which fermions come as sequential doublets of SU2)z (§ 4. We show
that in this case the SU(5) result, ¢?/g§ = sin®0 = 3/8, is obtained without any refer-
ence to the details of the unification group or of the observed group. As our second




Unified gauge theories 397

example (§ 5), we take the case where fermions appear as sequential triplets of SU(3)r,
forming a doublet and a singlet of SU(Z)L, in each case. In constructing this ex-
ample, our motivation was to look for a model that gives a low unification value of
sin? 6, so that large renormalisation correctionsneed not be invoked. We find that for
this simple example the value of sin? 8 is 1/4, rather near the experimental number.
Once again we do not need to specify either the unification group or the observed
group. '

In the last section (§ 6), we have summarised the results of this paper, and have
discussed their significance.

2. Algebraic relations in the unification limit

In this section, we give a general analysis of the algebraic relations among the coupling
constants of the strong, weak and electromagnetic interactions that follow when these
interactions are embedded in a unified gauge group.

Let Gy=G4 X Gp X Gc...(where G4, GB, Gc. ... are simple) be the observed
group of strong, weak and electromagnetic interactions with corresponding coupling
constants g, &g 8¢---- - I Gyis embedded in a unifying group G with a single
coupling constant g, then the various observed coupling constants, g4, & . ., get
related to g,. There are many choices possible for the unifying group G. But the
trick that facilitates a general analysis is to consider a maximal unifying group
Gmax=SU(N}), where Nj is the total number of fermions inthe theory and 2N; (=N)
is the total number of left-handed and right-handed components (Fritzsch and Minko-
wski 1975). The algebraic relations among the coupling constanis g4, 8p -- > of
the factor groups G4, GB.. ., are derived for Gmax, but are automatically valid for
any unifying group G which is a subgroup of Gmax. . .

The left-handed and right-handed fermions together form an N-dimensional multi-
plet b of Gyax. The interaction of the fermions with the gauge-bosons W (¢=1,2...)
of the unifying group G = Gmax can be written as*:

Le=igg (b v T6af) WGer - €))

where T, are the generators of G inthe N-dimensional fermion represent@iom We
normalise Tg, such that Tr (Tg.)? is independent of a, and

. Tr (Toa Top) =g Tr TG )
The observed interaction Lagrangian on the other hand is

‘ v 3
Ly=1 Z AWy Tyh) Wy . €)
y T .A’B;‘t‘ : : o R i : | |
| peration of the generators of the

e the corresponding gauge fields.

where T, are N' X N matrices representing the o
group G4 on the fermion multiplet  and Wy; ar

i v ient.
*The space-time four-vector index p has been suppressed wherever convenie
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Tn general, Ty; form reducible representations of the algebra G4. Normalisation of
TAi also is such that Tr (T4;)? is independent of i and

Tr (Ta; Tuj) = 8 TeT 3, - @

Since the observed interactions are obtained from L by the spontancous breaking
of group G to the level of G,, it is clear that L, is contained in Lg. The fields W ; are
in general linear combinations of Wg,. However, since the original gauge fields
W, Were arbitrary with respect to linear orthogonal transformations we can, without
loss of generality, identify each of the ‘ physical ° gauge fields W, with some W,
So L, is recognised to be a part of L, and by comparing (1) and (3) we get

{e: TGu. =84 T,ﬁ, &g TGﬁ =&p TBj’ etc.,
and hence, using (2) and (4),
STr T =g TrT4 =gy Tr Th=... )

The above equation (5) is the basic algebraic relationship connecting each of the
coupling constants g4, gp,.. - of the observed interactions among themselves, and
to the coupling constant g, of the unifying group. Since the details of the symmetry
breaking or of the symmetry groups in the intermediate stages do not play any role
in the above derivation of equation (5), it is clear that this result will hold for any
unifying group (which will be a subgroup of Gmax) occuiring in the intermediate
stages. Therefore, the relationship among the coupling constants g4, gp.. . does

not depend on the specific choice of the unifying group, nor on the manner in which
it is broken to the observed group G,. The only relevant factors in determining the
algebraic relations among the observed coupling constants g 4, g&p. . . are

(i) the set of fermions in the theory, and

(ii) the classification of fermions under various components G4, Gp...of Gy,
which ﬁ)g TrT%,Tr T3, ...

3. Comparison of standard model with the alternatives

In this section we show that the unification value of the weak mixing angle remains
the same in a large class of models. In particular, we compare the standard model,
wherein the strong interactions are described by the unbroken colour SU(3) and the
electroweak interactions by the minimal SU(2); X U(1) with the left-right symmetric
model in which the electroweak group is SU(2) L X SU(2) R X U(l) instead of
sU2); x U(Q).

We have shown earlier that the neutral-current sectm of the 1eft-r1ght symmetric
models mimics the neutral-current sector of the W-S model making the two models
phenomenologically indistinguishable (Bajaj and Rajasekaran 1979a). - Here, using

the general results of § 1, we show that even the predicted unification value of the
mixing angle is the same for both the models.




Unified gange theories : A . 399

The standard model is based on the observed group G,=SU(3), X SU2); X U(1)

with coupling constants gg> &1, and gy, respectively. The interaction between the
fermions and the gauge fields in this model is given by

8 _ 3 _
Ly (W=-S) =i [gsz(‘i[‘ Y Tc,f‘#) V;L +ng ¢4 Y TLi¢) Wﬁt
i=1 i=1

+ gy @y, Tyh) B, 6

where Tcy, Tr; and Ty are N x N matrices representing the operation of the usual
SU(3), SU(2) and U(1) generators (A;/2), (,/2) and Y, respectively on the fermion
multiplet ¢: and V;, W;, B are the corresponding gauge fields in appropriate repre-
sentation. The explicit forms of the matrices will depend on the choice of the fer-
mion multiplet ¢ and will be exhibited in §§ 4 and 5.

The left-right symmetric model is described by the group G, = SUR)c x SU@)L
x SU2)r x U(1) with corresponding coupling constants g5 81> &g and gy. The
interaction of the fermions with the gauge fields is given by

8 3
LR =ilgs > &7, TV +eL > W, T Py
i1 i=1

3
tgl S Gy, Tr) Whit gy G, Trd) B, M
e TR EYE

where, as above, T'’s are N X N matrices representing the operation of the generators
of the corresponding factor groups of G on #; and V,, Wri, Wg; and B are the
appropriate gange fields. ' - '

About the fermion content of the two models we assume that the set of fermions
is the same for both the standard and the left-right symmetric model. This ensures
that the maximal unifying groiip Gmax is the same in both cases. - We further assume
that the classification of fermions under the common. factors SUB)c and SU(Z.)L
of the observed groups is also the same in the two models. Though not essential
for the proof of our main results, we also assume that the fermifms transfor‘m sym-
metrically under SU2)L X SU(2)r. Thus if the left-handed fermions are assigned to
the representation n of SU®2) 7, and the right-handed fermions are singlets of SUQ)L,
in the standard model, then in the left-right symmetric model, the left-handed and
right-handed fermions transform as (n, 1) and (1, n) respectively of SU(2)L X SU(2)r-

These simple assumptions about the fermion content of the two models force a
aumber of correspondences between the unification result§ for the two models. These
results follow simply from the basic equation (5)- .Fxrst, consider the standard
model. In this case, the coupling constant ratios are given by

ghlgl, — Tr T3/Tr Th; gyl = Tr T/Tr T%. ®)

The traces of T} and T¢ can be evaluated merely by using the third c?mponents 7
and Ty Also, it is more convenient to rewrite these formulae (8) in terms of the
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electric charge matrix Q, the electric coupling constant e, and the weak-electromag-
netic mixing parameter sin®*f, defined by
Q=T+ Ty, 1/e* = l/gL

+ 1/g%, sin?0 =
Using equations (8) and (9), we get

= e*lgy . €]

sin?f = Tr T74/Tr 0%, e?lg% = Tt Tgy [Tr Q*. (10)

In the left-right symmetric model, the basic unification relations obtained on usmg
equation (5) are:

grler = Tr Tiy/Tr TFss
/g’2 =Tr T} /Tr Cs, -

/g’2 = Tr T'}/Tr T%. (11)
Again we define

Q =Tr3 + Tps + Ty
1/e2=1/gi* + 1/g' + 1/g'ps

sin?0’ = e2/g’?;

(12)
and rewrite the latter two of equations (11) in the form

sin2f’ = Tr Tfs/Tr Q% ege=TrTE [Tr Q™. (13)
It is important to realise that the primed matrices of the left-right symmetric model
as well as the unprimed matrices of the standard model act on the same N-dimen-

sional representatlon J of Gmax. Further, since the classification of particles undel
SU(S)C and SU(2); is identical in the two models, we have

and T]y = Tys. , (15)
Since the set of fermions is the same, the chai'ge matrices are also the same. There-
fore

Q' = 0.

(16)

However, note that because of the difference between the definitions of Q (equation

(9)) and Q' (equation (12)), Ty # Ty But Ty and Ty can always be eliminated in
favour of Q' and Q, respectively.

“As a consequence of (14), (15) and (16), we get, on comparing (10) and (13),
sin? 6’ = sin? 0, |

~oan
and  gd = gk - i

(18)
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Hence the algebraic consequences of unification, namely the values of the weak
mixing angle and the ratio of the strong coupling to the fine structure constant are
proved to be the same for the left-right symmetric as well as the standard model.*
Notice that for this result we had to assume only that the classification of fermions

under SU(3) and SU(2); is the same for both models. The additional assumption
of left-right symmetric classification implies

Tp3 = Tgy; | (19)

which coupled with the first of equations (11) gives

8 = &g | (20)

Hence, once the fermions are classified in a left-right symmetric manner, there is no
- freedom in a grand unified model to choose the gauge coupling constants g; and gy
differently.

The unification values of the mixing angle sin? 6, and of the ratio e*/g¥ are in fact

the same for a much wider class of models. For any model based ou an electroweak
group SU(2); x U(1) X.G", one can define a mixing angle ¢ such that

sin? 6 = e?[g}. 1)
The unification equation (5), now implies
LT T, =g Tr T} =geTr T = ... (22)

Extension of the argument which led to equaiio,n (5) to the level where electromagnetic
- U(1) is the observed group gives

gL Tr TE = et Tr Q2. (23)
Comparing (22) and (23), one gets
/ sin? = Tr T} /Tr @* and e*/gh = Tr Tg/Tr O (24)

So it is clear that unification values of sin? 8 and /g% are independent of G'. These
values will be the same for all models based on the group SUR) X SUR) X UFI) X .G,’
provided these models involve the same set of fermions and the classification
of fermions under the factors SU(3) and SU(2)y, is the same for all moc%els. Our
results for the left-right symmetric model are clearly a special case of this gc_ncral
result. However, unlike in the case of left-right symmetric models, the equality of

" %A similar result has been obtained by Chanowitz et al (1977) USinEtS_O(lg)dgls g‘; ‘g’;ﬁ%&"o‘}
group. Elias (1977) also studied the unification of the left-right symmetric m gle the simple result
the choice of a phenomenologically inappropriate definition of the mixing an

(17) seems to have been missed.

P~—6
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sin? 6 may not imply-the equality- of neutral-current couplings, in general. These
equalities are of interest only in cases where-at least some neutral-current sector has
been shown to have the same dependence on sin? 8 (=e*/g}, equation (2.1)) as in the
standard model. This obviously covers 'the"inﬁnite',olass of models in which the
y-induced sectors can be identified with the stamdard model (Georgi and Weinberg
1978). , S : ‘

Finally we may remark that the unification value of the mixing angle will be the
same in both the fractionally charged and the integrally charged quark models. In
the latier case, at the final stage of symmetry breaking, SU(3) also breaks such that
the charge operator becomes - . R T

Q = Qeolour T Qfiavour o ’ (25)
where Qo =Tcs + UV Tee . @O

and Qg our 15 the same as the charge operator in the fractionally charged models,
In this case sin® § defined as e?/g} (equation (21)) will of course be different from the
standard model. However, the mixing angle that appears. in- the neutral-current
in the integrally-charged quark model is usually defined as (see, e.g., Rajasekaran
and Roy 1975) ' '

sin® 8 = (g2, + g}le}, e @)

where g; and gy refer to the coupling coﬂ§t’dﬁf§’déﬁﬁed in"'ch'ev's'té.ﬁcfai'd"rﬁédzél case
(equation (6)). On unification, then, - :

sin? 0 =Tr T3 /(Tr Ty + Tr T%) =Tr T3 | Tr Qfavour - @9

A similar expression can obviously be obtained for the case when the electroweak

model is left-right symmetric. Now, since Qg .. is the same as the charge in the
fractionally-charged quark model, unification value of sin? 8 in the integrally charged

model (equation (28)) is the same as in the standard model (equation (10). . .

4. Sequential doublets scheme

In this and the next section, we illustrate the general results already derived for two
specific fermion schemes.” As ous first example, we consider the sequential doublets
scheme which is the favoured scheme for fermiosis at present. The quarks and leptons
are assumed to ocour in-a sequence of SU(2); doublets S

L e

g e
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Each quark comes in three varieties of colour, the curly bracket, { }, denoting the
colour triplet. Let N, be the number of quark flavours, so that 3N, is the total
number of coloured quarks and let N, be the number of lepton flavours. The total

number of fermions is
N; = 3N, + N,.

‘The maximal unification group is Gp,, = SU(2N;) where 2N, is the total
number of left-handed and right-handed fermion components.” The fermions belong
to the 2N, -dimensional representation of this group:

¥ =0, ¥R :
where ¥y = u ), {4k {e1}s {1} o5 vep e VuLs ML ‘...),
< 3N q ~> € - .‘N ll - .
and ¢p is given by a similar multiplet. For typographical convenience, the column

vectors have been written as row vectors.
The electric charge operator in the fermionic representation is.a 2Ny X2N;

matrix:

| e 0N
E Q——(O QR),.‘,;z:..tV;_;. A A R

where O, and Qp are N, X N matrices:

%—{1}1
-3 {1
S01
—%h}

QL"'-‘"'QR\= . 0

~ 3Nq - ™

The curly matrix {1} stands for the unit mat:rix-.in colour spa.i-_:eg ,

1
{1}.=( 1 )
. ) .Al
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We now find

TrQ =2Tr 0 =N, — N,

Tr Q% = 2 Tr QzL:.SS-N,,+Nl.

Since Q is a generator of SU(2Ny), we require
Tr Q =0,

which implies
N, == N; = N,/4.

.50, we have
Tr QF = 2 N,.
3
The matrix corresponding to the third component of colour SU(3) is

- Tey (L) 0
€3 \o Teg R))

where

ToyL) = Te3(R) = . 5

—3Nq —»re— Ny

o
and {A}=1% ( —1 ); Tr (A =1
0

Hence Tr (Tgy)® =2 Tr (T (D) = 2N, T {Ry =N, = Ny/4.
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The matrix corresponding to the third component of SU(2), is

g3y 0 ‘
Tpy= , where T 3 (R) == 0 and
0 T,4 (R) 2

L LSk
A
o —
| )
— o
v

(73>=%({é} T-{(1)});{1}—-*(1 ! ]); =

So, the trace is
Tr (T = } BN, + N) = Nyj4.
Thus, we have |

sin? § = Tr (Ty)¥/Tr O =

H

o0y W

e‘“’/gg' =Tr (ch,)e/Tr o*

]

ool W

This SU(5) result is thus seen to depend only on the fermion content. As we already
know, these results are common to both the standard and left-right symmetric
models. '

Large renormalisation corrections have to be invoked in order to bring down the
value of sin? # from the above unification value 0-375 to the recent empirically deter-
mined value 023 -- 0-01 (see the review, Musset 1979). These renormalisation
corrections are analysed in detail in paper II. It suffices here to point out that the
computation of the renormalisation corrections involves doubtful extrapolations
over energy regions of many orders of magnitude. So, it seems reasonable to ask as
to what schemes for the fermions would give values of sin? @ near the empirically
determined value, even without the renormalisation corrections. That provides the
motivation for our second example given in the next section.

5. Sequential triplets scheme

To obtain a different unification value of sin*f, we have to change the fermion con-
tent of the theory. Here we consider the case Where corresponding to every doublet
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of the last section, there is also:an SU(2), singlet so that the fermions appear as
sequential triplets:

J T !
({d}). ({s}), ({b})... |
e b 3
BB 0
E M T

The left-handed triplet (u, d, x); decomposes into the usual doublet (, d); and a
new singlet x, under SUQ2);, and other triplets decompose similarly. Curly brackets

denote, as in § 4, colour triplets. Such schemes having extra leptons and quarks
have been considered in literature in various other contexts (e.g., Khare et al 1979;
Pandit 1976; Gupta and Mani 1974; Schechter and Ueda 1973) and it is possible to
arrange the model in a way such that the interactions of the usual quarks and leptons

remain largely unaltered.
We shall again use N, and N, to denote the number of quark flavours and lepton

flavours, respectively, so that the total number of fermions is given by
Nf = 3N¢ + Nl'

! The maximal unification group is SU(2N,) and the 2N, dimensional fermion repre-
i sentation is

‘/’ = (gbL: 'IJR)’ . | ' . |
oy = gy {dd {ds o8 Ve e B o)
< 3N, > *"——Nl—f"">

and similarly for ¢z.
The charge matrix is
0=(0* o)

where . Oy = Og = .
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We have chosen the charge of the singlet quarks x, 3, z.. . to be — § and the singlet
leptons E, M, T .. to be +1.  This follows if Qs a generator of an SU(3) group of
which the triplets form irreducible representations. We shall assume this. Now,

the trace of Q is zero separately for quarks and leptons and so N, need not equal ;.
Nevertheless, we shall choose N N, by mvokmg lepton- quark symmetry. So,

Tr QF = 2 Tr.Qi = gf(N;, -+ N,) =1 Nf.
The matrix T, is of the same form as in the doublets scheme and so
TI' (Tc3)2 = .N:f/4.

On the other hand, T}, is different. We have

. Trs (L) 0
B7V o maw)

where Ty (R) =0,

and T;4(L) =

(73) a.nctlr are as defined before and

‘0
{0}:( 0 )
ol |
Hence  Tr (TL3)2 J£(3N +Nz)—Nf/6 '

The coupling constant ratlos are -

sm~ f— Tr (TL3)2/T1' Q2 = ]/4

SR : rr (Tcé)z/;rr o -f_-,,s/,s..» SR
&S T e
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These are the results for both the standard and left-right symmetric models, if in
addition to fermion doublets there exist singlets under SU(2); such that the fermions
form SU(3); triplets.

As promised, sin? 8 in the sequential triplets scheme is already near the empirically
determined value, 0-23 - 0-01 (Musset 1979). So, this scheme of the fermions is the
appropriate one for those unified models which do not involve large renormalisation
corrections. The possibility of such unified models is also studied in paper II.

6. Conclusions and comments

We have studied in detail the factors that influence the unification relations among
the coupling-parameters of strong and electroweak interactions. We may summa-
rise the results as follows:

(i) The fermion content of a theory almost completely fixes the unification relations.
In particular, these relations do not depend on the specific choice of the unifying
group. One can derive the unification relations using a maximal unifying group

G pax = SU(2N;), where N, is the number of fermions in the theory. The relations
thus derived will be valid for all unifying groups that are subgroups of G, ..

(ii) The physically relevant unification results do not depend on the specific choice
of the ‘ observed > group of strong and electroweak interactions either. In parti-
cular, the unification value of the weak mixing angle is the same for all electroweak
groups which contain SU(2);, x U(1) as a subgroup, and in which the set of fermions
and the classification of fermions under SU(2), is the same. Also, the value of the
mixing angle is the same for both the integrally-charged and the fractionally-charged
quark models.

(iii) The conclusion of para 2 isimportant because, as we have already shown (Bajaj
and Rajasekaran 1979a and 1980) the left-right symmetric models are in good agree-
ment with neutral-current data with more or less the same value of sin® . In addition,
it is known that a large class of models based on SU(2); x U(1) X G’ can be arranged

to give the same neutral-current couplings in the »-induced sectors (Georgi and Wein-
berg 1976). In these models again the empirically determined sin® 6 will have the
same value as in the standard model. Here we show that the ° theoretical * value of
sin? 0, determined by embedding the strong and electroweak interactions in a grand
unified group, is also the same for all these models.

(iv) All this leads to the conclusion that as far as empirically relevant results of
unification are concerned there is nothing sacrosanct about the minimal unifying
group SU(5), or about the standard model of strong and electroweak interactions.

(v) To illustrate these conclusions we explicitly show that the canonical value of
3/8 for sin? § can be obtained by only specifying that the fermions form sequential
doublets under SU(2);. No reference to the unifying group or to the ‘¢ observed’
group need be made. Introduction of additional fermion singlets reduces sin? 6
to 1/4, which is rather near the empirically determined value of sin? 8. This sequen-~
tial triplet scheme for fermions may, therefore, be of interest in unification theories
that avoid large renormalisation corrections (e.g., see Fritzsch and Minkowski 1975).

The above conclusions and comments are valid only for the algebraic results of
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unification. The question of renormalisation corrections to these results is taken up
in paper II.
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